
Universal E-Catalog pattern
Hesham Saadawi

School of Computer Science,
Carleton University

1125 Colonel By Drive,
Ottawa, Ontario, Canada, K1S 5B6

hsaadawi@connect.carleton.ca

ABSTRACT
This paper introduces a data modeling design pattern that can help
organize and persist information of a catalog in any Relational
database management System (RDBMS). The catalog would not
be bound to a specific business context and does not need any
code maintenance to be re-deployed in different business
contexts. Hence this pattern describes a universal electronic
catalog. The catalog supports unlimited number of categories and
their attributes, and facilitates easy searches and comparisons of
stored items.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Design Patterns, Analysis
Patterns, software patterns. Database modeling. E-Commerce
systems.

General Terms
Documentation, Design.

Keywords
Design Patterns, Analysis Patterns, software patterns. Database
modeling. E-Commerce systems.

1. INTRODUCTION
In E-Commerce systems, like online shops, there is a need to
present a variety of products to online customers. These products
can be unrelated like food and books, or related in a hierarchical
classification structure. The product information needs to be
organized in a way that enables the customer to do searches,
matches, and comparisons between different products based on
some common product attributes. The common solution for this is
to represent all products in a store in a catalog, either in a print
format, or in case of online store, an electronic catalog.

To simplify the catalog building process and customer

browsing of a catalog, products are often classified into categories
where similar products that share common attributes are in one
broad category. An example would be footwear, where each
product in this category shares some common attributes like size,
material, color, gender (male, female, or children), and then can
have more specialized sub-categories like sports footwear.
Another example would be an appliances category where all have

more specialized sub-categories like sports footwear. Products
share common attributes as an operating voltage, color, energy
consumption, dimensions (height, width and length), and further
have some special sub-categories like refrigerators.

 An online store would be interested with categorizing its

products to be able to add new products efficiently, as it would
only need to add the new product to its sub-category and specify
values for its attributes that were defined in the product sub-
category and all the parent categories. Therefore, re-using
previously defined attributes for a product category.

A typical customer would be interested with selecting a

product based on certain attributes, like selecting a stainless steel
refrigerator, and then to compare on other attributes like getting
the most efficient refrigerator for its capacity group.

Hence, for electronic catalog systems, the requirement is

often to internally represent and then persist information about
different products or items. Each of these products would have a
certain number of attributes that describe it. These attributes are
important to enable product searches, comparisons and product
classification.

Another context for using a catalog may be a scientific

research agency that is building a catalog with different plantation
types or species found in certain geography. In this example, the
classification of plants in a hierarchy of categories occurs
naturally and each of these categories would need to have its
attributes defined. Categories in lower levels would inherit the
attributes of their parents, and add more attributes to it.

In those catalog applications however, it should be noted that

there is a distinction between the number of product types, i.e.
product categories and sub-categories, and the number of concrete
products stored in the catalog. This is important as per a typical
catalog; we could have hundreds of product types. Each of these
types may contain several identical products. A group of identical
products needs only to be represented in a catalog once with a
quantity attribute that indicates how many of this product is
available in stock. This is different from a banking system for
example, where it has few bank account types (which are similar
to different product categories in a catalog), but those types do not
change often and each account type contains millions of different
customer accounts. The latter is an example of a high volume
database system with few varieties of product types. This
distinction would become important later when discussing
advantages and consequences of using the e-catalog pattern.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISBN: 978-1-50448-372-3

A universal e-catalog pattern is introduced here using the
canonical pattern format.

2. Problem.
An electronic catalog can be defined as an electronic repository of
information about items, products, or species. This makes it a
general database storage structure that can be used in many
applications like storing inventory items, manufactured products
and components, or a catalog of some living organisms.

In such a general electronic catalog, we need to dynamically, i.e.
at runtime, define item categories and their attributes. This would
enable many different application contexts to define their own
categories and for each category, its list of attributes.

Normally, categories of products in an inventory, or of some
living species would follow a simple hierarchical structure in
which a parent category may have one or more child categories.

 The representation of the e-catalog would need to be persisted in
a database system in order to be useful. The challenge here is that
a store cannot anticipate all the products it would have during its
lifetime. Even if they do, it is a waste of storage space to create
and populate database tables for products that may come after
years if they come at all. The same is true for a species catalog.
Further, creating all products, or species categories as concrete
tables in the database would make the e-catalog inflexible when
used for other types of applications, hence it won't be a universal
e-catalog.

This presents a challenge to the Data Model designer as these
items and products would need to be persisted in a database,
typically using a relational database management system as these
currently are the most available and commercially used database
systems.

3. Context
• You are building an e-catalog for a large variety of
products or items that need to be stored, searched and compared
with each other.
• Different products or items have different attributes.

• You need to add, remove, or modify product attributes
at runtime. New products and items would need to be defined
with their attributes whenever they become available. Moreover,
there may be a need to add or remove some existing product
attributes depending on the market.

• You do not want software system maintenance
whenever there is a need to add, remove or change products.

• You need to reuse the catalog in other business contexts
without the need to change the code or the database structures.

• You have a large variety of product types that may keep
growing.

4. Forces.
• An e-catalog needs to store a wide variety of product
categories, to cover all possible products of a business during its
lifetime. Many of these may not be known at design time.

• To design a data model for the e-catalog, all information
about categories and products would need to be identified at
design time

• Changing structure or re-coding the e-catalog, as a
software application, is expensive and may introduce new bugs:
Thus, this should be avoided as much as possible.

• Different contexts or subject areas would need to store
different types of products and items: These are usually unrelated
like foods, books and furniture. The e-catalog application should
work well within almost any context, i.e. to be able to capture
product attributes, store them and display different unrelated
products on demand.

• E-Commerce systems need a high availability e-catalog:
Any application software accessing RDBMS tables must have a
priori information on table.

• Structure and data types stored in them. Modifying one or
more of these database tables, for example to define a new
product type, would usually require modification of code
accessing these tables. Therefore, it is not possible to change table
structure or add new tables in the catalog database at application
runtime. This must be done off-line and the application code
would need to be retrofitted and redeployed.

• Product attributes data need to be stored in atomic form:
In order to support accurate product searches and comparisons,
these operations need to be done on atomic data values stored in
columns. Storing all product information in one large text field
would not enable extraction of this information when needed. For
example, a customer wants to get a list of refrigerators between
the sizes of 18c.f. and 22c.f, with best energy efficiency. This
means that we need to base our search on “Size” and “Energy
Consumption” attributes of the Refrigerator category. If this
information were embedded in a description text field with other
properties, it would be a difficult task to extract them for the
purpose of this search.

5. Solution
• Organize your product types (categories) in a
hierarchy of parent-child relationships (use the inheritance
pattern): Each parent would contain common attributes that are
common to all of its children, i.e. a child would inherit the
attributes of its parent. Choose this scheme to represent the
product or item categories in your catalog. Try to capture
common attributes in the hierarchy top. For example, a common
attribute for all products in a store would be price, quantity,
manufacturer, discounts offered, and product name. This scheme
would allow new categories to be defined with minimal effort, as
they would inherit attributes from existing ones.

• Allow the administrator system user to define a new
category when needed: Define the category name, its parent
category (multiple categories for multi inheritance), its attribute
names and their types. Solution
• Organize your product types (categories) in a
hierarchy of parent-child relationships (use the inheritance
pattern): Each parent would contain common attributes that are
common to all of its children, i.e. a child would inherit the
attributes of its parent. Choose this scheme to represent the
product or item categories in your catalog. Try to capture
common attributes in the hierarchy top. For example, a common
attribute for all products in a store would be price, quantity,
manufacturer, discounts offered, and product name. This scheme
would allow new categories to be defined with minimal effort, as
they would inherit attributes from existing ones.

• Allow the administrator system user to define a new
category when needed: Define the category name, its parent
category (multiple categories for multi inheritance), its attribute
names and their types.

• Store user defined categories in memory in a flexible
data structure: for example, in a Java HashTable.

• Create database tables and structure: As shown in
Figure 1 to persist the product information. This database
structure is represented in a traditional entity relationship
diagram. More details about the notation used in this diagram and
a reference is given in Appendix 2.

6. Structure

Figure 1: Catalog Data Model

In the model shown in Figure 1:

• CATEGORY: The ID column stores unique id for this
category and it is the primary key for the table. PARENT_ID
contains the parent category id. This is also a foreign key
referencing the ID column, as any parent category would be a
category itself. This column would contain a NULL value for the
category at the hierarchy top, as it has no parent. NAME contains
the name of the category. ABSTRACT_IND is a flag to be set if
this category should have no concrete products in it. This table is
related with relation R1 to itself as a category may have multiple
child categories.

• ATTRIBUTE table: contains the attributes of a
category. Each row represents an attribute. The ATTRIBUTE_ID
is a unique id for the attribute, and it belongs to the category
defined by CATEGORY_ID. ATT_NAME contains the name of
the attribute. ATT_TYPE contains the attribute type.

• ATTRIBUTE_VALUE table: contains values of those
attributes defined in ATTRIBUTE table. This value is stored in
VALUE column. This table would store attribute values
ATTRIBUTE_ATTRIBUTE_ID values associated with concrete
products defined by PRODUCT_ID that belongs to a category
identified by ATTRIBUTE_CATEGORY_ID.

• PRODUCT table: this table associates the real instance
of the product to a certain category. It contains the information
about which product (PRODUCT_ID) is of which product type
(CATEGORY_ID).

• Relation R/2 means that a category would have many
attributes, and each attribute belongs to one category.

• Relation R/3 shows that an attribute may have many
values stored, each value is associated to a different concrete
product.

• Relation R/4 shows that a category may have zero, one
or multiple products stored in the catalog of that category type.

• One variation of the implementation would be to define
attributes common to all products as columns in the PRODUCT
table, instead of defining and storing them as attributes in
ATTRIBUTE and ATTRIBUT_VALUE tables. This is shown in
the known uses section examples. This would enhance the system
performance, however, it would limit the use of the e-catalog
system for certain contexts like online stores. Other contexts, for
example in a scientific research lab, may be interested with
storing other common attributes for its research specimen catalog.

7. Dynamic behavior
To illustrate the use of the e-catalog to build a list of

categories and products, we walk through a typical use case.

• A typical user of the e-catalog would need to add a new
product. If no suitable category for this product exists in the
catalog, the user would need to define a new category for this
product.
• The user would then define a category for the product.
This entails defining category name, number of its attributes, their
types and their names.

• After the category has been defined, the system would
persist this definition in the corresponding database structures
(CATEGORY and ATTRIBUTE tables).

• The user would repeat the above process to define a
hierarchy of the categories that may exist at the business context.

• The user then proceeds to store the information about
the product. The system would present the user with a list of pre-
defined categories; the user would pick a category from the list to
add the product in that category. The system then gets a list of all
attributes defined for this category. This list would be composed
of attributes defined for this category and all attributes inherited
from its parent categories. The system would present the user with
a form with all attributes to be filled. The user fills the
information. The system persists the information in
ATTRIBUTE_VALUE and PRODUCT tables.

Searching and browsing the catalog would be similar to the
Catalog Pattern previously identified at [[1]].

8. Example.
An example of a context where the E-Catalog pattern could

be used is in an E-commerce application that is displaying a
catalog of products for online shoppers. The products are usually
ordered in a group of categories for ease of browsing. There may
be also a search facility to enable shoppers to find products based
on some criteria they enter on the online form.

One of these applications is osCommerce
(www.oscommerce.com), which is an open source e-commerce
tool. In this tool, an e-catalog is implemented with an
administration tool that enables the administration of the catalog
and the application. A snapshot of this application is shown in
Figure 2.

Figure 2. osCommerce demo snapshot

In this e-commerce solution, a catalog administrator can define
categories and add products. An online shopper would be able to
interact with the catalog to browse, search and select products.
This application uses a relational database to persist categories
and products.

Another open-source e-commerce system is ofbiz at
http://www.ofbiz.org/index.html. A portion of its data model for
products and their type is illustrated in Figure 3.

Figure 3. Product data model in ofbiz application [[4]]

More details about the data models can be found at the
documentation on these application web sites as explained in
appendix 1.

9. Resulting Context
This pattern is most similar to the Name-Value Pair Table

approach presented in [[6]], with some variation. A formal study
on this pattern and other variant structures performance for e-
catalogs is presented at [[7]]. This study shows experimental
results for different catalog queries and different catalog
structures. However, we present here some general advantages
and disadvantages for using this pattern over conventional
database design models.

By applying the pattern we obtain the following:

Pros.:
• The ability to add new product categories and products
to the e-catalog even when these are not known at design time.
• Unlimited number of categories can be added in a
hierarchical scheme to represent large variety of products and
items that may exist in a business context.

• Ability to execute advanced user queries against the
catalog information.

1. Flexible e-catalog structure that can be used in many
contexts without the need to change its code or database
structure.

2. Effort of defining new categories is minimized, as these
would inherit their parent’s attributes without the need
to redefine them.

3. This pattern works well for a database that stores a
moderate volume of concrete products, but with large
variety of product types that keep changing over time.
This is typical in a store catalog, as we may have
hundreds of product types, but for each type we store
information of one product with a quantity value that
reflects store inventory.

Cons.:

[1] Complicated data model that needs complex code to deal

with it. This is true with application code as well as Data
Management Language (SQL in case of RDMS). For
example, to get all the refrigerators with a size of 18c.f. and
with a price less that $900, it would need a query joining all
of the four tables with a relatively complicated SQL. On the
other hand, if the refrigerator product were represented with
a single table, as in conventional database design, it would
be much easier to write the query against that table.

[2] A gain of flexibility on the expense of performance when
implementing catalogs in RDBMS using this pattern, there
would be. Some performance penalty is incurred due to
storing product information in many rows and tables, thus
the need to join these to get product information, instead of
getting one row from a single product table as implemented
traditionally. This penalty would grow with the growth of
data volume, thus this technique may not be suitable for
large databases where we know that product types
(categories) would not change in the future, and data volume
(i.e. number of actual distinct products) is always high. Such
systems, like those found in banking industry for example,
would have few bank account types that rarely change, and
huge volume of customer account information with high
transaction rate.

[3] This technique would be more complicated to deal with
products that may have some relation to each other. Such
relations are usually defined in RDBMS with foreign keys
and data constraints. In this pattern, these DBMS managed
constraints would not work and they would need to be
enforced through application code adding much more
complexity to the application. A framework that
encapsulates the pattern implementation in the DBMS and
provides simple API to access its stored information would
better handle this complexity.

10. Rationale
Without using the above pattern, we would need to define a

data base table for each product we wish to represent in our
catalog. This solution would prove impossible as the number of
different products could go to the hundreds. In addition, new
products may appear after the system being built, and thus new
data base tables would need to be defined and application code

would need to be altered to read these new tables. On the other
hand, if all products are stored in a generic table with its attributes
stored in one large text column in that table, doing searches and
comparisons would be difficult as there is no easy way to extract
a particular attribute value from the large text field. Also,
comparing two attributes for two different products would not be
possible unless we know the type of these attributes and make
sure they are compatible.

The presented pattern works well in the given context above

for the following reasons:
 The solution defines a generic catalog system that can be

used in many business contexts without the need to change
its code or database structures.

 It provides a basic e-catalog structure that is able to

store a variety of products and items that are typically found in a
store or other subject areas.

 The e-catalog can keep information about unlimited

types of products without the need to change its structure.

 Definition of hierarchical category tree minimizes the

effort when populating a new product into the catalog. A user,
entering a new product to the catalog, would enter values for
those attributes defined for the product category without a need to
redefine them with each product.

 Accurate product searches and comparisons can be

made, as all product attributes are stored in an atomic format, as
opposed to one large text field.

 The performance of the e-catalog would still be

acceptable when there is a need to store many types of products,
with small data volume and low updates to stored data. This is
typically the case with most commercial and manufactured
product catalogs, where there is a need to capture the properties of
many different product types, but, transactions changing product
types are not frequent.

11. Known uses
Details of obtaining data models documentation from project

web sites in this section are explained in appendix 1. All known
uses in this section come from open source projects. This is due to
the availability of the source code including the database design
models.

The data models diagrams are presented here in a simplified

Entity Relationship notation. In this notation, an entity is
represented with a rectangular box. The entity name is written at
the upper cell of the box. The entity attributes are listed at the
lower cell of the box. Each attribute has a data type that may be
shown on the diagram as in Figure 4, or omitted for brevity. An
attribute could also be part of the entity primary key, and in this
case it is denoted with PK on the diagram. Any attribute in an
entity could also contain values of another entity’s primary key.
In this case, this attribute is called a foreign key and denoted with
FK on the diagram. An arrow from one entity to another shows a
reference from the entity at the arrow base (a child) to the one at
the arrow head (the parent). This reference is an indication that a

FK (in the child entity) contains values of a PK (in the parent
entity). An arrow originating from, and pointing to the same
entity relates two attributes in the entity. One of these is acting as
a PK and the other as a FK pointing to that PK. This self-
referencing usually indicates a hierarchical parent-child structure
that can be represented in that entity.

11.1 OsComerece
As per the documentation found at [[3]]. Products are stored

in this e-commerce system in a catalog modeled as shown in
Figure 4. In this model a hierarchy of categories is represented as
indicated in our e-catalog pattern (in categories table). Storing a
row in products_to_categories Table represents product
association to a category.

Figure 4. Part of Catalog data model at osCommerce [[6]]

11.2 Open For Business (ofbiz)

Is an open source e-commerce solution [[4]]. It describes
itself as “The Open For Business Project is an open source
enterprise automation software project licensed under the MIT
Open Source License. By open source enterprise automation we
mean: Open Source ERP, Open Source CRM, Open Source E-
Business / E-Commerce, Open Source SCM, Open Source MRP,
Open Source CMMS/EAM, and so on.” [[4]].

Part of the data model for Product is shown in Figure 3. In this
data model, category hierarchy is captured with multiple rows in
PRODUCT_CATEGORY table. Each category has some
attributes defined with multiple rows in
PRODUCT_CATYEGORY_ATTRIBUTE table. Different
products are associated with a category and stored in the
PRODUCT table. Products could also belong to a product_type
that is stored in PRODUCT_TYPE table, each poroduct_type
contains some attributes defined in PRODUCT_TYPE_ATTR
table.

11.3 Hipergate
Is an open source Customer Relationship Management (CRM)
solution [[5]], and a well-documented application suite. It has a
product catalog component that persists its information using a
similar pattern. In this implementation, categories are organized
into hierarchies or trees. Each hierarchy starts with a root
category. The parent/child relation in the hierarchy is represented
in table k_cat_tree as shown in the data model in Figure 5.

Figure 5. Hipergate Categories Sub-model [[5]]

Product is an object defined in a category. Products share a set of
common attributes (defined in k_prod_attr) , and each product
could add more custom attributes (defined in k_prod_attrs). The
data model is shown in Figure 5. More details can be found at
[[5]].

Figure 6. Products sub-model in Hibergate [[5]]

12. Related Patterns

This pattern makes use of inheritance pattern. It can also be
used with optimistic concurrency control pattern to control
concurrent changes to rows of product categories and products in
the catalog. Other variations of data models for e-catalogs could
be found at [[6]] and electronic commerce patterns at [[8]].

13. Appendix 1
To obtain osCommerce data model shown in Figure 4,

download the whole "Windows package" from the project web
site download section (at
http://www.oscommerce.com/solutions/downloads) that is
"osCommerce 2.2 Milestone 2 Update 051113", and un-zip the

package into a local folder. In that folder, the file

"oscommerce-2.2ms2-051113\tep_database-pr2.2-CVS.pdf"
shows the complete data model for osCommerce. Figure 3 shows
the part of the model that implements the pattern presented in this
paper.

 To obtain Ofbiz data model as shown in Figure 3, go to the

documentation web page at
http://incubator.apache.org/ofbiz/documents.html, then select
"Data Model Documents & Diagrams" which takes to

https://ofbiz.dev.java.net/servlets/ProjectDocumentList?folde
rID=236.

On this page, the file "ofbiz.product.20020826.vsd" is a MS
VISIO diagram that contains the complete data model for
products and catalogs in ofbiz. Figure 4 shows only the

components that implement the pattern under study.

To obtain hipergate data model as shown in Figure 5, go to
the programmer's guide from page
http://www.hipergate.org/docs/#user. This takes to the
documentation at

http://www.hipergate.org/docs/files/2.1.0/prog_guide-2.1.0-
en.pdf.

Figure 5 corresponds to the model on page 22, and Figure 6
corresponds to the model on page 50. Description of model fields
is also included in the same document.

14. Appendix 2
14.1 Entity Relationship Model Notations

 The database structure in Figure 1 is represented in a
traditional entity relationship diagram. This diagram uses the
crow's foot notation for Entity relationship diagrams. For notation
details, the reader may refer to any of database design books. One
of such books is [[9]]. Figure 7Error! Reference source not
found. summarizes the notation and could be found at [[9]],
chapter 3, figure 3-2.

Figure 7. Entity Relationship Diagram Notation, Fig 3-2 [[6]]

15. ACKNOWLEDGMENTS
I would like to thank my PLOP shepherd, Rosangela A. Delloso
Penteado, for her valuable suggestions and comments that greatly
improved this paper. I would also like to thank Dwight Deugo for
his review, discussions, and helpful comments on the initial draft
of this paper.

16. References
[1] Eduardo B. Fernandez, Yi Liu, and RouYi Pan, Patterns for
Internet shops, in PLOP 2001.
[2] E. Gamma, E. Helm, R. Johnson and J. Vlissides, Design
Patterns –Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.
[3] osCommerce project at http://www.oscommerce.com as
accessed on July 2006.
[4] ofbiz documentation at http://www.ofbiz.org/index.html as
accessed on July 2006.
[5] Hipergate documentation at http://www.hipergate.org as
accessed on July 2006.

[6] Dongkyu Kim, Sang-goo Lee, Jonghoon Chun, Sangwook
Park, Jaeyoung Oh, Catalog Management in E-Commerce
Systems, proc. of Computer Science and Technology (CST 2003).
[7] K. Kim, et al, An Experimental Evaluation of Dynamic
Electronic Catalog Models In Relational Database Systems, Proc.
of the Information Resources Management Association
International Conf., 2002.
[8] André Widhani, Stefan Böge, Andreas Bartelt, and Winfried
Lamersdorf, Software Architecture and Patterns for Electronic
Commerce Systems, Ninth Research Symposium on Emerging
Electronic Markets 2002.
[9] Rebecca M. Riordan, Designing Relational Database
Systems, Microsoft press, 1999.

