
Patterns for Agile Development Practice
Part 3

(Version 4)
Joseph Bergin

Pace University
New York, NY 10038 USA

jbergin@pace.edu

ABSTRACT
This set of ten patterns is intended to complement the standard
wisdom that can be gleaned from the Agile Development
literature such as Kent Beck's Extreme Programming
Explained[1]. It is directed primarily at those who are starting
out with Extreme Programming or another agile methodology
and might miss some subtle ideas. Once a team gains experience
these patterns will become obvious, but initially some of them
are counter intuitive. While this study began in Extreme
Programming practice, most of the advice applies to agile
development in general. The ten patterns here extend the work
of 2004-2006 on the same topic ([3] and [4]). This paper
contains some of the standard practices of Extreme
Programming as detailed in [1].

We consider XP to be a pattern language in which the practices
are the basis of the patterns. They have the characteristics of a
true Pattern Language in that they are synergistic and generative.
The dozen or so practices detailed in Beck and elsewhere, such
as "Do the simplest thing that could possibly work" and
"Yesterday's Weather", form a subset of this language.

As this "language" is in its early stages of development, there is
no significance to the current ordering of the patterns here. This
paper presents ten of the one hundred or so patterns developed
so far. Many of these patterns are listed briefly in the Thumbnail
section at the end.

Categories and Subject Descriptors
 D.2.9 [Software Engineering] Management – life cycle,
productivity, programming teams, time estimation.

General Terms
Management

Keywords
Agile Software Development, Patterns. Scrum, Extreme
Programming

1. THE PATTERN FORM USED HERE IS
AS FOLLOWS

NAME
Context Sentence: Whom the pattern is addressed to and when
in the cycle it can be applied.
Problem paragraph. The key sentence is in italics.
Forces paragraphs. What do you need to consider in order to
apply this pattern? In this version we will put the forces in
bulleted lists.
Therefore, solution. Key (usually first) sentence is in italics.
Commentary and consequences paragraphs and bullet points.

These are written in the "you" form as if the author is speaking
to the person named in the pattern's context sentence. "You"
could be a customer, a developer, or even a manager, depending
on the pattern.

Thumbnails and acronyms appear at the end of the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLoP '06, October 21ˆ23, 2006, Portland, OR, USA
Copyright 2008 Joseph Bergin 978-1-60558-372-3/06/10 $5.00.

2. STAND UP MEETING

You are an agile team. It is 8am on any day of the development
phase.

Software development works best when everyone knows what is
going on. New information comes to the customer and to the
developers constantly. Some of this knowledge affects what
others must do, but the person receiving the information may not
know the consequences that it implies for others on the team.

• Long meetings waste everyone's time and are often
boring for most participants.

• You need to know where you are and where you are
headed in the short term in an agile team. In particular,
you may need to know what others are working on for
effective refactoring.

• Changes in the business may make some things
especially important or unimportant in the short term.

• What one person on an agile team knows, others
should know as well.

• You don't need to solve every problem as a team.
• A potential danger of frequent meetings (even short

ones) is that the customer will try to over-steer the
project.

Therefore, hold a 15 minute stand-up meeting every day. No
one sits unless they have a physical need. If you don't stand up,
the meeting will last too long. The customer is present as well as
the rest of the team. Only those with a stake in the project get to
participate: In Scrum terminology, the pigs can talk, but not the
chickens.

The Social Tracker is an important part of the meeting. He or
she gives a quick report. If there are problems then say where.
The meeting is led by the tracker, the ScrumMaster, or the
coach rather than by the customer or management.

• Short meetings can bring everyone up to speed and let
everyone know the current level of risk. It is not a
report to management or to the customer, but intended
to inform the members of the team.

• Issues are not solved at this meeting, though
individuals may be assigned to solve them. The
Effective Coach can keep the meeting moving.
Everyone says what they are working on at the
moment and if there are any problems on the horizon
that they see. In SCRUM [17] the rule is: say what you
worked on yesterday, say what you will work on
today, say what obstacles you see to your success.

• One possible danger of the stand up meetings is that
some customers will try to use them to micro-steer the
build. The Effective Coach can help guard against
this. The customer changes direction only at the
Planning Game points. The customer may, of course,
drop work from an iteration as soon as it is known that
changing conditions have made it obsolete. New work
may then, perhaps, be able to be added when the team
finishes the rest of the work in the iteration and has
more time available. The customer doesn't add or
change work in an iteration and cannot look on the

stand-up as an opportunity to do so.
• Don't let the short meeting get long. It should be at the

same time every day. If everyone is present early have
it then. If not, then it is best to delay it until quite late
to avoid the problem of people avoiding work until the
Stand Up Meeting.

• Don't let the nit pickers1 pick their nits. Coaches take
notice.

• If it becomes just an empty ritual, then consider an on-
demand stand-up as needed. But, evaluate the
effectiveness of this in your periodic Retrospectives.

One useful practice at the meeting is to "take the temperature" of
the iteration. The coach or tracker can ask if anyone thinks the
iteration won't be completed successfully. A graphic
(Information Radiator) can be drawn on the white board to
represent the degree of risk of not completing all the stories
successfully.

Note that the Onsite Customer or ScrumMaster can declare an
end to the iteration if business conditions make the current work
obsolete or there is no point in continuing for other reasons.

Distributed teams will find this both a difficult and an especially
important practice. The team needs awareness of the work of
other members.

This practice was adopted from Scrum [17], and has become a
standard XP practice. It is discussed in detail in Yip [19].

1 Nit pickers want to go into excruciating detail on every issue.
"Nit" is an archaic synonym for body lice.

3. TEST FIRST

You are a developer in the development phase of a project. You
are beginning programming; perhaps the development of a task
or subtask, or perhaps refactoring or bug fixing. You are pretty
confident you know what to do for a task, though you may not
yet be sure how to do it.

You think differently when writing tests than when writing code.
Testing requires that you take a broader view. Coding requires a
microscopic view. Tests written after a task is coded too often
test what was done, not what is wanted, if they get written at all.

• Testing takes time. But debugging takes more time
and is more frustrating.

• In an agile project things will change. Changes in
future may invalidate assumptions you make now.
You need to make these assumptions visible.

• You want to build what the story says to build, but
ONLY that. You want to DTSTTCPW (Do the
Simplest Thing that Could Possibly Work).

• You feel some pressure, of course, to "just get on with
it."

• Programming is creative work. It requires thinking as
well as coding.

• You can design while testing. You can test while
designing.

• You need to assure your tests capture your intent, not
just your implementation.

Therefore, write your tests for some code before you write the
code. If the tests pass you are done. Capture your understanding
in the test. Write no code without a failing test. This is also
known as Test Driven Development.

• If your organization has a testing group that will
develop its own tests from some requirements
documents (here just story cards) then this can seem
like wasted effort. If you can get a member of the test
group on your team, you will probably be able to write
better tests and you might be able to feed your tests
into their process. In other words, your tests might
help them. But their tests, coming late, won't help you.

• The purpose of unit tests is not the same as that of
Acceptance Tests. Unit tests test that you build what
you think you should build. Acceptance tests test what
the customer wants built: what you actually should
build. You need both. The customer writes or specifies
the acceptance tests. The developer creates the unit
tests.

• It will take the team a lot of time and effort to get
comfortable with this practice. It also requires initial
setup before the project begins. The coach can help
with the former.

• Note that you work in very short test-implement
cycles. Write a single test. Make it pass. Repeat. Don't
try to write a lot of tests and then make them all pass
at once. You will tend to forget where you are and get
confused. The cycle is like the beating of your heart.

• Write only enough code to make the test pass. Then
think again about what other tests are needed.

There are three ways to fail when you write tests after the code.
(a) Time constraints will push you away from writing the

tests.
(b) You will be tempted to get too creative when

programming, thinking that some extension could be
easily added. So why not? If what you do isn't needed,
it is a waste of the customer's resources, complicates
the code, and needs to be maintained in future.

(c) You will spend time in the coding process doing
design without capturing your decisions in tests. You
aren't saving time, as the thinking process uses the
bulk of your time in any case.

Unit tests have all of the benefits of any regression test system.
Executable Tests give you confidence that you got it right the
first time, but more importantly, they let you refactor with
confidence. They also tell you immediately that a new
requirement is inconsistent with an old one.

Anecdote: The author once sat down to build a feature in a
project, wrote a test for the feature, and it passed without any
additional code for the feature. In fact the feature was
implemented as an unintended side effect of other features.
Don't count on this happening often, though.

Special note on testing: This author believes (with only
anecdotal evidence) that when correctly done, testing doesn't
cost you time, but speeds you up. This implies that you are using
pair programming and test driven development AND you are
doing your thinking, designing, and planning for a story while
strapped into the test harness. You must think about the structure
of your solution. You must design classes and methods to solve
the problem. If you do this planning and thinking with JUnit (or
equivalent) running you will capture all of your decisions
immediately as tests. The planning needs to be done anyway.
The tests serve then as notes about your decisions as well as the
tests that will eventually prove your code. While this may not be
true for tests of GUI code, it seems to be for tests of the
underlying model. This is another reason for clean separation
between model and view, actually.

4. ONCE AND ONLY ONCE

You are a developer on an agile team. Development is
proceeding. You are coding a task.

Often when you are coding in an iterative environment, you
notice that you are writing a piece of code that you have written
before. If you DTSTTCPW then you are likely to just repeat it
or cut-paste for the new code. Redundancy costs you in
maintainability, however. When the system changes in the
future, all redundant copies must be brought into sync and the
tools are not very helpful in finding the places that need update.

• You want simple code that is easy to write.
• You want good code that is easy to maintain.
• You want elegant code that is easy to modify.
• The above are often in conflict.
• Requirements are likely to change as any agile project

proceeds.
• Building code more elegant than necessary wastes

money.
• You have tests to tell you it is correct. Your skill

should tell you if it is ugly.

Therefore, when you refactor, bring the redundancies together
using an appropriate object/functional design.

• However, don't anticipate this need. Remember that it
is the second (or third) use that pays for generality.
You may need to revisit code that you are writing now
for the first time, but you may not. Building in
unnecessary generality at every chance is expensive
and wasteful. Pay the price when you must, but only
when you must.

• Recognizing this situation takes some practice, as does
solving it. If you find it difficult to do this in some
case, examine your overall coding practice. If your
redundancy is at the level of switches it is harder to
handle than if it is at the level of method bodies.

• DTSTTCPW is not an excuse to hack. Don't let your
code go out of coherence. But don't pay for generality
that may not be needed. In most cases YAGNI.

From Beck, Smalltalk Best Practice Patterns[2].

Like the "first rule of optimization", the first rule of
generalization in an agile project is "Don't do it". The second
rule, for experts, is "Don't do it, yet." I learned this from
Ledgard, but it is really due to Michael Jackson.

There is a lot more to Constant Refactoring than Once and
Only Once, but it is a good place to start.

Note that while the above has been stated in terms of code, it can
also be applied to other created artifacts, such as designs and
tracking documents.

5. EXECUTABLE TESTS
You are a member of an agile team. You must develop effective
unit and acceptance tests.

Tests must be run often so that the project doesn't veer off into
the woods. Manual testing is expensive and tedious.

• Both the developers and the customers depend on tests
to know where they are, since you don't have
comprehensive requirements documentation for this.

• In an iterative project that is using test driven
development, the tests are exercised frequently. This
gives you assurance that you haven't broken
something.

• At every change or addition to the code base, the tests
need to be re-run to be sure that a change hasn't
broken something or invalidated earlier assumptions.

• Manual testing is tedious. So tedious that most people
will ignore it and hope for the best. Manual tests are
hard to execute and therefore are not run often. This
can lead to too much development between runs of the
test suite and then many problems making the tests run
and fixing the bugs.

• You need to be able to test at different levels of
granularity. You should be able to test a single class, a
single story, or the entire state of the application. This
requires good tools and good test design.

• There are a lot of tests.
• Some things the customer wants to specify are very

difficult to specify in an executable way. But when
done, the customer has confidence in the result.

Therefore, capture tests in a way in which they can be directly
executed. Unit tests can use something like JUnit. Acceptance
tests can use something like FIT/FitNesse. The tests should be
collected into suites that can be run all together. Tests are the
primary measure of progress.

• You need to be able to run all tests at every code
commit point. You need to have a policy about what
happens when the test fail at a commit point. In some
projects everything else halts until the tests pass. This
practice is considered normal, not extreme, in XP.

• You need tools and frameworks for executable tests,
especially for user interface tests. You need machine
cycles for their execution.

• Start to get your test framework in place prior to your
first iteration. If you use any special technology, then
investigate specialized testing tools you may need
whenever it becomes necessary. Don't underestimate
the difficulty of finding and learning the right test
framework for your particular tools and technology.
Many of them are free, but have little support. Many
can be found on Sourceforge (http://sourceforge.net).

• While it is possible to use robot driven test tools to test
GUI parts of the application, these often take a long
time to execute and may require user intervention.
This gives additional incentive to make clean design
breaks between model and view, so that the
underlying business logic is all in the model and can
be effectively tested independent of its interface. Then

the GUI tests test focus on the look of the interface,
rather than its behavior. End-to-end testing is still
necessary, of course.

• The customer will need help in making acceptance
tests automatic. Make this a task [14]. Helping the
customer formulate the acceptance tests is a role.

The Effective Coach can encourage the team so that tests are
written. The Social Tracker can track and plot the number of
tests and the number of passing acceptance tests using
Information Radiators. The shape of these curves can tell you
when you are starting to slow down development. This can
imply that costs are rising, that stories are getting harder to
build, and especially that it is time for serious refactoring.

6. CONTINUOUS INTEGRATION

You are a developer on an agile team. You have just finished the
development of a story or task and all of the unit tests pass.

Stories are broken into tasks unless they are already very small.
It is the tasks that are assumed and built by the developers. Unit
tests are written at the task (and sub task) level. If you don't
integrate the task into the build you won't know early enough
that you have a problem.

• Many projects fail because they are built from parts
that won't integrate at the end.

• Small assumptions made frequently by many people
accumulate into large problems.

• Integration takes time. It often invalidates your
assumptions.

• Small bits of code are easier to integrate than large
ones.

• But with many pairs working, integration can be a
bottleneck.

• Task integration requires good code management tools
such as CVS and SVN unless the team is very small.
(http://www.nongnu.org/cvs/,
http://subversion.tigris.org/)

Therefore, integrate every task into the build when all its unit
tests pass.

A code repository that helps you do this is essential. CVS, for
example, has such capabilities. You can run (and must pass) all
the tests against the code base before you commit, so that when
you do, you know that nothing is broken.

• This is another job that requires discipline. The coach
must be vigilant.

• Since tasks are small, integration is more likely to be
successful. When not successful, the problems more
likely to be manageable than when you do "big bang"
integration. You also learn earlier when you have a
problem if you integrate frequently. But if you can't
make all the tests pass, you can't commit the code.

• Each pair of programmers may be integrating a task
every day or so (more frequently in some teams). This
implies discipline with respect to maintenance of the
code base. An integration machine on which all
integration tasks are carried out can help here.

• To emphasize: when you integrate, all the unit tests
must pass. Not just the tests for this feature, all the
tests. This implies, of course, that the tests are in the
repository along with everything else and thus are
accessible to everyone.

• You also need to run the acceptance tests. Those for
the story just built must pass, of course, but you need a
policy for what happens when a new story being
integrated makes an acceptance test that was passing
now fail. In many teams this is a show-stopper and all
work halts until the situation is resolved.

• You may actually need two (or more) repositories for
code. One contains the committed code against which
all tests pass. The other contains work in progress and

is put in a centralized place only to assure that backups
get done and nothing gets lost if a machine crashes or
is stolen.

• When you think you have finished a task, but nothing
you do makes it integrate correctly, warn the tracker
that there may be delays.

The integration process has four parts. (1) Run all the tests
against this new code. They must all pass. (2) Integrate the
entire code base back into the local version. (3) Run all the unit
tests for the system (the "suite"). They must all pass. (4) Commit
the code back to the repository. The implication is that the code
in the repository is always working integrated code. The
integration process maintains the invariance of this state.

Continuous Integration is especially difficult in distributed
teams since you need to avoid conflicts as much as possible. The
reduced awareness of the activities of the remote developers
may lead to problems. You may need tools, and will need
procedures, to be sure you have adequate awareness among team
members. [16]

7. SOCIAL TRACKER

You are the tracker on an agile team. Development progresses.

The tracker needs fine-grained knowledge of the state of the
project, but the knowledge is in individual heads. As tracker,
you are responsible for important guidance at the Stand Up
Meeting every day. Most team members are too mired in the
detail of their own tasks to see the bigger picture.

• If the tracker doesn't talk to everyone frequently she
won't know what is going on.

• The person serving in the tracker role has other
development tasks as well. Tracker is seldom a full
time role. It should take less than an hour per day.

• The tracker integrates information held by the
developers, but needs to visit with them to gather it.

Therefore, the tracker spends five minutes or so with everyone
at least twice a week, preferably daily. She needs to know if the
tasks being undertaken are likely to be completed and will
compile team velocity as well as the number of tests written and
passing. She needs to know (a) which tasks are done2, (b) which
are in progress, and (c) what is the likelihood that all will be
completed.

• The tracker also reports progress at the Stand Up
Meeting and through visuals (Information Radiators)
on the walls. If there is no ScrumMaster, she may
lead the Stand Up Meeting.

• As with many of the agile roles, it is best if this one
rotates every iteration or so. This spreads knowledge
and skill.

• The tracker can maintain most of the Information
Radiators in your work space.

• The tracker can be the one to inform the customer if
there is too much or too little work in the iteration. In
the former case she learns from the customer what
should be dropped and transmits this to the
developers. In the latter case she will Ask For More
work from the Onsite Customer for the developers.
All of this requires knowledge of the tasks completed
and those currently worked on. Early knowledge of
both these situations helps the team be productive.

• Note, however, that each developer keeps track of her
own velocity and progress. Tracking is not an external,
or management task, but an individual information
task. People will be less honest if it is seen as
management control.

The tracker maintains fine-grained knowledge of the progress of
an iteration. Over time this accumulates into information useful
to management, such as the team velocity and the number of
tests written, etc.

Note: I hesitated to call this one Promiscuous Tracker.

2 Done means more than coded. A task must be thoroughly
tested, integrated into the code base and accepted by the
customer before it can be called done. See Estimate Whole
Task.

8. PROJECT DIARY (RECORD OF VELOCITY)

You are a developer on an agile team. You are building code to
implement stories and tasks3.

Individual velocity figures must be known and accurate. If you
don't know how fast you can go, you won't know how much
work you can pick up.

• The only way to learn to estimate well is to do it and
to record a history of your estimates and the resulting
actual times.

• The team estimates are based ultimately on individual
estimates.

• Agile development can't function if estimates can't be
depended on or are inconsistent.

• Recording takes discipline. The coach can be a nag
here. Every task should be recorded.

• With self-reflection, based on data, a person can learn
a lot about how they estimate: optimistic, pessimistic,
or generally accurate. Being optimistic or pessimistic
isn't necessarily bad, but it is useful to know how your
estimates compare with the actual time you take.

Therefore, each developer keeps a bound book for the project in
which estimates and resulting actual times are recorded for
each task. The book should say something about the nature of
each task and the times need to be in the same (ideal) terms. To
do this you must record the ideal4 time you spend on each task,
not just the elapsed time.

• Your record book will help you become a better
estimator over time if it is accurate, up to date, and
consulted while you are estimating the next task or
story.

• Estimation, like swimming, is not a skill you learn by
thinking about it. You have to practice it. Initially your
estimates will be terrible, but make them, just to give
yourself a baseline. You won't improve your estimates
unless you record them so that you can look back over
how you estimated similar things in the past. The
record can also tell you if you are a generally
optimistic or a pessimistic estimator.

• The estimation book of a developer should be
considered her property. The numbers in it are not
useful for planning or evaluation of the employee. The
tracker keeps a book for the team.

• Theme books are good for this. They help assure that
pages don't disappear since they have a sewn binding.

This practice is drawn from PSP (Personal Software Process)[8]

3 If story estimates are large, the team will often break a story
into tasks. This is useful if it permits multiple teams to work on
different parts of the story in parallel. Normally cards are
created for the tasks, just as for the stories, and they are
estimated in the normal way.
4 Ideal time is 100% productive time in which the phone doesn't
ring and you have no interruptions or worries (or meetings). You
hardly ever actually experience it for more than a few minutes at
a time. XP normally estimates in ideal time initially.

Note (This may be a pattern): Velocity is Relative

Velocity is the relationship between ideal and real time. Project
and individual velocity is never the same between individuals or
between projects. They differ widely depending on the
individual, the organization, and the work. In some
organizations, people normally spend half their time in meetings
and on tasks other than the development tasks that are nominally
their main job description. Therefore, don’t try to compare your
velocity to that of another project, team, organization, or
individual.

9. CUSTOMER CHECKS OFF TASKS

You are customer on an agile development team. Developers
have come to you with a "completed task" for your approval.

Tasks must be checked off only when done. Otherwise you will
miss things.

• When a task is completed it is checked off (and a
small celebration ensues.) However, if the developer
checks of the task when she thinks she is done, there is
room for disagreement.

• A task isn't done until the customer is satisfied.
• If developers think it is done and it isn't, then they will

find integration difficult, though perhaps not
immediately.

• If developers think it is done, but you, the customer,
are out of the loop they may drift toward assuming
what you want.

• It needs to be clear to all when a task is done.
• Done doesn't mean coded. It means coded, tested,

integrated, documented, etc. See Estimate Whole
Task.

Therefore, when the developer is "done" with a task, she takes
it to the customer for a demo. The customer will run any
acceptance tests on the task (or write and run them if this has
been neglected). When the customer is satisfied, the customer
checks off the task as done.

• Note that if the developer thinks a task is done and the
customer disagrees there may be a problem with
understanding of the task. The customer can accept the
task, but write new stories to correct it and schedule
these in the usual way. The customer can also reject
the task. If there is time in the current iteration to
satisfy the customer, do so, otherwise you will need to
discard the work and let the customer reschedule. This
affects current velocity, of course. Don't count work
not accepted in the computation of Yesterday's
Weather.

• Avoid blame when tasks are not accepted. Blame buys
you nothing. It matters not a bit if the customer or the
developer is responsible for the "failure." What is
important is that you move the project forward. Stories
do that. Write stories and move forward. If this
happens often, make sure to seek the root cause in
your Retrospective. There are many possible reasons,
among them are not understanding the problem or
trying too hard to please the customer.

• But work on communication, especially when you find
that misunderstandings are frequent. This is more
likely to occur when the customer is not physically
present when questions arise, of course. The coach
should help you with this. Work toward everyone
taking responsibility for miscommunication.
Customers and developers usually speak different
languages, have different world views and constraints.
All of this can lead to miscommunication that is no-
one's fault, but everyone's responsibility to correct.

• Some claim that XP humanizes the work environment,
especially with such practices as Sustainable Pace.

The customer, however, may be overworked. She has
such a central role in steering and may need a support
team to fulfill the role [14].

10. CUSTOMER OBTAINS CONSENSUS

You are the customer on an agile development team. Your
project has lots of stakeholders. Your job is to be the main guide
of the project team.

In many projects the "customer" is a complex beast. There may
be many stakeholders and constituencies outside the team that
have a business interest in the project. In agile development, a
single person takes the role of customer and presents the
interests of all of these people and organizations to the
development team. The customer is charged with complete
control over what is built and the composition of features in
each iteration. Another way to say it is that the customer is the
one charged with making all of the business decisions, while the
developers make all of the technical decisions.

• The customer must speak as one for all of these
individuals and groups.

• She must be empowered by the organization to make
(or at least communicate) all of the business decisions
that relate to the project.

• If the developers get conflicting answers to questions
or conflicting demands on what to build or the
importance of features, chaos can ensue.

• The customer is responsible for keeping a coherent
picture of the target. It must be shared (as you go
along) with the developers.

• If the picture is incoherent, so will be the product. A
single view, even if imperfect, is probably better than
committee designs and trying to satisfy conflicting
masters.

• Progress will stall if the developers can't get questions
answered quickly as there is no comprehensive
requirements documentation.

Therefore, you must continuously obtain consensus, or at least
consent, among all of these stakeholder groups on priorities and
business value. The developers, then, you as the single point at
which questions can be answered and from which to take
direction on what to build.

• It is essential to the team that there is only one "mind"
setting the direction. Otherwise, if questions are
answered inconsistently then the code will become
incoherent.

• There will be many questions and the team will need
answers quickly if they are to continue their forward
momentum. The customer with many stakeholders
needs good lines of communication to all of them.

• The customer has a lot to do and must do it quickly
but accurately. This role is very intense. Since
iterations are so short, questions must be answered
quickly. This implies that there will need to be a lot of
rapid communication among stakeholders when there
is any diversity of interest among them.

• Precisely speaking, it isn't consensus that we need, but
the stakeholders must "seem" to speak with a single
voice. Consensus is preferred, of course, but the
designated customer must be empowered to make
decisions when consensus is not possible so that the

project can progress. Perhaps grudging consent of the
stakeholders is enough, but it is managed by the
designated customer, not by the developers.

• Occasionally this consensus is impossible. The
customers just can't agree. If this becomes a problem,
see Individual Stakeholder Budgets.

• Another option when customers cannot agree is to
"just do something." Satisfy one of the stakeholders
this iteration and then try again for consensus. This is
risky, of course, but your costs continue even if
everyone is idle. So, doing something, as long as it
makes progress, is better than doing nothing while
people argue.

• Alternatively, you, the customer, may be able to defer
a decision on a feature while people fight over it,
provided you have enough other things to keep the
developers busy.

• If you think of the customer as the primary product
owner, then this person becomes responsible for
setting the direction. If there is disagreement about the
direction of the project most of it happens outside the
hearing of the development team. It doesn't go away,
of course.

It may be useful to think of the development process as a pair of
funnels joined at the neck. The stakeholders sit on one side and
the developers on the other, with the person fulfilling the
customer role at the narrow spot. Everything goes through the
customer. All complications of business need and business are
then presented to the team as if they were a simple thing. In any
case, the customer acts as the one primary representative of all
the stakeholders and is the only one authorized to give direction
to the developers. As such he or she is a full, indeed essential,
member of the Whole Team.

Note. This is a specialized pattern that may apply or not,
depending on the number and alignment of the stakeholders.
Usually it is very important, due to the complexity of the
business framework of most software development today.

11. INDIVIDUAL STAKEHOLDER
BUDGETS

You are managing an agile development team and have learned
that it is not possible for the Customer to Obtain Consensus
among the stakeholders.

Sometimes it is impossible for a Customer to Obtain
Consensus. There may be stakeholders with conflicting goals in
the process or you may have insufficient resources to satisfy
everyone.

• The customer may not be able to gain consensus from
among the stakeholders.

• There may be too many or too diverse a set of
stakeholders.

• You still have to make progress and please the
stakeholders in any case.

• Not moving forward while people fight isn't very
productive.

• Giving everyone a little of what they need now may
help them.

Therefore, in each iteration, break up the velocity into
individual budgets for each stakeholder that must be satisfied.
Let each segment choose stories of most value to itself.
Sometimes the stakeholders themselves can agree on an
equitable distribution. Otherwise, allocation among the
stakeholders must be done by a Big Boss, or the customer
representative, not by the developers.

• It is hoped that the application of this is rare. It
complicates planning greatly. It can also complicate
integration of the various pieces that weren't integrated
as you go along, having been under the control of
different minds.

• This may imply, in some situations, satisfying only
one stakeholder at a time, leaving the others to wait
for later iterations.

• Note: This pattern is used "when all else fails." If you
can convince the customer herself to do this job, you
will be better off as the discussions will move outside
the hearing of the developers, causing less disruption.

• If in your planning you recognize this as likely to
occur, agile development may not be your best
methodology. You might need to split into several
projects rather than try to coordinate disagreements as
you go along.

12. ACKNOWLEDGEMENTS
This paper has not yet had a formal shepherd. It was, however,
workshopped vigorously at PLoP 2006. Thanks to the many
participants for your help and insight.

13. THUMBNAILS AND ACRONYMS
This section includes short descriptions of all the patterns we
have identified to date, including the ones detailed in this paper.
.

Acceptance Tests. Create a suite of Executable Tests that will
be sufficient for the customer to accept the work. They are under
control of the customer.

Ask for More. When you know you will have extra time within
an iteration, ask the customer for more work.

Be Human. Provide a humane workspace to maximize
productivity. [3]

Best Effort. The contract is not for features delivered on a given
date. You want best effort and full communication. [3]

Bug Generates Test. When a bug appears in code, write a set of
tests that will only pass when it is corrected. [3]

Cards and Whiteboards. Things change too frequently to
depend on elaborate documentation mechanisms. [4]

Coding Standards. Everyone shares the same coding look and
feel.

Collective Responsibility. The team shares responsibility and
rewards for all tasks. [3]

Collective Ownership. The team as a whole owns all of the
created artifacts, especially the code.

Constant Refactoring. The structure of the code is
continuously improved to take account of all stories built to
date.

Continuous Integration. Every task is integrated at completion
and all unit tests are made to pass.

Customer Checks-Off Tasks. Only the customer knows when
something is done.

Customer Obtains Consensus. The customer role is
responsible for obtaining consensus among the stakeholders.

Deliver (Customer) Value. Building things may be fun or not,
but don't lose track of the real reason we are doing this.

Documentation is Just Another Task. Every story requires
some kind of documentation. If it must be extensive, include it
in estimates. [4]

DTSTTCPW. Do the Simplest Thing that Could Possibly
Work. Build the code to implement the story and nothing more.

Pay for generality only when you know you need it.

Easy Does It. As a customer, don't push too hard. It frustrates
everyone. If you push too hard and "win," you lose if the
iteration doesn’t complete successfully. [3]

Effective Coach. A novice team depends fundamentally on a
coach (ScrumMaster) to keep you to the discipline and help you
see opportunities and problems. [3]

End To End. The first release is an end to end version of the
product.

Estimate Whole Task. Estimates must include everything
necessary for a story[4].

Everything Visible. Whiteboards, note boards, etc., in the team
space need to have enough graphically displayed information
that anyone can immediately see the progress of the current
iteration as well as any bottlenecks. When you get in trouble the
Retrospective needs to see what happened and why.

Executable Tests. Tests are run so frequently they must be
executable.

Flexible Velocity. Use velocity to allow for needed work that is
not in the stories. But learn to get it into the stories. [4]

Full Communication. The developers keep the customer
apprised always of opportunities, costs, difficulties, etc. The
customer keeps the developers in the loop on the business needs
and thinking that may affect future directions.

Grow Up. Start with a small team and grow it to the required
size by adding a few developers at iteration points. The other
practices enable this: Promiscuous Programming…

Guiding Metaphor (Topos). Develop a guiding metaphor or
story for the project that guides people as to the general
direction.

High Discipline. No methodology will succeed if you don't
actually do its practices faithfully. On the other hand, make sure
they are the right practices or deal with the issue in a
Retrospective.

High Value First. Customer selects highest value features at
every point. [3]

Implementer Re-estimates Tasks. Tasks are best estimated by
the person who will do the work. [4]

Individual Stakeholder Budgets. When customer
representatives can't come to a common understanding of
priorities, they may need individual budgets of team resources.

Infrastructure. Before the project begins make sure the basic
build, test, integrate, deploy infrastructure is in place.

Negotiated Scope Contract. Scope is the independent variable
in an agile project, so plan for this when you write your
development contracts.

Offer Alternatives. Developers offer alternatives to Customers
when they recognize
alternatives. Conversely, customers offer alternatives on desired
features to developers to get feedback on likely costs and
consequences.

Once and Only Once. [2] Refactor code so that everything is
said only once. But pay for generality only when you must.

Onsite Customer. The customer works in the team's room
along with the rest of the Whole Team. Communication
distance is very expensive.

Our Space. The Whole Team works together in an open
workspace to optimize communication.

Pair Programming. No code is committed to the code base
unless it is written by a pair.

Personal Velocity. Each developer knows how much work she
can do in an iteration. The Project Diary helps her keep records
of past work. Individual estimates are too variable to be a
management tool.

Planning Game. Once each iteration (every two weeks, say) the
team spends time planning the iteration, including what stories
will be immediately built. See the literature as this is a highly
disciplined planning exercise.

Promiscuous Programming. Spread the knowledge of the
project amongst the team members. [4]

Project Diary. Each developer keeps a bound book for the
project. It is private to the individual and contains things like
estimates vs. actuals on stories built, who you paired with, ideas
for the next Retrospective, etc.

Question Implies Acceptance Test. When the customer
answers a question from the developers, she captures the answer
in an acceptance test. [4]

Re-estimate Periodically. Things change and estimates become
obsolete. [4]

Retrospective. Periodically hold a retrospective [11] of the
team's practices.

Sacred Schedule. Time never slips in agile development.
Features are the dependent variable. [3]

ScrumMaster. ScrumMaster is a role in Scrum development
that combines the Effective
Coach and Sheltering Manager. The ScrumMaster is
responsible for process and for
removing obstacles.

Sheltering Manager. A new team will depend on some shelter
from those in the organization who don't readily accept change.
[3]

Simple Design. Design only for the current stories. Simple

logic, minimal generality, pass the tests.

Small Releases. Software is released on short cycles, say
monthly.

Social Tracker. The tracker must know how everyone is doing.

Spike. Do quick prototypes to learn how to build or estimate
something. [4]

Stand Up Meeting. (Daily Scrum) Fifteen minutes every day, to
keep everyone on the same page.

Sustainable Pace (40 hour week). Pace the team for the long
haul, not a sprint. You want everyone working in top form all
the time.

Team Continuity. Management commits to keeping the team
together throughout the project. Team members make a similar
commitment.

Test Card. If the customer cannot write executable tests herself,
then she creates Test Cards in answer to each question. The card
specifies an acceptance test that will then be written by the
implementer of the story.

Test First. [1] No code without a failing test.

Train Everyone. Initial training includes everyone, including
customers and management. [3]

Whole Team. The team includes everyone with an essential
skill. In particular, it includes the customer as a full team
member.

YAGNI. You Ain't Gonna Need it. Don't anticipate what might
not occur. Don’t scaffold speculatively.

Yesterday's Weather. The velocity of the next iteration is
exactly the work successfully completed in the previous one. Of
course this assumes that the time and personnel are fixed.

14. REFERENCES
[1] Beck, Andres, Extreme Programming Explained: 2ed,
Addison-Wesley, 2004
[2] Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1996
[3] Bergin, Patterns for Agile Development Practice, Part 1,
EuroPLoP 2005, available at
http://csis.pace.edu/~bergin/patterns/xpPatternsEuroV7.html
[4] Bergin, Patterns for Agile Development Practice, Part 2,
EuroPLoP 2006, to appear.
[5] Belshee, Promiscuous Pairing and Beginner’s Mind:
Embrace Inexperience, http://www.agile2005.org/XR4.pdf
[6] Mike Cohn, Agile Estimating and Planning (Robert C.
Martin Series) Prentice Hall, 2005
[7] Coplien, Harrison, Patterns for Agile Software Development,
Prentice Hall, 2004
[8] Humphries, Introduction to the Personal Software Process,
Addison-Wesley, 1997
[9] Jackson, Michael A. Principles of Program Design.
Academic Press, London and New York, 1975

[10] Jeffries, Anderson, Hendrickson, Extreme Programming
Installed, Addison-Wesley, 2001
[11] Kerth, Norm, Project Retrospectives: A Handbook for
Team Reviews, Dorset House, 2001
[12] Manns, Rising, Fearless Change, Addison-Wesley, 2004
[13] Mugridge and Cunningham, Fit for Developing Software :
Framework for Integrated Tests, Prentice Hall, 2005
[14] Martin, Noble, Biddle, "Programmers Are From Mars",
Customers Are From Venus. PLoP 2006 proceedings.
[15] Rueping, Agile Documentation : A Pattern Guide to
Producing Lightweight Documents for Software Projects, Wiley,
2003
[16] Schümmer and Schümmer, "Support for Distributed Teams
in Extreme Programming", in Extreme Programming Examined,
Succi and Marchesi (eds), Addison-Wesley, 2001
[17] Schwaber, Beedle, Agile Software Development with
Scrum, Prentice Hall, 2002
[18] Surowiecki, The Wisdom of Crowds, Anchor, 2005
[19] Yip, It's Not Just Standing Up: Patterns for daily Stand-up
Meetings, PLoP 2006 Conference. Portland, OR, 2006

