
Cognitive Patterns for Software Comprehension: Temporal Details

 Adam Murray
armurray@ca.ibm.com

Timothy C. Lethbridge
tcl@site.uottawa.ca

 Doctoral Fellow
Center for Advanced Studies, IBM Rational

Ottawa, Ontario, Canada

University of Ottawa
SITE, 800 King Edward Avenue

Ottawa, Ontario, Canada K1N 6N5

1. Introduction
In performing complex tasks, experienced practitioners use cognitive procedures that have much

in common with each other. We term these procedures cognitive patterns.
In this research, we will focus on the subset of cognitive patterns relevant to software

engineering. We propose that the study of and dissemination of these patterns will help tool
designers create more useful tools and directly assist developers in working more efficiently and
effectively with software. More specifically, the patterns can be applied to help derive features of
tools that aid in understanding software, whether for design, or some other type of problem
solving. Such features will support such cognitive activities as reasoning about and thinking about
software artefacts.

A cognitive pattern is a structured textual description of a solution to a recurring cognitive
problem in a specific context. A general class of cognitive problems in software engineering is the
understanding of the structure and function of an object. More specific problems include:
determining the most important aspects of a class diagram; understanding how a specific change is
going to affect the system; or coping with cognitive overload due to the amount of detail present in
a model.

Cognitive patterns are “patterns”, and hence they are related to the design patterns well known in
software engineering. But, whereas a design pattern captures an effective technique for solving a
design problem, a cognitive pattern captures a technique that is partly or wholly mental and that is
employed by practitioners when trying to perform a complex task. Our intent is to translate
cognitive patterns into software features that will facilitate a user’s cognitive abilities: cognitive
patterns are therefore more closely related to usability patterns or patterns of user-interface design.
An understanding of cognitive patterns helps illuminate the relationship between user and tool.

All patterns ‘balance the forces’ present in the problem and the problem’s context: The designer
who uses a design pattern will be interested in the balance between efficiency, reliability,
maintainability etc. The person who understands a program will be interested in the balance
between cognitive load, correctness of understanding, efficiency of problem solving, and other
factors.

Cognitive patterns for software comprehension build on an extensive literature that describes
high-level strategies for software comprehension. Well-known strategies include Bottom-up [15],
Top-Down [2], Opportunistic [11], As-Needed [12], and Integrated Meta-Model [18]. Each of
these may be described as a pattern. The many detailed techniques employed when using each of
these can also constitute patterns. In addition, there are issues associated with switching between
strategies – for instance, the disruption of the user’s mental model [5] – and solutions to this
problem can also constitute patterns. Designers of tools such as SHriMP [16] implicitly recognize
these patterns and support user needs through a variety of strategies that can be embodied in
patterns.

 1

mailto:armurray@ca.ibm.com
mailto:tcl@site.uottawa.ca

As we construct our understanding of software, our understanding is affected by time. Mental
models and their internal details change over time. In this paper, we describe a high-level pattern
for software comprehension1, entitled Temporal Details. The Temporal Details pattern illustrates
the dynamics of time within the user’s mind and helps explain why tools should support these
manifest dynamics. Several other patterns contribute to the resolution of forces within the
Temporal Details pattern. We also present these patterns as a pattern language within this paper.
1.1 Terminology

Before proceeding, we will describe the terminology used throughout this paper:
• Model: When discussing a representation of software will use the term “model” as opposed to
“diagram”. A diagram is a two-dimensional symbolic representation, of processes, features, etc.
and employs lines and symbols. Diagrams are found in models, but a model is more: A model is
an integrated representation, which has multiple diagrams, each acting as a view of some of the
information in the model. The model as a whole will contain information from many dimensions
including form, time, and rationale; not all of the information will appear on diagrams.
• Version: A recurring theme in this paper is the model that evolves over time. Models may
evolve over time because they are developed over time, or because the artefact the model
represents changes over time, and therefore the model correspondingly adjusts to match or
capture this change. We call the state of a model after a group of changes a “version”; and we are
interested in the versions of models under development as well as versions of models
representing discrete software releases.
• Prior and final models: When considering models, we make a distinction between model
versions as they existed in the past, which we call “prior models”, and the model as it stands at
the present moment, which we call the “final model”, even though the model may evolve still
further in the future.
• Manipulate: We use the term “manipulate” to refer to the investigation of design alternatives
in models. In particular we consider it possible to manipulate prior versions, that is, the after-the-
fact exploration of “what if” scenarios.
• Transition: We use the term “transition” to refer to changes between versions.
• Meaning: Finally, we use the term “meaning” to refer to the rationale for transitions.
• System: This paper presents patterns for teaching or understanding an existing complex system
through the details of the system history, such as prior states or decisions. When we talk about
“the system” we are in general referring to a software system being modelled.

1.2 Target audience and actors
The instantiation of the patterns in this paper will contribute to the understanding of artefacts

through models. The patterns may seem intuitive and useful to any practitioner involved in
software development (i.e. designers, architects, archaeologists), but our target audience is
software developers involved in the software maintenance of large-scale legacy software, or tool
developers who build tools to aid such maintenance. By using a tool based on these patterns, a
software practitioner may be able to locate undocumented design decisions and, as a result,
understand the system in its current form by understanding how the system evolved over time. A
side effect of this benefit is less reliance on software archaeologists or software gurus.

We will reference three actors throughout the paper:
• The tool designer, that is, the designer of a modelling tool;
• The model builder, or modeller, who constructs the models; and

1 A complete set of our cognitive patterns for software comprehension, including the Baseline Landmark pattern, may be found
online at www.cognitivepatterns.org.

 2

http://www.cognitivepatterns.org/

• The tool user, designated by ‘you’ or ‘the user’, who uses features based on the instantiation of
the patterns when working with models.

1.3 Case studies woven through the paper
We developed the patterns we present in this paper through three research techniques: a study

performed in an industrial setting, the cross-referencing of literature and other field studies in
which we have participated. To derive the “known uses” in the patterns below, we studied field
experts as they worked with several tools, including:

Grep: Grep is one of the basic tools used by software engineers to learn about source code. We
observed software engineers making extensive use of grep as they tried to understand a system
component. Some word relevant to the problem would come to mind, and they would issue a grep
command to find all the lines of code in the system containing that word. They would then store
that grep result. This process would be repeated many times, so that in the end they would have
effectively built a model consisting of numerous search results in files. They would frequently
refer to the stored results, perhaps searching inside one set of results to create another.

TkSee: TkSee [7] was developed to assist software engineers in program understanding
activities. In some sense, TkSee is a ‘visual grep’ tool: it helps people build, manage and
manipulate models consisting of search results.

IBM Rational Software Architect (RSA): RSA enables large-scale team development: many
people with different perspectives may work within the same context and the same artefact base
and build different views, which may then be synthesized or rationalized into a consistent whole.
We examined numerous features, including browse-diagram (a temporary, non-editable diagram
that provides a quick way to explore existing relationships among elements), CVS Annotate (a
feature within a Configuration Management (CM) System2), and Compare-Merge (another CM
feature for teams to compare and merge software models).

Whiteboard Think-aloud Study with Mitel and IBM: We asked software engineers explicitly
to explain the architecture of a system they were developing. Many of the patterns we describe in
this paper have been developed based on these studies. We were particularly interested in the
sequence of mental states that prompted participants to describe complex software architectures in
a particular way.

Chess system: We developed a tool [17] to allow chess grandmasters to analyse various chess
scenarios (games or game fragments known as ‘variations’). Grandmasters analyse chess
variations while they are playing (and therefore, entirely in their minds), but we are primarily
concerned with the physical consequence of their analysis using tools after their games. They may
perform analysis for a variety of reasons: to improve their play, to find ‘chess truth’, or for
publication purposes. We use this as an example of how many of the patterns apply in a domain
other than software comprehension.

2. Temporal Details

In this section we first describe the Temporal Details high-level pattern, and then discuss
several other patterns that relate to Temporal Details.

Figure 1 is a pattern schematic that illustrates the related patterns. The patterns shown in Figure
1 combine to resolve the forces of Temporal Details. The circles represent the Snapshot pattern
(important moments in time). Snapshots contain Meaning. The boxes represent groupings of
Snapshots. The arrows represent transitions between Snapshots.

2 RSA supports Rational ClearCase and CVS; however, in our study, we evaluated CVS.

 3

There are several kinds of groupings of Snapshots, each shown as a box. This figure shows: a
Longview (sequential Snapshots that tell a story), Multiple Approaches (parallel Snapshots), a
Snapshot chosen from a set of Quick Starts (the evolutionary origin), and finally, a sample of the
ability to Manipulate History (which illustrates how we manage evolutionary complexity).

Figure 1: Temporal Details Schematic

Temporal Details
Context: You are dealing with models that evolve over a period of time. You may be using a
tool to explore, reverse engineer, document or explain a large-scale system (e.g. software).
Alternatively, you may be doing these activities by drawing diagrams informally on a whiteboard.
The models can be diagrammatic or textual.

Problem: After editing a model, you expect that the final version will maximize understanding of
some aspect of the system. However the final model lacks intrinsic details that enable certain
kinds of understanding.

Forces:
• A final model may be difficult to understand due to its size and complexity. To understand
the way a system works, it may be better to look back to a time when life was simpler. For

 4

example, attempts to make sense of the physical world using our current understanding of the
laws of relativity are very difficult. If instead you base your initial understanding on Newton’s
laws, you will learn much faster, even though Newton’s laws are not entirely correct for large
speeds and masses. Newton’s laws provide a simpler view of reality.
• To understand a system you may need to understand it incrementally.
• To work with a system concretely you need the final model, since earlier models will be
incomplete and inaccurate. Earlier models have inaccuracies or gaps preventing you from being
able to properly understand, develop or find the flaws in the system.
• The final model contains many levels of detail but abstracts away key historical decisions
and their rationale. A tool supporting a block diagram of a CPU allows you to choose your
desired level of detail by drilling down and backing out of different levels, such as sub-blocks,
circuits, and transistors; this type of detail we call ‘drill-down details’. Drill-down details are
needed to tell you how a system works and allow you to use a system concretely, but they do not
help you understand why the system is the way it is today. Drill-down details do not support
an understanding of the earlier decisions that constrain the current system.
• We rarely have the luxury of building a system afresh; therefore, we need to understand and
cope with the present constraints, which are there due to historical decisions and prior
constraints. If we built the system afresh today, the constraints may be different, leading to a
different design.
• A prior model of a system may be unsound, or incorrect by the standard of today’s system, but
understanding prior models is needed to make effective decisions and to avoid making
recurring mistakes.
• The historical information may be too rich and complex and thus confound the person
working with the model.

Solution: Support the ability for tool users to view and manipulate aspects of history and the
decision-making process that went into the development of the final model. The user will then
be able to more easily understand why certain decisions were made early in the model’s
development, and will be able to understand the present system as an extension of the simpler
system that once existed. The user will always have a choice: to simply view the final form of the
model, or to explore the dynamic details of the model’s creation. Such details could include the
different versions of the model over time, key decisions made and their rationale, and thought
processes applied as the model was evolving. Ideally, a tool that supports such details would be
transparent, so that users who do not need to look back at this history should never have to contend
such a feature. Those users who need historical information can view whatever levels of history
they choose.

Known uses: There are a variety of software engineering tools designed to capture design rationale
[8, 10, 14]; these originated in the user-interface design community and enable one to store
information such as the decision tree leading to the final model, as well as the logic of each
decision. Configuration management tools explicitly store states of a system at certain discrete
points, and encourage annotation of the changes made each time a version of the system is saved.
As an example, corporate meeting rooms often have equipment to create a digital image of the
contents of a whiteboard. Also, learning the historical refactorings helps a developer understand
the present state of a system. The Temporal Details pattern describes how one can capture and
illustrate rationale and history in a broader sense than any one of the above tools.

 5

Resulting Context: The application of Temporal Details and its related patterns will result in tools
for explaining, exploring and documenting systems that take advantage of the knowledge
embedded in a model’s history and that mesh more closely with the way users think and act.
Full application of Temporal Details would result, for example in the ability to Manipulate
History.

Important downsides of the pattern are that the environment must be built and the historical
data must be managed on an ongoing basis. In other words, a tool for working with Temporal
Details must leave a footprint that is greater than would otherwise be left by a design tool.

Issues that arise when applying Temporal Details include deciding which historical
information to capture, how to represent it, and how to manage details that accumulate over time.
Some of these issues are addressed through the modeling of software evolution by treating history
as a first class entity [4]. If these issues are managed well, each user should be able to choose the
level of understanding that is appropriate to that user. At the root of the resolution of these issues is
the following question: What are the key historical moments, the moments which exemplify key
insight? The challenge of this question is addressed in the Snapshot pattern.

Snapshot
Also Known As: Short View, Temporal State, Coherent Point, Conceptual Whole, Cohesive
Nugget

Context: You are working with a single evolving model in the context of Temporal Details. Any
model is modified by a series of operations, such as adding or removing model elements. The
elements could be as small as single lines or characters, or could be larger compositions.

Problem: With what granularity should you track the evolution of the model? That is, what are
the most useful points to stop and think about the model as it is being built, or look back later to
see how the evolution occurred?

Forces:
• A concept, even in the context of a complex model, can often be conveyed simply.
• Small but self-contained changes to a model may convey important new meaning.
• Building a large, complex model before stopping to think about it is likely to result in
confusion, and skipping important learning.
• Adding, deleting or replacing information in a model can convey new understanding.
• Tracking evolution with an excessively coarse granularity fails because humans need smaller
increments to evolve their understanding, and you lose historical perspective.
• If every gesture involved in evolving a model is tracked, then we are guaranteed that no
historical information is lost. But to step through each possible state of the model would be
slow, and we would lack guidance about which points are salient.
• Some states (e.g. after a single line is drawn) are incoherent or represent incomplete
concepts. This level of granularity is too fine.
• When humans try to learn in large numbers of very fine increments, they may not
understand the big picture and retain the details.

 6

• A model does not have to be complete and accurate before one can pause to think. Neither
completeness nor accuracy is needed for incremental understanding; striving for these will be
important for some purposes, but not for the gain of understanding.

Solution: Track and capture evolution at moments when the model is cohesive or
conceptually whole. We call these moments Snapshots our research shows that Snapshots are
naturally present in the development of a model.

By cohesive and conceptually whole, we mean that a concept being conveyed in the model has
had sufficient detail added so a person studying the model can understand the concept, but not
necessarily perfectly. The granularity of tracking will therefore depend on the strategies used by
the person doing the modelling (the modeller): Some modellers might add seemingly unrelated
elements to a model, and only after considerable time, link them in a way such that the model
becomes cohesive. In this case, the Snapshots will be far apart in time. Others modellers might add
very small increments such that the model is highly cohesive after each increment. In either case,
being able to view the model as it existed at Snapshots will group potentially large sets of model
states into more manageable units.

The Snapshot is a coherent step in the process of evolving a model towards its final form. The
Snapshot, irrespective of the underlying meaning of the model it conveys, will reveal nascent
information either independently or in conjunction with other Snapshots. It is not generally worth
spending a lot of time designating Snapshots with a very high level of accuracy; a rough
approximation of the set of Snapshots will often be sufficient to achieve the objectives of this
pattern.

In a tool, a Snapshot might be created manually through user actions including ‘tagging’,
saving, annotation, etc. A Snapshot might also be identifiable automatically: A modelling tool
might recognize pauses; i.e. the tool might automatically tag a version as a Snapshot when the
modeller has made a collection of changes, and then pauses before making more changes. If it is a
graphical modelling tool, the tool might recognize the completion of certain diagrammatic ‘idioms’
(e.g. drawing two boxes with a line between then and labelling the boxes), or even capture the oral
explanation made about a diagram. We have used these approaches when manually determining
the Snapshots in a model’s history.

Resulting Context: The application of the Snapshot pattern to a tool will enable users to build and
present a model in appropriately sized increments, and allow the user to reference and come back
to some of those model versions if needed.

How to identify a Snapshot is both an empirical and implementation challenge; what
constitutes a conceptually whole moment will be subjective. A tool for working with Snapshots
will need to allow for this subjectivity and imprecision. Also, the Snapshot pattern does not
suggest how to organize the entire set of Snapshots over time, nor does it suggest how the
Snapshots ought to be presented. We need Long Views and Multiple Approaches to organize
Snapshots, and we need a way to Manipulate History for further organization and presentation.
When we want to build or recognize the first Snapshot of a new model we may need to choose a
starting point from a set of Quick Starts.

Another problem with Snapshots is that although state alone may convey some meaning, the
rationale or the decisions made to arrive at a Snapshot are not always conveyed in the model –
further explicit Meaning associated with Snapshots may be required. Further to this point, a
Snapshot does not give you the whole picture; you only get the picture at a moment of time.

 7

Related patterns: The Speculate about Design pattern [3] calls for a software engineer engaged in
software reengineering to refine their model of a system by checking hypotheses about a design
against the source code. In this case, a Snapshot can be constructed for each hypothesis. To
Speculate about Design, an engineer inserts open questions as notes into a software model, then
iteratively addresses each question and refines the model accordingly. The reengineering process
builds a series of Snapshots.

The Migrate Systems Incrementally pattern [3] encourages developers to avoid the complexity
and risk of “big-bang reengineering” by deploying incremental updates of the system. In this case,
each update can be considered a Snapshot.

The Just Enough pattern [13] tries to ease learners into the more difficult concepts of a new
idea by the provision of a brief introduction and dissemination of more information available when
the learner is ready for it. In other words, Just Enough describes the division of information into
coherent units and a way of delivering information from the learner’s point of view. Snapshots
similarly tackle the “right” amount of information and the user’s understanding. However, a
Snapshot is a state of an ongoing process leading towards creating a final model: The emphasis in
a Snapshot is keeping a point in the history of the model in case it may be useful, whereas the
emphasis of Just Enough is active design of an increment in a learning medium. Also, the Meaning
behind the Snapshot is considered separately.

The Step by Step pattern [13] encourages people to tackle problems in small increments “with
short-term goals, while keeping your long-term vision”. Incrementality is therefore a common
feature of both Step by Step and Snapshot; however, in Snapshot the idea is to review prior
increments, rather than to work forward in increments.

Known Uses: Many tools offer an ability to examine a specific model at a given moment in time,
in other words to take a Snapshot. This Snapshot is not always what the user is looking for in terms
of the particular details, but aids understanding.

Grep: Grep produces a model of some aspect of the static state of a system based on a specific
set of queries – the effectiveness of the results is directly proportional to the effectiveness of the
queries, but rarely will an individual query generate everything the designer needs to solve a
specific problem, and never will a grep query represent everything in a design. Nevertheless,
individual grep results can be extremely useful Snapshots in the user’s evolving understanding of a
problem. In our studies we observed software engineers print out grep results, store them in files
and use them as checklists.

TkSee: TkSee was specifically designed to enable people to explore software and incrementally
build models. The models are ‘history states’ that show certain patterns of relationships that bear
on the current problem. As with grep results, software engineers discard these after a short period
of time (several hours to several days).

RSA: RSA supports Snapshots with the Compare-Merge feature. A Snapshot in this context
refers to the individual differences between two versions of a software system. If one of the
versions is the present system, and the other version is a point in local history, then each Snapshot
represents an evolutionary development. Figure 2 illustrates a tree structure for navigating the
differences, and Figure 3 illustrates the differences visually (e.g. in this particular case, a circle
shows the dependency between Class1 and Interface1 has been removed). In addition, CVS
versions are Snapshots of an entire system in a moment of time, although often with a granularity
that is much higher than what we envision for a temporal details tool. RSA also supports individual

 8

browse-diagrams for analysis, these can be seen as Snapshots supporting partial visualization of a
system in a moment of time.

Studies at Mitel & IBM: In many instances during our videotaped analysis, the participants
would produce diagrams on the whiteboard and then begin discussing them. They would not speak
until they had made enough changes so the diagram was in a new coherent state: they were thus
building Snapshots. Based on the questions asked, the participants would then iteratively produce
refined Snapshots of the system.

Chess system: In chess, a Snapshot corresponds to a particular board position. In the mind of
the grandmaster, he is examining not only the Snapshots that exist on the board, but also various
interrelated moves that may occur (Snapshots from variations) [9]. A tool to support analysis must
support not just the main board positions, but also variations.

Figure 2: Tree-based navigation of Snapshots in RSA

Figure 3: Visual illustration of Snapshots in RSA

Quick Start
Also Known As: Starting Templates, Library of Openings

Context: You are creating a model in the context of Temporal Details. This might mean you are
starting from scratch, or you might have already evolved a model through many Snapshots.

Problem: How do you enable the user to effectively and efficiently create new models?

 9

Forces:
• A model will always have at least one diagram (and hence one starting point), but will often
have many.
• The start of any task is often undertaken instinctively. However, people often have difficulty
when they start a task. On the one hand, they may need a catalyst, and on the other hand, they
may strive for an immediate, though unobtainable, perfection.
• People may start with anything at all, just to get themselves going. Consider, for example, how
the US Marines start with something called a “70% solution” [6] that encourages “high tempo”.
The idea is that it is better to decide quickly on an imperfect plan than to deliver a perfect plan
too late. The Marines find the essence of a complex situation and build upon it quickly.
Professional writers also use this technique.
• People need quick ways to plunge into a new task, such as modeling, that are not inhibited
by start-up costs. These costs might be the need to determine where to save something, the need
to make links to existing models, the need to construct a well-known canonical starting point.
• If people do not have a familiar place from which to start, understanding is inhibited. But
then, if they start with something too large or irrelevant, significant time may be wasted adapting
it. People need a familiar or central starting place of an appropriate level of complexity when
they begin a process of understanding.
• An explanation is often best when it contains many interrelated models, each of which has
to be created, and therefore must be started at some point in time.

Solution: Allow users to quickly start new models by choosing from a small set of existing
simple models. The selection of starting points is more appropriate if they represent a familiar
landscape to the user. Each starting point is a Snapshot of a model that will likely then evolve
through many more Snapshots– this first Snapshot is neither trivially small, nor is it too complex.
As with all Snapshots it is a view that is coherent enough to be talked about.

In a tool, this pattern can be implemented using templates of sophisticated, but still very simple
designs. For example, it might be useful to start a state diagram with two states linked by a
transition: not many useful state diagrams would ever have fewer states than that.

Resulting Context: This pattern encourages speed of exploration or explanation, as well as the
creation of multiple models. After you have chosen one of the Quick Starts, one of the hardest
decisions – where to start – is behind you, at least until you choose to start afresh. A Quick Start
provides a guide as to where to go next, and how to keep going. As you build a series of new
Snapshots based on your Quick Start, you may need to consider if you intend to build in sequence
(Longview) or in parallel (Multiple Approaches).

In creating a list of suitable Quick Starts, you must determine which ones will be appropriate.
A downside of starting with simple and imperfect starting points is that you may also need to start
again several times. However, this may support incremental improvement of your understanding of
a complex system. The real danger comes from the reliance on your set of starting points as
definitive, that is, a reluctance to explore other possibilities.

Forcing people to choose a particular starting point would be contrary to the pattern. Users
often find they stick exclusively to the templates provided or spend too much time exploring the
template set.

 10

Known Uses:
Studies at Mitel & IBM: Our participants start with a single notion, usually a Baseline

Landmark, and incrementally expand from this starting space. In the telecommunications domain,
for example, it is very common to draw a diagram of ‘plain old telephone system’ (POTS) and
explain some new feature by evolving this diagram.

RSA: A software architect may either create new model elements or access existing assets (e.g.
requirements code, other models) to build a model. An architect may use search and navigate
features to access existing features (Baseline Landmark).

Chess system: In chess, grandmasters use “critical positions” to study opening theory. The
critical position may be a hotly contested position – perhaps many other professionals reach this
position in their play often, or the position is deemed “OK” since a first-class grandmaster played
it recently. The grandmaster may prepare for a future opponent by analysing Snapshots from the
opponent’s opening repertoire. Or the grandmaster may wish to broaden his repertoire. In all cases,
the grandmaster starts analysis from a historical and relevant position.

Other tools: Word processors and presentation software provide libraries of templates to allow
Quick Starts.

Long View
Also Known As: Highlight the Story, Higher-Order Snapshot

Context: You are evolving a model through a set of Snapshots.

Problem: How can you tell an effective story when the complete set of Snapshots comprises a
rich set of details?

Forces:
• People appreciate a story – a tale that evolves over time where linkages are made from step to
step.
• If there is no connection between historical steps, then there is no story.
• An individual Snapshot conveys some concepts, whereas others emerge only through a
sequence of Snapshots.
• One can lose sight of the forest (a story) for the trees (the individual Snapshots).
• If all historical steps are connected, it is hard to see the key steps.
• People have difficulty comprehending a ‘big bang’ explanation.
• Explaining or exploring based purely on a series of unrelated Snapshots fails because the
sequencing of Snapshots helps incrementally build understanding.

Solution: Allow users to look at the history of model evolution and designate a coherent
sequence of Snapshots to have particular significance. The sequence tells a story that would
otherwise be hidden. The end-points of the sequence become, in some sense, higher-order
Snapshots. A Long View is a view that shows how something evolved. How something evolved
from one Snapshot to another is a story. Sometimes you cannot grasp a concept unless you have
more of the small units. Sometimes you cannot grasp one of the small units unless you grasp
another one. By seeing the individual Snapshots in context you may be able to understand a larger
component of the entire system or understand some otherwise unintelligible Snapshot.

 11

Resulting Context: You may start a new Long View to explore a new aspect of the system; you
may also start a new Long View if another was less fruitful than expected or resulted in only a
partial understanding. A tool that implements the Long View pattern would allow the explanation
and exploration of the history of a model through sequences, rather than just a simple presentation
of Snapshots without any organization. Someone understanding a design would be able to
understand more about the thought processes of designers. However, just as all Snapshots need not
be retained, the user needs to remain flexible as to which sequences will be stored for later
reference – and needs to remain in control of those choices. Tools to help guide the user through a
series of Snapshots may also use “relevance feedback”. You may still need a mechanism to
Manipulate History to clean up and organize Long Views, as well as to add Meaning to them.

Known Uses:

Grep: We have observed software engineers doing two things to evolve and group their query
results: one is to edit their previous grep command lines; the other is to pipe one set of grep results
through another grep query. The notion of revisiting previous queries is poorly supported by tools;
with native UNIX environments the user does however have access to buffered history of terminal
output, and the history of commands. Users can also save queries to text files that can be
concatenated, or run through other grep filtering steps. Taken together, these facilities allow a
rudimentary ability to create a story or Long View from query results.

TkSee: TkSee contains multiple indented trees of queries. The user can easily refer to previous
queries, and group several of them together as a Long View. Users can also save query result sets
to files and bring them back.

RSA: The Compare-Merge feature supports a series of Snapshots, which collectively form a
Long View. If the software architect clicks on consecutive items in the tree shown in Figure 2, RSA
illustrates the Long View visually, as in Figure 3. RSA compiles a list of versions in the “CVS
Resource History” which illustrates the Long View as an evolution of a system across versions.

Studies at Mitel & IBM: In our whiteboard video sessions, the participants would iteratively
refine diagrams representing their knowledge of a software system. Because of limited whiteboard
space, they would erase (cull) less important aspects of the model to provide more relevant
artefacts to address the questions. History was difficult; to refer to previous versions they would
use verbal comments or redraw previous diagram components.

Chess system: While analysing a position, a grandmaster first compiles a list of candidate
moves, the Quick Starts for branches of forced (through a series of checks or threats) and unforced
variations. The grandmaster subsequently steps through each candidate move in turn, building a
Long View for each candidate move. The Long View is a series of moves that ends in an evaluation
(white is winning, the position is equal, the position is unclear, etc.). For many positions within the
variations, the grandmaster must compile a new set of candidate moves; thus, the grandmaster is
building a tree of variations – the topic of the Multiple Approaches pattern.

Multiple Approaches
Context: You will be modeling or understanding using a set of Snapshots.

Problem: How do you support the representation of non-linear patterns of evolution of a
model?

 12

Forces:
• People may not fully understand one explanation, and may need an alternative perspective.
• Different people may need to approach understanding using different strategies.
• There may be different but perfectly valid ways to model something or solve a problem.
• Allowing only a single path fails because it does not recognize the alternative perspectives, or
else forces the perspectives to be considered in a less useful order.

Solution: Allow branching and re-joining in the network of connected Snapshots. After a
branch point, the Snapshots or sequences of Snapshots (Long Views) in either branch can be used
for different purposes. A user may use different sequences to explain or explore the various aspects
of a system. Alternatively, the user may use multiple sequences to approach the same aspect in
different ways, either developing an alternative understanding, or a more complete understanding.
Sequences may split and merge at arbitrary points.

Resulting Context: A user will be able to designate and explore multiple paths for understanding
and exploration and the user should see the path structure so he or she can compare paths and learn
from different perspectives. One obvious downside to Multiple Approaches is the generation of a
complex network of model versions. The user may need to Manipulate History to cope with the
large amount of information and to filter important details.

Related Patterns: The Multiple Approaches pattern allows a person in an organization to make a
compelling argument from different viewpoints as to how an idea may meet the Tailor Made [13]
needs of an organization and the Personal Touch [13] that people require to see the personal value
that an idea may bring them.

The Multiple Approaches pattern depends upon branching. A group of patterns which
addresses branching from the perspective of software configuration management (SCM) is
“Streamed Lines: Branching Patterns for Parallel Software Development” [1]. The SCM patterns
describe how to support parallel development through project management, organizational
structures and technology. The implementation of the SCM patterns help address problems of
communication, visibility, project planning, and risk management and resolve some of the
technical challenges associated with the capture and organization of Snapshot networks.

Known Uses:

TkSee: We studied users and evolved TkSee with features to build and explore hierarchies of
exploration paths incrementally: each branch is a separate approach, throw away exploration paths
or sub trees, save exploration trees to a file and reload them and, switch among trees. In fact,
TkSee supports a hierarchy of exploration hierarchies.

RSA: A software architect may analyse Multiple Approaches with browse-diagrams (system
Snapshots) with the intent of building deeper understanding through multiple perspectives. RSA is
not limited to browse diagrams – a software architect may create many typical UML diagrams
(Snapshots), and the tool allows the architect to link them all. Thus the tool supports multiple
branches and joins between Snapshots. In addition, RSA supports Multiple Approaches through
CVS features such as branching (that is, you retain the baseline while you work on different
versions).

Studies at Mitel & IBM: In our whiteboard sessions, the participants digressed into discussion
of seemingly unrelated parts of the system, and later conjoined concepts to deepen understanding.

 13

Chess system: As has been discussed, during analysis grandmasters built a tree of variations for
candidate moves, or Snapshots. The right pane in Figure 4 illustrates support for Multiple
Approaches through a visual hierarchy of clickable moves. When a grandmaster clicks on a move,
the system illustrates the Snapshot in the left pane.

Other examples: Multiple product lines, multiple configurations, achieving the same result by
applying different methods.

Figure 4: ChessLink Analysis Feature, Multiple Approaches as chess variations

Manipulate History
Also Known As: Superman rewinds time to save Lois Lane

Context: You have a historical record of model evolution in the context of Temporal Details

Problem: The network of Snapshots may not be good enough for users to learn from.

Forces:
• A, then B is the way things happened, but B then A may make a more comprehensible story.
• History is in the eye of the historian and the reader of a history: No two historians will tell
a story the same way, and no historian will ever know exactly what happened.
• Historical fiction can help one understand history by making it more comprehensible. No harm
is done as long as one realizes that some fictionalization is involved.

Solution: Allow for the network itself to be rearranged and adjusted so you can revisit your
understanding process by following previously followed paths. But as you do this, retain the
previous network. The result can then become a network of networks.

Resulting Context: You will be able to edit not just the models, but also the networks of models.
This pattern builds on Snapshot, Long View and Multiple Approaches: Those patterns allow you to

 14

designate points, sequences and branches in the history of a model’s evolution. Manipulate History
allows you to adjust that history itself.

Known Uses:

TkSee: Supports the manipulation of multiple hierarchies of historical queries. For example:
Snapshots are the results of queries or other operations on the model; Long Views are the
sequences of queries that form a hierarchy whose results can be saved as an exploration and
revisited later; these explorations can themselves be edited to refine the user’s understanding, and
saved again.

RSA: Using the Compare-Merge feature, developers can retrace the meaning of decisions by
interpreting iterative changes. Furthermore, UML notes, comments and documentation attributes
may provide insight into the decision process.

Chess system: After a chess game, grandmasters investigate what-if scenarios for the critical
moments of games to unlock the ‘secrets of the position’. The primary goal of this is to improve
their thinking, though they may also uncover improvements in their games that they can use in
later games. The entire basis of modern chess opening theory is continual reflection on revision of
historical games [9].

Meaning
Also Known As: Annotation, Metadata

Context: You are working with a network of Snapshots.

Problem: A model cannot inform you why the decision to transition from Snapshot to
Snapshot was made, yet you often need such deeper understanding

Forces:
• A deeper understanding of history can be derived if you know why something happened,
not just what happened. The “why” is, however, often lost in the mist of time.
• A Snapshot only captures state and will often not even imply the rationale for the state.
• Tying rationale for a Snapshot to the Snapshot itself may be inappropriate as it is may be
difference between two Snapshots that is of most interest – and one may later on want to
Manipulate History, which would seriously confuse rationale tied to a single Snapshot.
• Rationale attached to a Quick Start may facilitate its use.
• The need for annotation is proportional to the size of a network of historical models.
• People often want to make use of information about information (meta-information) that may
be valuable.

Solution: Allow annotation or other mechanisms for recording knowledge about any of the
Snapshots or transitions between Snapshots. Annotation features in tools may be one step
towards retaining Meaning. Clearly developers need to indicate significant information that cannot
be represented in diagram form. Perhaps notations need to be designed to represent this kind of
information; or at the very least, structured documentation formats could be developed to capture
this information.

 15

Resulting Context: Following use of the Meaning pattern, the tool designer can build tools to allow
annotations of all types. For example a tool that stores several states of an evolving explanation
could allow the user to record why new details are added or replaced to create a new Snapshot.
Design rationale is an important area of study in software engineering. Tools should allow the user
to flow more easily from one design task to another while storing design decisions. Downsides to
this pattern occur because people often disdain documentation. More annotation implies three
more work tasks, one task is the annotation step, the second is the maintenance of previous
annotations, and the third is reading annotations. Transparency is a very important aspect of this
feature: do not enforce any of the three prior works tasks, but support them to an appropriate
degree. Simply marking Snapshot moments may be sufficient Meaning.

Known Uses:

RSA: The developer may commit changes to CVS with comments annotating their rationale
(illustrated in Figure 5). Furthermore, a developer may use the “CVS Annotate” feature (illustrated
in Figure 6) to associate changes and comments with a particular version. In addition, RSA has a
traceability feature supporting traceable design decisions across artefacts.

Studies at Mitel & IBM: The participants described their rationale for drawing. In other words,
they described why they were about to start explaining something; why they were erasing
something or why they were adding new details.

Chess system: Grandmasters analyse their own games to determine the “truth” behind the
decisions they made over the board. They record these analyses in both variations and textual
annotations, particularly when the games are to be published. The right pane in Figure 4 illustrates
a sample annotation.

Figure 5: CVS commenting in RSA, one form of Meaning

Figure 6: CVS Annotate feature for visualizing changes and comments with versions

To sum up then: we can leverage the patterns now expressed to gain a deeper realisation of their

benefits in forthcoming tools.

 16

Acknowledgements
Our warm thanks to our shepherd, Linda Rising. We learned much about patterns through your
tutelage, Linda. Thanks to Richard Gabriel and the participants of our writer’s workshop – your
feedback was invaluable. Thanks also to Dwight Deugo for his early review of this paper and
introduction to pattern philosophy. Thanks to IBM for their financial and resource support in this
research. And thanks to the industrial participants in our empirical studies, without whom we
would not have discovered Temporal Details.

References

[1] Appleton, B., Berczuk, S., Cabrera, R., and Orenstein, R. Streamed Lines: Branching Patterns for Parallel
Software Development. Proc. Pattern Languages of Programs (PLoP '98), Monticello, Illinois, USA, 1998.

[2] Brooks, R. Towards a theory of the comprehension of computer programs. Int. J. of Man-Machine Studies,
vol. 18:543-554, 1983.

[3] Demeyer, S., Ducasse, S., and Nierstrasz, O. Object-Oriented Reengineering Patterns: Morgan Kaufmann
and DPunkt, 2002.

[4] Ducasse, S., Girba, T., and J.-M., F. Modeling Software Evolution by Treating History as a First Class Entity.
Proc. Workshop on Software Evolution Through Transformation (SETra 2004), pp. 71-82, 2004.

[5] Eades, P., Lai, W., Misue, K., and Sugiyama, K. Preserving the mental map of a diagram. Proc.
Compugraphics 91, pp. 24-33, Springer LNCS/AI, 1991.

[6] Freedman, D. Corps Business: The 30 Management Principles of the U.S. Marines. London: Collins, 2001.
[7] Herrera, F. A Usability Study of the "TkSee" Software Exploration Tool. M.Sc., Computer Science, University

of Ottawa, Ottawa, 1999.
[8] Jarczyk, A., Loffler, P., and Shipman, F. Design Rationale for Software Engineering: A Survey. Proc. Int.

Conf. on System Sciences, Hawaii, USA, pp. 577-586, IEEE Computer Society Press, 1992.
[9] Kotov, A. Think Like a Grandmaster. London: Batsford Chess Books, 1971.
[10] Kunz, W. and Rittel, H. Issues as Elements of Information Systems. Working Paper No 131, University of

California, Berkeley 1970.
[11] Letovsky, S. Cognitive processes in program comprehension. Proc. Empirical Studies of Programmers:

Papers presented at the First Workshop (ESP'86), pp. 58-79, 1986.
[12] Littman, D., Pinto, J., Letovsky, S., and Soloway, E. Mental models and software maintenance. Proc.

Empirical Studies of Programmers: Papers presented at the First Workshop (ESP'86), pp. 80-98, 1986.
[13] Manns, M. L. and Rising, L. Fearless Change: Patterns for Introducing New Ideas. Boston, MA: Addison-

Wesley Professional, 2004.
[14] McCall, R. J. PHI: A Conceptual Foundation for Design Hypermedia. Design Studies, vol. 12:30-41, 1991.
[15] Shneiderman, B. Software Psychology: Human Factors in Computer and Information Systems: Winthrop

Publishers, Inc., 1980.
[16] Storey, M.-A. D., Fracchia, F. D., and Muller, H. A. Cognitive design elements to support the construction of

a mental model during software exploration. Software Systems (special issue on Program Comprehension),
vol. 44:171-185, 1999.

[17] Thizy, D. and Murray, A. On the refactoring of a distributed chess analysis tool. University of Ottawa
Computer Science Technical report TR-2002-12, 2002.

[18] von Mayrhauser, A. and Vans, A. Program comprehension during software maintenance and evolution, in
IEEE Computer, pp. 44-55, 1995.

 17

	Introduction
	Terminology
	Target audience and actors
	Case studies woven through the paper

	Temporal Details
	Acknowledgements

