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ABSTRACT
An access control model describes at a high level of abstrac-
tion a mechanism for governing access to shared resources.
In this paper, we view an access control model as a design
pattern providing a general solution for ensuring confiden-
tiality, integrity and availability of information resources.
We present three widely used access control models, DAC,
MAC and RBAC as design patterns using the POSA tem-
plate. We use an extension of the UML to represent the
structure and behavior of the patterns. The extension en-
ables capturing variations of pattern instances. We also at-
tempt to give more details on the problem domain of the
patterns to help pattern selection.

1. INTRODUCTION
An access control model is an abstraction of an access con-

trol mechanism which enforces access control policies speci-
fying who can access what information under what circum-
stances. There are many access control models which can be
categorized into Discretionary Access Control (DAC) [13],
Mandatory Access Control (MAC) [24] and Role-Based Ac-
cess Control (RBAC) [9]. DAC models enforce access control
based on user identities, object ownership and permission
delegation. The owner of an object may delegate the per-
mission of the object to another user. MAC models govern
access based on the sensitivity level of subjects and objects.
A subject may read an object if the security level of the sub-
ject is higher than that of the object. RBAC models enforce
access control based on roles. Accessibility is determined by
the permissions and users assigned to roles.

We view an access control model as a design pattern pro-
viding a general solution to a class of access control problems
concerning the confidentiality, integrity and availability of
information resources in software systems. There has been
a huge volume of literature (e.g., [5, 6, 9, 13, 24]) that de-
scribes access control models. However, there is only little
work describing access control models as design patterns in
a pattern template. Existing pattern descriptions of access
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control models (e.g., see [7]) use a typical example to de-
scribe the structure and behavior of an access control model.
While use of a typical example is useful to describe an ac-
cess control model conceptually, how the model may vary in
different applications is not captured, which is an important
aspect from a practitioner’s point of view.

In this paper, we present pattern descriptions for three
widely used access control models, each for DAC, MAC
and RBAC using the Role-Based Metamodeling Language
(RBML) which is a UML-based pattern specification lan-
guage developed in our previous work [10, 14]. Unlike other
pattern descriptions where pattern structure and behavior
are described by a typical instance e.g., see [4, 11, 25]),
the presented pattern descriptions capture pattern varia-
tions with the RBML. The RBML describes a pattern in
terms of roles [16] where a role can be played by multiple
model elements (e.g., classes). The properties of a role con-
strain the eligibility of model elements to play the role. We
also attempt to give more details on the problem domain
of the patterns. We found that most pattern descriptions
mainly focused on the pattern’s solution domain, and little
attention is paid to the problem domain of patterns which
help to determine the applicability of a pattern for a given
problem. As such, from a pattern user’s point of view, prob-
lem domains are as important as solution domains. We use
the pattern-oriented software architecture (POSA) template
[4] to present the DAC, MAC and RBAC patterns.

The rest of the paper is organized as follows. Section 2
gives an overview of the RBML, Section 3 presents the de-
scriptions of the DAC, MAC and RBAC patterns, and Sec-
tion 4 concludes the paper.

2. THE ROLE-BASED METAMODELING L-
ANGUAGE (RBML)

We use the Role-Based Metamodeling Language (RBML)
[10, 14] to describe the structure and behavior of an access
control pattern. The RBML is a UML-based pattern spec-
ification language that defines a design pattern in terms of
roles [16] where a role is played by model elements (e.g.,
classes). A role has a base metaclass in the UML and only
the instances of the base metaclass can play the role. A role
can be played by multiple model elements which enables
capturing various pattern instances. Fig. 1 shows the rela-
tionships between a RBML role and the UML infrastructure
[30].

In the figure, the Item class role, which is denoted by “|”
symbol, is defined at the metamodel-level and has the Class
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Figure 1: Relationship between Model Role and

UML Infrastructure

metaclass in the UML as its base (denoted above the role
name). That is, only the instances of the Class metaclass
can play the role. For example, the Book class in the figure
is an instance of the Class metaclass, and thus can play the
Item role. In this paper, we assume that all classifier roles
have the Class metaclass as the base, and as such the base
is not explicitly specified. Not every instance can play the
role. A role defines a set of constraints on the base meta-
class, and only those that satisfy the constraints can play
the role. There are two types of constraints, metamodel-
level constraints and constraint templates. Metamodel-level
constraints define well-formedness rules on the base meta-
class, and model-level constraints define model-level prop-
erties such as pre and postconditions and invariants that a
model element playing the role must satisfy. Every role has
a realization multiplicity which is a metamodel-level con-
straint for constraining the number of elements that can
play the role. If the realization multiplicity is not specified,
the default multiplicity 1..* is used specifying that there
must be at least one element playing the role. In this paper,
we only consider metamodel constraints of base metaclasses
and realization multiplications which are sufficient to cap-
ture structural variations of a design pattern. RBML roles
should not be confused with object roles in the UML [30]
which are played by objects.

The RBML provides three types of specifications, Static
Pattern Specifications (SPSs) capturing the structural prop-
erties of a pattern, Interaction Pattern Specifications (IPSs)
capturing the interaction of pattern participants and Statema-
chine Pattern Specifications (SMPSs) capturing state-based
pattern behavior [15]. In this paper, we use only SPSs and
IPSs.

An SPS characterizes the structural aspects of a design
pattern in a class diagram view. An SPS consists of clas-
sifier and relationship roles whose bases are the Classifier
and Relationship metaclasses in the UML metamodel. A
classifier role is associated with a set of feature roles that
determines the characteristics of the classifier role. A classi-
fier is connected to other classifier roles by relationship roles.
A class diagram is said to conform to an SPS if the class di-
agram possesses model elements that play the roles in the
SPS.

Fig. 2(a) shows an SPS for a simplified Observer pattern
[11]. In the SPS, there are two class roles, |Subject and
|Observer. The |Subject role has a structural feature role
|state which constrains that a class that plays the |Subject
role must have an attribute playing the |state role. Similarly,
the |Observer role has a behavioral feature role |update( that
takes a parameter whose type is a subject class. Fig. 2(b)
shows a class diagram instance that conforms to the SPS.

(b) An Instance

update(t:ClockTimer)

AnalogClock

update(t:ClockTimer)

DigitalClock|Observer

|update (|s:|Subject)

date: Date
time: Time 

ClockTimer
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1..1 1..1
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(a) An SPS

Figure 2: An SPS and a Class Diagram Instance

The class diagram has one class (ClockTimer) playing the
|Subject role and two classes (AnalogClock and DigitalClock)
playing the (|Observer) role. The class ClockTimer is able to
play the |Subject role because it has attributes that can play
the |state feature role in |Subject. Similarly, The AnalogClock
and DigitalClock classes are able to play the |Observer role
because they have an operation that can play the |update
feature role in the |Observer role. The operations are able
to play the |update role because they have a parameter whose
type is ClockTimer which plays the |Subject parameter role
in the |update role.

An IPS defines an interaction view of pattern participants
in terms of lifeline and message roles whose bases are the
Lifeline and Message metaclasses, respectively. A lifeline
role characterizes lifelines that are instances of a classifier
that plays a classifier role in an associated SPS. A sequence
diagram is said to conform to an IPS if the relative sequence
of the messages is consistent with the sequence of message
roles that the messages are playing in the IPS. We use the
UML 2.0 sequence diagram notation to describe IPSs for a
richer set of constructs, including constructs for packaging
(e.g., loop) interactions.

(b) An Instance

:AnalogClock :DigitalClock1|s:|Subject o[i]:|Observer

update(t)

(a) An IPS

update(t)

plays

t:ClockTimer

|update(|s)LOOP
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Figure 3: An IPS and a Sequence Diagram Instance

Fig. 3(a) shows an IPS for the Observer pattern. The
IPS describes that an update message must be dispatched to
every attached observer. Note that the LOOP fragment is a
metamodel operator defined in the RBML [15], constraining
the number of update messages to appear at the model level,
and should not be confused with the loop operator in the
UML [31]. Obs in the LOOP fragment is a function that
returns the number of the attached observers.



3. ACCESS CONTROL MODELS AS DE-
SIGN PATTERNS

This section presents the DAC pattern based on Harri-
son et al.’s work[13], the MAC pattern based on the Bell-
La Padula model for the MAC pattern [1], and the RBAC
pattern based on the NIST proposal [9] and the book by
Ferraiolo et al. [8].

3.1 Discretionary Access Control
The DAC pattern enforces access control based on user

identities and the ownership of objects. The owner of an
object may grant permission to another user to access the
object, and the granted user may further delegate the per-
mission to a third person.

Example

Consider an environment where access control is solely man-
aged by the security administrator. A problem in such an
environment is that it requires much effort for the adminis-
trator to maintain access control for every single user and
to deal with daily-basis requests of permission changes. An-
other problem related to confidentiality is that the admin-
istrator may give unreasoned permission to a person who
is not supposed to be authorized. For example, in a med-
ical care system, access to patient information should be
kept confidential and limited to only the doctor who han-
dles the case, or other doctors who have permission given
by the handling doctor. If the security administrator re-
ceives a fallacious request for permission given to a clerk,
obviously it should not be allowed. In regard to availability,
such an environment may cause a situation where no one
can access information. For example, in the medical care
system above, if DoctorA who handles CaseFile1 has left for
a vacation, without making a permission request for other
doctors to access the file, no one can access the file in case
of emergency. Fig. 4 illustrates these problems.

Access Control List

CaseFile1
CaseFile2
CaseFile1
CaseFile3

DoctorA :: read, write
DoctorA :: read, write
DoctorA : DoctorB :: read, write
DoctorB :: read, write

Permission DoctorA

DoctorB CaseFile1

Clerk

read, write

read, write
Object

Figure 4: A Motivating Example

Context

Development of access control systems that allow user-controlled
administration of access rights to objects.

Problem

In an environment where access control is managed solely
by administrators, unreasoned permission may be given to
a person who should not be authorized, or no access may
be allowed for any one. In such cases, it may be desired to
leave access control decisions to the discretion of the owner
of the respective resources. Use the DAC pattern:

• Where users own objects.

• When permission delegation is necessary.
• When a resolution for conflicting privileges is needed.

For instance, a user may be allowed to access an ob-
ject as a member of a group, but not allowed with
individual permissions.

• When a security mechanism is needed in a heteroge-
neous environment for controlling access to different
kinds of resources.

• Where multi-user relational database is used.

Solution

The DAC pattern can address the above problems by using
the concept of “permission delegation” which allows a user of
an object to give away permission to other users to access the
object at her/his discretion without the intervention of the
administrator. Using the DAC pattern, the burden on the
administrator is shared with the users of objects who are ca-
pable of delegating permission. The DAC pattern mitigates
the confidentiality problem above by granting permission
directly to related people in the area. Also, the availability
problem above can be addressed by delegating permission
at the discretion of object users.

Access Control List

CaseFile1
CaseFile2
CaseFile1
CaseFile3

DoctorA :: read, write
DoctorA :: read, write
DoctorA : DoctorB :: read, write
DoctorB :: read, write

Permission DoctorA

DoctorB CaseFile1

Clerk

read, write

read, write
Object

Figure 5: DAC Solution

Fig. 5 shows an Access Control List (ACL) that imple-
ments the DAC pattern. In the ACL, a delegating user is
represented in user::rw and a named user to which permis-
sion is delegated is represented in user:namedUser:rw. For
example, DoctorA is a user of CaseFile1, and has read and
write access to the file, and DoctorB is a named user who is
granted access to CaseFile1 by DoctorA, and has read and
write access to the file.

An inconsistency between the permission given as an in-
dividual and the permission given as a member of a group
to which the user belongs can be resolved by evaluating per-
mission in an order. The evaluation stops either when all
requested access rights have been granted by one or more
permission entries, or when any one of the requested access
rights has been denied by one of the permission entries.
Structure

Fig. 6 shows the solution structure of the DAC pattern.

• User represents a user or group who has access to an
object, or a named user or group who are granted ac-
cess to the object by the user or group. The owner or
owning group of an object has full access to the object,
and can grant or revoke permission to other users or
groups at their discretion.

• Object represents any information resource (e.g., files,
databases) to be protected in the system.

• Operation represents an action invoked by a user.
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Figure 6: DAC Solution Structure

• Subject represents a process acting on behalf of a user
in a computer-based system. It could also be another
computer system, a node or a set of attributes.

• Permission represents an authorization to carry out an
action on the system. In general, Access Control Lists
(ACLs) are used to describe DAC policies for its ease
in reviewing. An ACL shows permissions in terms of
objects, users and access rights.

• ReferenceMonitor checks permission for an access re-
quest based on DAC policies. If the user has permis-
sion to the object, the requested operation may be
performed.

Dynamics

Fig. 7 shows the collaboration of the DAC pattern for re-
questing an operation. When an operation is requested for
an object, the reference monitor intercepts the request and
checks for permission based on DAC policies which is typ-
ically described in ACLs. If permission is found, the oper-
ation is performed on the object, otherwise, the request is
denied.

access denied

:|ReferenceMonitor

alt

|obj: |Object

|requestOperation(|s,|obj)
|checkPermission(|s,|obj,|op)

|s:|Subject |op:|Operation

|ps=|permissions(|s)

[|ps−>includes(|obj,|op)]
authorized

|performs()

[else]

access denied

Figure 7: DAC Collaboration

Variants

Based on the underlying DAC concepts above, there are
several variants [23] which are different by the degree of the
strictness in owner’s discretion. DAC variants can be cate-
gorized into strict DAC, liberal DAC and DAC with change
of ownership. Strict DAC is the strictest form in which only
the owner of an object can grant access to the object. Liberal
DAC allows the owner to delegate access granting authority
to other users. Liberal DAC can be further divided into one-

level grant, two-level grant and multilevel-grant, depending
on the level at which access granting authority can be passed
on. DAC with change of ownership allows the owner to del-
egate ownership to other users.

Known Uses

Standard Oracle9i [19] uses the DAC pattern to mediate user
access to data via database privileges such as SELECT, IN-
SERT, UPDATE and DELETE. The TOE [32], a sensitive
data protection product developed by The Common Criteria
Evaluation and Validation Scheme (CCEVS), uses the DAC
pattern to mediate access to cryptographic keys to prevent
unauthorized access. Windows NT implements the DAC
pattern to control generic access rights such as No Access,
Read, Change, and Full Control for different types of groups
(e.g., Everyone, Interactive, Network, Owner).

Consequences

The DAC pattern has the following advantages:

• Users can self manage access privileges.
• The burden of security administrators is significantly

reduced, as resource users and administrators jointly
manage permission.

• Per-user granularity for individual access decisions as
well as coarse-grained access for groups are supported.

• It is easy to change privileges.
• Supporting new privileges is easy.

The DAC pattern has the following disadvantages:

• It is not appropriate for multilayered systems where
information flow is restricted.

• There is no mechanism for restricting rights other than
revoking the privilege.

• It becomes quickly complicated and difficult to main-
tain access rights as the number of users and resources
increases.

• It is difficult to judge the “reasonable rights” for a user
or group.

• Inconsistencies in policies are possible due to individ-
ual delegation of permission.

• Access may be given to users that are unknown to the
owner of the object. This is possible since the user
granted authority by the owner can give away access
to other users.

See Also

The Authorization pattern [7] which addresses accessing ob-
jects by subjects. The Authorization pattern has the con-
cept of delegation as in the DAC pattern. However, unlike
the DAC pattern, the access request may need not specify
a particular object in the rule. It may be implied by the
existing objects being protected.

3.2 Mandatory Access Control
The MAC pattern governs access based on the security

level of subjects (e.g., users) and objects (e.g., data). Ac-
cess to an object is granted only if the security levels of
the subject and the object satisfy certain constraints. The
MAC pattern is also known as multilevel security model and
lattice-based access control.



Example

The MAC pattern addresses the following two problems in
the DAC pattern. First, there is nothing that prevents a
user who is granted read access to a file by the owner of
the file from copying the content of the file and granting
read access to other users. For example, consider Fig. 8.
Let’s suppose John wants to access File1 which he does not
have permission to access. Of course, a DAC system will
not allow him to access the file since he has no permission.
However, if there is a third person who has read access to
File1 granted by (Jane) who is the owner of File1, and the
person grants John read access to File1, then John can read
File1 without Jane being aware of it. Secondly, a user who
has write access to a file may write a Trojan horse program
into the file to copy the contents of the file. A Trojan horse
program disguises as if it is a utility program while copying
file contents. In Fig. 8, the Trojan horse program copies the
contents of File1 into File2 which John can access.

executes

Trojan Horse

Utility Program

File1

File2

Jane: rwx

Jane:w
John: rwxJohn

Jane

Write

Read

Figure 8: Trojan Horse Problem in the DAC Pattern

Context

Development of access control systems that handle classified
objects and need to limit users’ actions according to a hier-
archy of classifications.

Problem

The MAC pattern can solve the above problems with the
DAC pattern in a multi-layered environment (e.g., military
and government systems) by assigning security levels to users
and objects. In this sense, the solution of the DAC pattern
can be considered as a problem of the MAC pattern. That is,
if a DAC system is deployed in a multi-layered environment,
the MAC pattern can be applied to improve the confiden-
tiality of the system. Use the MAC pattern:

• Where the environment is multi-layered. For exam-
ple, in the military domain, users and files are classi-
fied into distinct levels of hierarchy (e.g., Unclassified,
Public, Secret, Top Secret), and user access to files is
restricted based on the classification.

• When security policies need to be defined centrally.
Access control decisions are to be imposed by a me-
diator (e.g., security administrator), and users should
not be able to manipulate them.

Solution

The MAC pattern solves the above issues in a classified en-
vironment by assigning security levels to users and objects.
In the MAC pattern, a user can read a file, but cannot write
to the file if the user’s security level is higher than or equal
to the file’s security level. A user can write to a file, but
cannot read the file if the user’s security level is lower than
or equals to the file’s security level. For example, consider

the military domain where documents are classified and cat-
egorized as shown in Fig. 9
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UNCLASSIFIED

CONFIDENTIAL

UNCLASSIFIED

CONFIDENTIAL

SECRET

TOP SECRET

U.S.

U.S.
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U.S.

Category

Allies

Allies

Allies
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read

read, write

write
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TOP SECRET
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Classification
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Smith

Bill

File

File1

User

US

US

Allies

US

US

Category
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SECRET

(SECRET, US)

File1

(UNCLASSIFIED, Allies)

Bill

(SECRET, US)

John

(TOP SECRET, US)

Jane

(UNCLASSIFIED, US)

SECRET

Figure 9: A MAC Example

In the diagram, John has read and write access to File1
since his classification and category are same as that of File1.
However, Jane can only read File1, but cannot write to the
file because the classification of File1 is lower than that of
Jane. Smith cannot read and write to File1 because his cat-
egory is different from the category of File1. Bill can write
to File1, but cannot read the file because the classification
of the file dominates his classification.

John: rw

Trojan Horse

Utility Program

File1

File2Write

ReadexecutesJane

John

Sensitive

Non−sensitive

Jane: r

Sensitive > Non−sensitive

Jane: rw

Non−sensitive

Sensitive

Figure 10: Trojan Horse Solution in the MAC Pat-

tern

Using the MAC pattern, the Trojan horse problem in
Fig. 8 can be resolved as shown in Fig. 10. In Fig. 10,
the Trojan horse program running on behalf of Jane can
read File1 since the security level of Jane is equal to that
of File1. However, it cannot write to File2 because Jane’s
security level is lower than the security level of Fil2. Thus,
John is not able to access File1.

Structure

Fig. 11 shows the solution structure of the MAC pattern
[17].

• User represents a user or a group of users who inter-
acts with the system. A user is assigned a hierarchical
security level (e.g., SECRET, CONFIDENTIAL) and
non-hierarchical category (e.g., U.S., Allies) to which
the user belongs. A user may have multiple login IDs
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Figure 11: MAC Solution Structure

which can be activated simultaneously. A user also
may create and delete one or more subjects.

• Subject represents a computer process that acts on be-
half of a user to request an operation on an object. For
instance, an ATM machine being used by a user can
be viewed as a subject. A subject may be given the
same security level as the user or any level below the
user’s security level.

• Object represents any information resource (e.g., files,
databases) in the system that can be accessed by the
user. Similar to users, an object is assigned a hierar-
chical security level and a non-hierarchical category to
which the object belongs.

• Operation is an action being performed on an object
invoked by a subject.

• SecurityLevel represents a sensitivity assigned to users
(subjects) and objects. A security level consists of a
classification and a category. While classifications are
hierarchical, categories are non-hierarchical.

• ReferenceMonitor checks accessibility based on the fol-
lowing constraints.

– Simple security property - A subject S is allowed
read access to an object O only if L(S) ≥ L(O).

– Star property - A subject S is allowed write access
to an object O only if L(S) ≤ L(O).

Access is allowed when both the constraints are satis-
fied. Access is checked only if the user is in the same
category as that of the object. With the categories
matched, the accessibility of the user for the object
is determined by the dominance relations of classifica-
tions in the above constraints.

Dynamics

Fig. 12 shows the collaboration for requesting an operation.
The diagram describes that a subject requests an operation
on an object, and the request is intercepted by the reference
monitor to check authorization by enforcing the simple se-
curity property and star property. The request is performed
on the object if it is authorized, otherwise it is denied.
Variants

The Biba Integrity model [2] can be viewed as a variant
of the MAC pattern, emphasizing on integrity rather than
confidentiality. Similar to the MAC pattern, Biba model has
Simple Integrity property and Integrity Star property which
are defined as follows:

• Simple integrity property - A subject S is allowed read

access denied

|op:|Operation :|SecurityLevel |obj:|Object

alt

:|ReferenceMonitor

|requestOperation(|s,|obj)

|s:|Subject

|checkAccess(|s,|obj,|op)
|checkDominance(|s,|obj)

[authorized]
|perform()

[else]

Figure 12: MAC Colloboration

access to an object O only if L(O) ≥ L(S).
• Integrity star property - A subject S is allowed write

access to an object O only if L(O) ≤ L(S).

Known Uses

Security-Enhanced Linux (SELinux) kernel [27] developed
by a collaboration of NSA, MITRE Corporation, NAI labs
and Secure Computing Corporation (SCC) enforces the MAC
pattern to implement a flexible and fine-grained MAC ar-
chitecture called Flask which operates independently of the
traditional Linux access control mechanisms. TrustedBSD
[33] developed by the FreeBSD Foundation provides a set of
trusted operating system extensions to the FreeBSD operat-
ing system which is an advanced operating system for x86,
amd64 and IA-64 compatible architectures. TrustedBSD
contains modules that implement MLS (Multi-Level Secu-
rity) and fixed-label Biba integrity policies which is a variant
of the MAC pattern. GeSWall (General Systems Wall) [12]
is the Windows security project developed by GentleSecu-
rity. GeSWall implements the MAC pattern to provide OS
integrity and data confidentiality transparent and invisible
to user.

Consequences

The MAC pattern has the following advantages:

• MAC systems are secure to Trojan horse attacks.
• The assignment of a classification and category to users

and objects is centralized by a mediator.
• The MAC pattern facilitates enforcing access control

policies based on security levels.

The MAC pattern has the following disadvantages:

• Introducing a new object or user requires a careful
assignment of a classification and category.

• The mediator who assigns classifications to users and
objects should be a trusted person.

See Also

The Biba’s Integrity model [2] which addresses integrity is-
sues where access is determined by the integrity levels of
subjects and objects, rather than confidentiality. The Chi-
nese Wall model [3] which is similar to the MAC pattern
in that it also defines read and write constraints where the
write constraint takes into account the Trojan horse prob-
lem. However, unlike the MAC pattern, the Chinese Wall
model does not distinguish between users and subjects. Sub-
jects include both users and processes acting on behalf of the
user.



3.3 Role-Based Access Control
The RBAC pattern enforces access control based on roles.

A role is given a set of permissions, and the users assigned
to the role acquires the permissions given to the role. Since
the RBAC pattern is based on roles which are in general
fewer than the number of users, it is useful for managing a
large number of users.

Example

In a small organization where the application of an infor-
mation system is narrow and the number of users and ob-
jects are low, user-based access control (e.g., the DAC pat-
tern) where users are directly mapped to permissions could
be used. However, in a large organization, user-based ac-
cess control becomes infeasible due to too many mapping
instances. For example, suppose that a person is hired as a
secretary and given a certain set of privileges. In user-based
access control, n number of mapping instances are required,
where n is the number of privileges to be given. If the person
is later moved to another position, all the privileges given as
a secretary have to be revoked, requiring the same amount
of effort as assigning privileges for the secretary position.
Also, a different set of privileges should be assigned for the
new position, requiring another huge amount of effort.

Context

Development of access control systems that handle a large
number of users and objects and are expected to have fre-
quent changes of access rights.

Problem

The DAC pattern is not suitable for managing a large num-
ber of users and objects. The DAC rose from small and
autonomous environments, and as such the DAC pattern is
usually used in academia and small organizations. Similarly,
the MAC pattern is limited to environments where users and
information are classified, for example the government and
military domains. As far as security is concerned, the MAC
pattern addresses the Trojan horse problem in the DAC pat-
tern as shown in Subsection 3.2. However, the MAC pattern
still allows some security breaches known as “Covert Chan-
nels” (e.g., storage channels, timing channels) which reveals
certain information of the system via a Trojan horse pro-
gram. For example, a Trojan horse program may transmit
information such as when the program runs or waits or the
usability of shared resources (e.g., by creating and deleting
bogus print jobs). Use the RBAC pattern:

• Where control of data and application is restricted to
the enterprise (i.e., users do not “own” data).

• Where there are a large number of users and data ob-
jects to control (e.g., e-commerce applications in cross-
enterprise distributed networks).

• When a limited number of security administrators are
available.

• When the organization structure is stable (i.e., no fre-
quent changes of job definitions).

• When there is frequent change of job responsibility or
high job turnover.

Solution

The RBAC pattern overcomes the above problems by using
roles (e.g., Secretary, Manager) which are an abstraction of
users. Instead of directly mapping users to permissions, the
RBAC pattern maps roles to permissions and assigns users
to the roles for which the users are authorized. The users
assigned to a role acquire the permissions given to the role.
Fig. 13 shows an implementation of the RBAC pattern in
the hospital domain. In the figure, the objects Prescription
and CaseFile are mapped to roles of Physician, Nurse and
Patient with permissions to the objects. For example, the
Physician role is given read and write permissions to the
Prescription and CaseFile objects. John and Joe are as-
signed to the Physician role, and they acquire the read and
write permissions given to the role.

Presciption

Mary

Smith

John

Joe

Robin

Brad

User

Physician
read, write

read, write read

write

read

read

Role

Nurse

Patient

CaseFile

Object

Figure 13: RBAC Example

Since the RBAC pattern is based on relatively static en-
tities (roles and permissions), access control is simple and
efficient. For example, in Fig. 13 if John moves to another
position such as surgeon, John can be simply deassigned
from the Physician role to revoke his privileges as a physi-
cian and assigned to the surgeon role to acquire privileges
as a surgeon.
Structure

The RBAC pattern involves the concepts of Role, User, Ses-
sion, Object, Permission and Operation as shown in Fig. 14.

• Role represents a job function with certain authority
and responsibility in an organization. A role can be
represented as a relation of a set of users and a set
of permissions. A user assigned to a role acquires the
permission set defined in the role relation. Roles may
have overlapping responsibilities and rights.
Roles may be structured in a hierarchy to reflect an
organization’s lines of authority and responsibility. A
role hierarchy defines an inheritance relation among
roles in terms of permissions and user assignments.
That is, a role r1 inherits another role r2 if only if 1)
the permissions of r2 is a subset of the permissions of
r1, and 2) the users of r1 is a subset of the users of r2.
Two roles may have a conflict of interests that prevents
a user from being assigned to both the roles. That is,
a user who has a membership in one role cannot be
a member of the other conflicting role. This is called
Static Separation of Duty (SSD). SSD constraints are
enforced during user assignment.
In a role hierarchy, two junior roles in an SSD relation
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Figure 14: Solution Structure

may have the same senior role. This causes a secu-
rity breach because the senior inherits the conflicting
privileges from the junior roles. Thus, it should be
prevented. This is called Hierarchical SSD.
A user may be assigned to two roles, but the roles may
not be activated simultaneously within the same user
session. This is called Dynamic Separation of Duty
(DSD) which is enforced during role activation within
a session. If one role in a DSD relation is activated,
the other role in the relation cannot be activated in
the same session.

• User is a person who interacts with a computer sys-
tem. A user may have multiple login IDs which can be
activated simultaneously. A user can create and delete
a session.

• Session represents an instance of a user’s dialog with
a system. A session can be represented as a mapping
of a user and a set of activated roles. A session can
activate and deactivate a role, and a user may have
multiple sessions running simultaneously.

• Object represents any information resource (e.g., files,
databases) being protected in the system.

• Operation is an action to be performed on an object,
invoked within a session. Examples of operations are
read, write and execute in a file system and insert,
delete, append and update in a database management
system.

• Permission represents an authorization to perform an
operation on an object or on multiple objects. A per-
mission is composed of an operation and an object on
which the operation is performed. Access is denied if
a permission is not found for the requested operation
and the target object.

• ReferenceMonitor checks accessibility by enforcing SSD,
DSD and role hierarchy constraints.

Dynamics

Fig. 15 shows the collaboration for checking access. The dia-
gram describes that an operation request is invoked within a
session, and the request is intercepted by the reference mon-
itor to check accessibility. The request is checked against the
permission set of each role activated in the session which is

specified by the loop fragment. If a permission is found, the
request is allowed, otherwise, it is denied.

|requestOperation(|s,|obj)

|op:|Operation :|ReferenceMonitor

loop

|checkAccess(|s,|obj,|op)

[i < |r.size()]

|ps=|permissions(|r[i])

[|ps−>includes(|obj,|op)]
authorized

|performs()

|obj:|Object

[else]

|r=|activeRoles()

access denied

alt

access denied

|s:|Session

Figure 15: Requesting Operation

Variants

There are four variants (RBAC0, RBAC1, RBAC2, RBAC3)
of the RBAC pattern which are in a build-up relationship.
RBAC0 describes the fundamental concepts of RBAC in-
cluding Role, User, Operation, Object and Permission. RBAC1
adds role hierarchies to RBAC0, and RBAC2 adds SoD
(Separation of Duty) to RBAC0. RBAC3 is a combination
of RBAC0, RBAC1 and RBAC2. The RBAC pattern pre-
sented in this paper is RBAC3. The RBAC pattern may be
used with the DAC pattern [23] and MAC pattern [20, 22]
to complement each other.

Known Uses

The Sun ONE Identity Server [28] uses the RBAC pattern to
map business functions to a logical group of users using roles.
Sun’s J2EE [28] uses the RBAC pattern in the authorization
service (e.g., password management systems in UNIX and
Windows) for E-Commerce applications [29]. Solaris 8 uses
the RBAC pattern to restrict access to tools and utilities.



IBM uses the RBAC pattern for security within WebSphere
Portal [34] where users are categorized into roles of guests,
users, administrators and super users. In Oracle applica-
tions, roles are used to determine what data and functions
within an application a user has access to [18].

Consequences

The RBAC pattern has the following advantages:

• It reduces the complexity of access control for a large
number of users and objects. This also facilitates up-
dating access rights of users.

• Changes of organization policies about job functions
can be dynamically reflected without interrupting user’s
work through changes of role definitions.

• A user can activate multiple sessions at a time, and a
session can activate multiple roles assigned to the user,
which provides functional flexibility,

• It supports the least privilege principle which describes
that only the necessary privileges should be given to
the user to perform their duties.

• Granting and revoking permissions are easy.

The RBAC pattern has the disadvantage:

• The additional concepts (e.g., roles, sessions) and their
related constraints (e.g., SSD, DSD) add complexity to
implementation.

See Also

The Abstract Session pattern [21] which is similar to the
RBAC pattern, but gives more focus on network sessions.
In general, both the patterns are used in a networking envi-
ronment. Using the Abstract Session pattern, an object can
store per-client state without sacrificing type-safety or effi-
ciency through session creation. The Thread Specific Stor-
age pattern [26] which allows multiple threads to use one
logically global access point to retrieve thread-specific data
without incurring locking overhead. This is similar to the
RBAC pattern in the sense that multiple users can play a
single role to perform role-specific operations.

4. CONCLUSION
We have presented DAC, MAC and RBAC as design pat-

terns using the POSA template. We use the RBML to cap-
ture the variations of the structure and behavior of the pat-
terns. We have attempted to provide more details on the
problem domain of the patterns to help the developer choose
a suitable pattern for a given problem. Also, the problem
descriptions can be used as a basis for formalizing the prob-
lem domain for systematic checking of pattern applicability.
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