
Thoughts on Weak Links and Alexandrian Life in Scrum

Pamela M. Rostal
Perficient, Inc.

100 North 6th St, Suite 935C
Minneapolis, MN 55403

001-651-308-0917

pmrostal@comcast.net

ABSTRACT

This paper looks at the Scrum software development process
through a lens that emphasizes small worldness, nestedness, and
scale-freeness, all characteristic of networks that feature weak
links between their modules. Scrum has gained popularity over
the past decade as a means of delivering valuable software to its
host organization on a regular basis. Since weak links characterize
natural and social systems at every scale, practitioners of Scrum
should be able to improve their teams’ processes by applying
lessons learned from studying weak links. When practitioners
look for weak links directly, they may find the task daunting and
ask the question: “How can I tell whether weak links are
strengthening or weakening my team’s Scrum process if I can’t
even find them?” For the answer, this paper looks to
Christopher Alexander’s characteristics of wholeness, integrity, or

life – strong centers, levels of scale, echoes, alternating

repetition, and, in particular, the characteristic called deep

interlock and ambiguity -- which may correlate with the presence
of weak links.

Categories and Subject Descriptors

K.6.3 Software Management -- Software development, Software
process. D.2.9 Management -- Programming teams. D.2.8
Metrics -- Process metrics

General Terms

Management, Measurement, Performance, Theory

Keywords

Scrum, patterns, Nature of Order, Christopher Alexander, weak
links, life

1. INTRODUCTION
Imagine a world without jet engines, ecological systems, and the
Internet, all casualties of eliminating the weak links [1] that
characterize them. Now, imagine a world without any living
creatures – since weak links are also essential to life processes
such as protein folding, cell repair, and protein-protein
interactions [1]. Given their importance to life on this planet, an
examination of weak links in the activities, structure and artifacts
of the software development process represents an exciting
opportunity. This paper explores the Scrum [2, 3] software
development process in terms of stabilization by weak links and
suggests a relationship between them and Christopher

Alexander’s concept of wholeness, integrity, or life [4]. Scrum
was chosen because its perceived successes have motivated over
15,000 people across the globe to seek certification as Scrum
Masters (the leaders of Scrum teams) [5]. The goal of this
investigation is to seek out the weak link-related factors behind
Scrum’s appeal and suggest new areas of exploration for process
improvement.

These new areas of exploration involve small worldness,
nestedness, and scale-freeness, all characteristic of networks that
feature weak links (see the Glossary in a Box on the next page).
If stabilization by weak links is at least partially responsible for
Scrum’s success, it should prescribe practices, structures, and
artifacts that exhibit these attributes, showing that weak links have
emerged to help stabilize the software development process. The
attributes may show up in the way Scrum decomposes the work
required to develop a system, the communication processes Scrum
prescribes to keep stakeholders engaged, or the structures Scrum
specifies for adapting to disruptions of the development process.

Furthermore, if life indicates that weak links are stabilizing
Scrum, then both its processes and their resulting products should
exhibit the characteristics Christopher Alexander associates with

life. Efforts to improve the process should then focus on
intensifying the evidence of life by altering the distribution of link
lengths and strengths.

In the book Weak Links: Stabilizers of Complex Systems from

Proteins to Social Networks [1], author Peter Csermely develops a
compelling case for the view that weak links in and around
complex systems exert a stabilizing effect. Numerous diverse
disciplines have examined weak links, studying their role in
atomic, molecular, and macromolecular interactions [6, 7],
interactions in social situations [8], software system architectures
[9], and links among web pages [10]. While previous researchers
had observed weak links, it was Csermely who speculated on their
universal role in system stabilization. Because every complex
system is a network capable of weak link stabilization, software
development should be no exception.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission. Preliminary versions of these papers were presented
in a writers' workshop at the 15th Conference on Pattern
Languages of Programs (PLoP).

PLoP'08, October 18-20, Nashville, TN, USA.

Copyright 2008 is held by the author(s).

ACM 978-1-60558-151-4

The pages that follow present key concepts common to weak links
and Alexander’s phenomenon of life and shows how they are
exemplified in Scrum.

In very simple systems, there are no weak links because weak
links between elements emerge due to interactions among
interactions. Simple systems have only one set of interactions –
all of them strong links, so the removal of any link will likely
destroy the system. In contrast, removing a weak link often has
little impact on the system in the short run because, by definition,
“a link of a network is weak if its addition or removal does not
change the mean value of a target measure, which is usually an
emergent property of the network, in a statistically discernible
way” [11]. Forgetting a birthday card can have huge
repercussions if the forgetful party is a close friend or spouse, but
the lack of a card from a distant relative has virtually no impact.

As an example of weak links from software development, team
productivity is often measured by metrics such as lines of code,
function points, or story points per iteration. Productivity, as
measured by these metrics, may not suffer much if a water cooler
is removed (see the Water Cooler organizational pattern [12]), but
the effectiveness of the software delivered may suffer over an
extended period of time because of the team’s losing touch with
people and information from other domains. A story reported by
Gerald Weinberg [13] and cited by Alistair Cockburn [14]
illustrates this principle in a parallel context:

[At] a large university computing center ... a large
common space was provided near the return window
so that the students and other users could work on
their programming problems. In the adjoining room,
the center provided a consulting service for difficult
problems, staffed by two graduate assistants. At one
end of the common room was a collection of vending
machines ... the noise from the revelers congregating
at the machines often became more than some of the
workers could bear ... [The computing center
manager] went to investigate their complaint ...
Without more than 15 seconds of observation, he went
back to his office and inaugurated action to have the
machines removed to some remote spot. The week
after the machines had been removed – and signs
urging quiet had been posted all around – the manager
received another delegation ... They had come to
complain about the lack of consulting service; and,
indeed, when he went to look for himself, he saw two
long lines extending out of the consulting room into
the common room. He spoke to the consultants to ask
them why they were suddenly so slow in servicing
their clients ... For some reason, they said, there were
just a lot more people needing advice than there used
to be ... After some time, he discovered the source of
the problem. It was the vending machines! When the
vending machines had been in the common room, a
large crowd always hovered around them ... they were
chatting about their programs. ... Since most of the
student problems were similar, the chances were very
high that they could find someone who knew what
was wrong with their programs right there at the
vending machines. Through this informal

Glossary in a Box
NOTE: Throughout this glossary, the assumption is made that
any system (i.e., anything) can be viewed as a network.

Small-worldness: a characteristic of networks whose nodes are
not necessarily connected directly, but are generally no more than
a few short or long hops from each other. Small worlds benefit
from both clustering and long-range connections. The notion that
virtually any two people in the world can be connected in no more
than six hops [15, 8] is a commonly cited example of small-
worldness.

Nestedness: the characteristic of a network that allows a given
node to appear as a leaf from the top of the network, but as a
whole network from its own perspective. The typical corporate
organization chart is a perfect example of nestedness because each
box can represent either a single employee or the manager of a
network of subordinates, some with additional nested managers.

Scale-freeness: the characteristic of a network that allows it to
have the same properties regardless of how large it grows. Many
people are familiar with Pareto’s 80-20 rule whereby 20% of the
people in a given economy are responsible for 80% of the wealth
[16]. Regardless of how large the economy grows, the percentage
remains the same because the majority of the money finds its way
into the hands of the wealthiest 20%. Hence, the distribution of
wealth is scale-free.

Weak Links: low-intensity connections or transient higher
intensity connections between network elements. In a stable
network, they constitute one end of a spectrum of link strengths
comprising a very few strong links and increasingly more
numerous and less intense links. The social network “Linked In”
is an example of weak links between professionals. Generally, a
member will not correspond with all the people in his/her
network, but during a period of unemployment, messages may be
sent to even the most distant acquaintances.

Motif: small groups of network elements that characteristically
appear together in specific linkage patterns; e.g., Alexander’s
architectural patterns joining context, forces, and solution, feed-
forward loops, and feedback loops.

Module: a group of relatively isolated network elements that are
more functionally or physically linked to each other than they are
to the rest of the system; e.g., code that implements an object, a
car full of people in a traffic jam, or a team on a large project.

organization, the formal consulting mechanism was
shunted, and its load was reduced to a level it could
reasonably handle.

In this example, if the consultants were the only source of the
knowledge required to solve the students’ problems, then the
system would have been a simple system with a bottleneck.
Because the knowledge could be constructed or obtained from
others (whose identity was not known by the students but whose
location might be inferred as the common area), the system is
complex. Systems with only strong links are susceptible to
disruption and even disintegration when disrupted by a
disturbance because the perturbation cannot dissipate except by
passing through the whole system or by breaking off an entire
subsystem. In the example above, the long line that formed is a
perturbation that slowed the students’ access to the consultants. If
all the students had given up on obtaining help because of the
long lines, the consulting system would have disintegrated
without further intervention. If the students had formed their own
study groups as an alternative to the consulting service, that
would have been an example of breaking off an entire subsystem.

In the grand scheme of complex systems, the student/consulting
service story is a relatively simple example. In contrast, the
software development process forms a highly complex system
comprising enterprise and project-level goals and plans, realized
by team and individual collaborations throughout the system
development lifecycle. Given all of these interactions among
interactions, one should be able to detect evidence of motifs,
modules, small worldness, nestedness, and scale-freeness there.

Christopher Alexander was able to recognize the characteristics of
weak links in spatial systems from around the world [4]. His
book, The Phenomenon of Life, explores a theory “in which
statements about relative degree of harmony, or life, or wholeness
– basic aspects of order – are understood as potentially true or
false.” Because his fifteen basic characteristics of life relate
strongly to the properties associated with weak links and because
they provide a visual representation of several abstract concepts
related to weak links, they are helpful in drawing the distinctions

presented in the subsequent Core Concepts section.

Table 1 Characteristics of Life

Christopher Alexander’s 15 characteristics of “Life” in spatial systems

Levels of scale – the range of sizes that centers generally exhibit in
a series of discrete, well-marked levels; a ratio of 20:1 between
centers is too large; 2:1 or 3:1 is appropriate.

Contrast – intense differentiation caused by the disparity between
distinctly opposed centers whose boundary emerges as a center
itself

Strong Centers – wholes, existing at different levels of a structure,
that capture the observer’s interest as individual focal points. They
are locally symmetrical and structurally complementary in relation
to the whole system

Gradients – the gradual variation of a quality across space as its
centers adapt to changes in the morphology of the space they
inhabit

Boundaries – that which both unites the center being enclosed with
the world around it and intensifies the identity of the center itself.
Boundaries must be of the same order of magnitude as the centers
they bound and must also interlock and connect with them.

Roughness – subtle variation in a system’s property due to its being
created or evolved in a non-mechanical, egoless way that allows the
property to optimize itself to its immediate environment

Alternating Repetition – rhythmic intensification of centers caused
by wave-like repetition of two or more systems whose centers
complement and enhance each other’s centers as well as their own.

Echoes - deep internal similarities between the small centers and
angled pieces of larger centers, which tie them together to form a
single unity

Positive Space – “when every bit of space swells outward, is
substantial in itself and is never the leftover from an adjacent
shape.” [4, p. 173]

The Void - “In the most profound centers which have perfect
wholeness, there is at the heart a void which is like water, infinite in
depth, surrounded by and contrasted with the clutter of the stuff and
fabric all around it.” [4, p. 222]

Good Shape – a shape that comprises recursive compact coherent
centers, each exhibiting the characteristics in this list

Simplicity and Inner Calm – the slowness, majesty, and quietness
inherent in structures that reveal only their essence, with no
unnecessary appendages

Local Symmetries – subtly interweaving small-scale symmetries
that support organic, flexible adaptation to the system’s context by
binding its centers into a coherent whole

Not-separateness – when a center having deep life evokes a feeling
of connectedness to what surrounds it and is not cut off, isolated, or
separated

Deep Interlock and Ambiguity – the interface zone, both system and context, where centers hook into their surroundings

Buschmann et al. in Pattern Oriented Software Architecture

Volume 5: On Patterns and Pattern Languages [17, p. 380]
stated that the fundamental properties of life are defined in a
work (the four volumes of Nature of Order [4], [18], [19], [20])
whose “contributions will be primarily to support deepening of
our understanding of pattern concepts such as pattern sequences
and the notion of ‘centers’ in design.” While this may be true, its

greater contribution may be to direct the pattern community’s
gaze towards areas outside the existing focus of patterns. It may
be that the fundamental properties of life are actually symptoms
or indicators of an order supported by weak links whose
presence can be measured using methods borrowed or derived
from those in other disciplines. If so, then The Nature of Order
may have made a far more profound contribution – bringing the

process of software development into alignment with realities
studied in other professions and expressed in nature.

2. CORE CONCEPTS
Note: Where Alexander’s characteristics appear, they are

formatted in bold italics.

2.1 Small-worldness
The short definition of small-worldness is “a characteristic of
networks whose nodes are not necessarily connected directly,
but are generally no more than a few short or long hops from
each other.” While this definition suffices initially, it must be
qualified to exclude random graphs, which are not small worlds
but have elements that can reach each other with relative ease.
The differentiator between the two is clustering, which enhances
local searches. Clusters are formed when neighboring nodes
link not only to each other but to additional common nodes – a
sort of “my friend’s friend is also my friend” phenomenon.

Figure 1 Small-worldness in context [21]

Figure 1, from a study by Watts and Strogatz [21], shows three
types of networks: regular, small-world, and random. Note that
in the regular network, where breaking and reconnecting a link
would always bring it back to the same node, every node is
connected to its two nearest neighbors in each direction so that
it can get to any of them very efficiently, giving it a high
clustering coefficient. Random networks, on the other hand,
where the probability (p) of a disconnected node being
reconnected somewhere else is 1, may reach nodes on the far
edge of the circle quite easily, giving a short characteristic path
length, but they lack the high clustering coefficient. Watts and
Strogatz found that intermediate values of p characterized
structures that benefit from the clustering of regular graphs and
from the shortcuts of random graphs, giving them the enhanced
signal-propagation speed, computational power, and
synchronizability that distinguish small worlds. Just a few
shortcuts in a system with a large number of nodes enables a
small path length without disturbing the clustering of the pre-
existing neighbors because each shortcut connects not only the
affected node, but its entire neighborhood to the far side of the
network.

An example in the real world is a person needing an answer to a
question, as shown in Figure 2. The information might link
strongly to one document because the author was a consultant
(who may still have a strong link to the information, but whose
access was eliminated due to contract termination – a major
perturbation in the system that created the information). The

questioner’s path to the information might follow the paths
between large boxes in Figure 2 and take precious time away
from the task for which the information was required.

Figure 2 Information strongly linked to a single document

If, instead of the information being available only in the
repository document, it was also available from a friend who
was the document’s author, the same questioner might get to the
information in just three hops instead of the eight required
above. The network in Figure 3 shows how the agile notion of
osmotic communication [22] shortcuts the communication path,
resulting in faster access to the information that will allow the
questioner and team to continue working.

Figure 3 Information available from the author’s whiteboard

Viewing the network in Figure 3 from the perspective of

Alexander’s life, the whiteboard would represent a strong

center. The system of whiteboards in people’s cubes, in the
hallways, and at gathering points could constitute a system of

strong centers if they contained information that encouraged
people to cluster around them and discuss the information

displayed there. Information gradients form around these
strong centers – those closest to the centers are most conversant
with their contents, while those farthest away know the least.
Small worldness addresses communication within a co-located
community, but when people are too far apart, the shortcuts can
cost too much to sustain, causing the system to break into highly
clustered subnetworks that do not communicate.

Whether the reason is distributed teams or simply poor
communication among stakeholders, lack of communication
causes problems. Conway’s Law, states “Any organization that
designs a system (defined more broadly here than just
information systems) will inevitably produce a design whose
structure is a copy of the organization's communication
structure.” [23]. Only a concerted effort to support the shortcuts
– e.g., communication-focused roles such as business analysts,
project managers, or leadership groups supported as needed by
specialized collaborative tools – can stabilize the network and
allow for scale-free growth, as described in the next section.

2.2 Scale-freeness
Scale-freeness is defined as the characteristic of a network that
allows it to have the same properties regardless of how large it
grows. Adding more nodes to the 20 (a number too small for
most research, but one that is easy to visualize) in the regular
graph of Figure 1 will increase the average distance between
nodes in a linear fashion. Adding nodes to the random network
in Figure 1 only increases the average distance between nodes
proportionally to ln(N), where N is the number of nodes. Even
so, the random network does not show the benefits of a scale-
free network because, as noted above, it does not have the high
clustering coefficient characteristic of networks that have many
nearby neighbors. The middle network of Figure 1 does show
scale-freeness with growth because any new node leaves the
clustering coefficient relatively high and the average distance
between nodes relatively short due to its neighbor’s shortcuts.

Examples of scale-freeness include the great cities of Europe
(e.g., Budapest and Paris), whose neighborhoods are scale-free
networks that developed fractally as self-organizing systems
within ever larger self-similar systems. Some dimensions
showing scale-free distributions are object size (from small shop
windows to town squares), verticality (small homes to large
buildings and sometimes to large hills in the distance), and the
fractal distribution of distances that can be walked without
running into an obstacle [1].

From the realm of nature, the Roystonea or Royal Palm survives
hurricane-force winds [24] by shedding its fronds when the
force of the storm endangers the survival of the tree. The fronds
exhibit a distribution of “stickiness” to the tree such that a 40-50
mile-an-hour wind from a thunderstorm will blow down one
frond, while a hurricane will remove all the fronds but leave the
tree standing to grow new ones. Thus, as the author suggests,
the number of fronds removed can provide an estimate of the
strength of the storm.

From the realm of human design, the Alhambra tile shown in
Figure 4 could scale indefinitely because enlarging it involves
only adding new self-similar modules. The ratio of stars to the
other elements of the design remains the same whether the

Figure 4 Alhambra tile [25]

observer looks at a small rectangle encompassing just one star
and its surrounding elements or at a rectangle that encompasses
the far-distant edges of the tile. The ratio of each color to each
other color is also maintained as the tile grows. The stars form

strong centers, while the surrounding elements form

boundaries, and ensure local symmetries. The local

symmetries combine to create coherence on a large scale
because they emerge organically rather than being imposed by
an overenthusiastic designer.

In contrast, Figure 5’s view of the Renaissance Center in Detroit
shows what happens in the absence of scale-freeness since the
five large buildings emerge abruptly from the ground, without
elements of intermediate heights producing scale-free verticality
to bridge the stark contrast in height. Because each tower
diverges so drastically from its immediate surroundings and
appears so disconnected from the other towers, there is no

opportunity for local symmetries. Figures 4 and 5 illustrate the
coherence that emerges from small local symmetries and the
lack of coherence apparent when large-scale symmetry is

attempted without the ground of adjacent small local

symmetries.

Figure 5 Renaissance Center in Detroit [26]

The presence of local symmetries contributes to a perception of

not-separateness in the Alhambra tile because it exemplifies
Alexander’s definition that:

any center which has deep life is connected, in
feeling, to what surrounds it, and is not cut off,
isolated, or separated. In a center which is deeply
coherent, there is a lack of separation – instead a
profound connection—between that center and the
other centers which surround it, so that the various
centers melt into one another and become
inseparable. It is that quality which comes about
from each center, to the degree it is connected to the
whole world. [4, p. 231]

Viewing the tile from the perspective of not-separateness, there
is a sense that removing any element of the pattern would cause
a loss of balance in the relationships of its neighbors and draw
the eye of the observer to the unexpected gap in that spot. This
would disturb the tile’s integrity; hence, each element of the tile

exhibits not-separateness and contributes to the sense of
wholeness of the entire tile. In contrast, the Renaissance

Center’s lack of local symmetries gives the observer no support
for seeing the five towers and the space between them as one

single whole; hence, there is no sense of not-separateness.

2.3 Nestedness
Nestedness is defined as the characteristic of a network that
allows a given node to appear as a leaf from the top of the
network, but as a whole network from its own perspective. In
symbiosis-driven nestedness or integration [27], nestedness
evolves bottom-up, from relatively stable independent networks
self-organizing into larger networks until they all associate to
become elements of the top network. This might happen in
suburbs that merge their bus lines to support a transportation
system around the city. In contrast, modularization-driven

nestedness or parcellation involves segregating parts of the top
network into modules, which can then become top networks
themselves – e.g., top-down decomposition of software designs
characteristic of structured design or cities that govern through
neighborhood councils. We will examine modules in detail later
in this paper.

Employees recognize nestedness in a large company’s
organization chart, an example of which is shown in Figure 6.
Note that John Sampleboss sees the three nodes in Figure 6 that
report to him as leaves, but in reality, only Sandy Sampleadmin
is a leaf. James Sampleposa and Jane Samplemgr are nodes that
comprise additional nodes, some of them leaves and others
further decomposable nodes.

Figure 6 Nestedness in an Organization Chart

Nestedness allows organizations to scale by incorporating

employees into departments (modules) exhibiting levels of scale,

strong centers, and boundaries that separate tightly linked
employees within the department from those in other
departments.

Another example of nestedness, this one from economics, is the
world economy that comprises countries whose social networks
are composed of people powered by networks of cells made up
of protein networks that can finally be broken up into atoms.

This example exhibits strong centers in its nested nodes,

boundaries with contrast between the centers, levels of scale
that define the top and the bottom of the network, and

roughness due to uneven distribution of resources. Again,
nestedness alone is not enough to guarantee life because the
wholeness and integrity of the world economy, especially during
the 2008 economic slowdown, appears to be questionable.

 Some consequences of nestedness may not be obvious from the
examples above. M. C. Escher’s Print Gallery captures the
concept of nesting visually in that the picture hanging in a print
gallery appears to contain the gallery itself. Douglas Hofstadter,
in his analysis of Escher’s work [28, p. 714], speculates that the
signature in the middle of the picture exists to cover up the fact
that it would be impossible to capture the point at which the
larger world intersects its nested image. This phenomenon may
affect intersections other than spatial intersections and will be

explored in greater detail during the discussion of Scrum
planning meetings.

Figure 7 M. C. Escher's Print Gallery [29]

In this case, where the picture contains a replica of the gallery,
which would presumably contain an even smaller replica, the

nested elements are replicas of each other, so they would be
considered motifs.

2.4 Motifs
Motifs are defined as small groups of network elements with
characteristic linkage patterns that occur in significant numbers
within complex networks. Christopher Alexander’s patterns are
motifs that reflect the underlying processes of architectural
design. The entire patterns community is founded on the
understanding that problems in a given context, subject to the
specified forces, have been successfully handled by the solution
presented in the pattern, which makes the problem-context-
forces-solution linkage a motif.

Motifs in software become design patterns [30], architecture
patterns from the idiom level to the application architecture level
[31] or enterprise application architecture patterns [32]. Motifs
in implemented software become reusable components when
they are extracted from existing software systems by reverse-
engineering [33].

Motifs have also been found in many fields outside of
architecture and software, including biochemistry, neurobiology,
ecology, and engineering [34]. Research by Milo et al. has led
them to believe that network motifs “can define broad classes of
networks, each with specific types of elementary structures”
[34]. Systems like food webs that support the flow of energy
from the bottom of the food chain to the top exhibit different
distributions of motifs than information processing systems.
Information processing networks feature 3-element feed-forward
loops as shown on the left in Figure 8, although some bi-parallel
structures are also found in these systems; food webs, on the
other hand, feature some feed-forward loops, but bi-parallel
structures, allowing a choice of vehicles to the destination, are
far more prevalent.

Figure 8 Three-element Feed-forward loop and Four-element

Bi-parallel structure

In building architecture, motifs correspond to Alexander’s

echoes, defined as deep internal similarities between the small
centers and angled pieces of larger centers, which tie them
together to form a single unity. The houses of Alberobello,
Italy, shown in Figure 9, constitute an example of simple motifs
because they share a family resemblance based on the similar
angles of their cone-like shapes.

The Big Wild Goose Pagoda or Tower of the Wild Goose,
shown in Figure 10 and built around 652 A.D. in Hunan
Province, China, is another example of a structure that exhibits

echoes or motifs (square structure-arched window-roof).

Alexander [4] uses the tower to illustrate not-separateness in his
description of the Fifteen Properties [4 p. 230], but he also
presents it as an example of deep life [4 p. 11] because the

Figure 9 Conical Motifs at Alberobello, Italy [35]

collection of motifs and the supporting structure intensify the

connection people feel for the tower by incorporating levels of

scale, strong centers, boundaries, local symmetries, gradients,

simplicity and inner calm, and alternating repetition into their
arrangement.

Figure 10 Tower of the Wild Goose, Hunan Province, China

[36]

2.5 Modules
Modules are clusters of network elements that relate functionally
or physically to each other much more strongly than they do
with the other elements in the network. In Figure 10, the

tower’s motifs constitute modules that exemplify parcellation –
“the differential elimination of cross-interactions involving
different parts of the system” [27].

Modules make scale-free networks more manageable by
allowing adaptation of a given set of nodes relatively
independently of the rest of the network. Modularization is a
prerequisite for the adaptation of complex organisms [27] and
has been implemented in the software world as object-oriented
programming, as well as component-based and service-oriented
architectures.

Modules are often called communities, and can be discriminated
within diagrams created by network visualization tools. Figures
11 and 12 compare two types of networks, each containing 100
agents and approximately 175 links – Figure 11 is a modular
network, and Figure 12 is a scale-free network without modules
[37]. Notice the similarities – both show evidence of weak links
in their small-world clustering, scale-free shortcuts, and
nestedness. The modular network, however, contains a number
of elements that are much more highly connected to elements
within their own module than to elements outside their modules.

Figure 11 Modular network [37]

Figure 12 Small World network [37]

As noted in the section on nestedness, modularity is important in

Alexandrian life because it fosters the development of strong

centers, levels of scale, and boundaries, and supports the

development of local symmetries, contrast, gradients,

roughness and alternating repetition in some networks. One
might imagine the Alhambra tile losing Alexandrian life as it
scales to encompass the entire side of a building because the size

of the individual modules would be too small relative to the size
of the wall – therefore, even the best designs need to be
modularized to maintain their viability as they scale.

3. WEAK LINKS
Now that some of the features of weak links have been
described, their relationship to topological phase transitions over
time can be explored. Because networks are often dynamic,
their configuration can vary over time as they develop in
complexity, undergo stress or experience resource replenishment
[38, 39]. In a random network, generally found where
complexity is lower and resources are plentiful, the network can
support every node possessing close to the same number of
connections, as shown in Figure 13. Increasing the amount of
stress slightly causes structure to emerge so that the use of
available resources can be optimized. The Alhambra tile shown
in Figure 4 is one example of a network produced with plentiful
resources and constrained to follow a pattern; therefore, it
exemplifies a relatively simple scale-free network.

Figure 13 Network Topologies [1, p. 75]

A collection of small towns, each with its own hardware store,
pharmacy, grocery, or general store is another example of a
random network, as there is no advantage to traveling in one
direction over another, because any direction will provide
whatever services are needed. The towns, however, represent a
network that can change in response to both internal and
external forces. If the population shifts and some stores close,
residents may choose to shop in neighboring towns, depending
on distance, thus developing a scale-free network. The third
topology illustrated in Figure 13 illustrates a star network, in
which nearly all connections in the network pass through a
central hub, which might happen when all the small stores close
in response to a new super-store opening. When the star
network experiences more stress, it will rip apart and no longer
have a “giant” component. As an example, if oil prices make
travel to the super-store too expensive, the towns in the area will
no longer have their familiar old stores, but they won’t be able
to shop at super-store either, so new stores or online shopping
may emerge as an alternative.

The reason infinite resources support a random network is that
energy is required to support each of the links [40]. As stress
increases and resources decrease, there is an advantage to
sharing paths to the far side of the network, but there is also a
benefit to the short-range clustering of the scale-free network.
As resources continue to decrease, the energy required to
support the extra links is not available, so a star network is
formed. Finally, with even less energy, the network’s giant
component “dies” and decomposes into subgraphs. Thus, the
giant component no longer exhibits the characteristics of
Alexandrian life because its subgraphs have no relations with
each other via weak links.

As the discussion above implies, weak links provide a
mechanism for stabilizing a giant component as it is subjected to
perturbations or disturbances due to increased complexity,
decreasing resources, or increasing stress. Modules can
dissipate energy from a perturbation by reorganizing their links
or by detaching from the giant component. (This is also an
organizational pattern [12] called “Sacrifice One Person.” In
this pattern, one member of a team takes on the responsibility of
protecting the integrity of the rest of the group by accepting a
highly disruptive task such as handling support calls or
committing to a task required by the external organization but
not required for the work the team is doing.)

Biological networks exhibit both redundancy (duplicate
elements) and degeneracy (different elements that can reprogram
themselves away from their normal function to perform the same
function as a different element, depending on the context [27])
to support stabilization of their giant components. The fact that
the functions performed by an element or module disabled
because of a perturbation can be delegated to a different
structure in the network distinguishes biological networks from
technological networks, which rely almost exclusively on
redundancy. This may be explained by the fact that evolutionary
systems tinker with or reuse what already exists in their system
to derive comparable functionality and can never be assembled
by simply attaching something brand new. Enhancements to
engineered or technological systems, on the other hand, can be
effected by adding new and/or modifying existing components.
As an example of weak links supporting biological network
robustness, mutations in a single gene can often be compensated
for by a different gene or set of genes that can perform the same
function. However, networks of genes are subject to the same
scale-free forces as other networks – i.e., mutations of some
highly-connected genes, such as the p53 tumor suppressor gene
that participates in programmed cell death and prevention of
tumor cell proliferation, can have a profound effect (cancer),
while some genes can be fully suppressed without any outward
indication. [27]

Software architectures exhibit scale-freeness and small
worldness when modules are integrated into the system if design
principles such as maximizing cohesion, minimizing coupling,
avoiding the creation of hubs with many dependencies, and
minimizing development time, are applied [27]. Comparable
design principles, such as optimization involving cross-network
shortcuts and short paths within the neighborhood operate in the
realm of cellular nets, but cellular nets are able to parlay their
scale-freeness and small worldness into free homeostatis (robust
stabilization mechanisms) against random failure. If researchers
could discover the roots of such mechanisms, practitioners

might be able to create both software development processes
and software products that exhibit homeostatis.

Then, software systems may start to exhibit what Buckminster
Fuller [41, p.7] calls synergy, as exemplified by chrome-nickel-
steel. This alloy contradicts the belief most people have that a
chain is only as strong as its weakest link – if that were true,
then its tensile strength would never exceed 60,000 pounds per
square inch (psi), the tensile strength of iron, which is the
weakest of the three metals. Instead, the tensile strength of the
alloy is 350,000 psi, which exceeds the sum of the tensile
strengths of all its constituents (260,000 psi) because the
structure deforms when it is stressed. Fuller’s explanation is
“Chains in metal do not occur as open-ended lines. In the atoms,
the ends of the chains come around and fasten the ends together,
endlessly, in circular actions. Because atomic circular chains are
dynamic, if one link breaks, the other mends itself.” The result
is a metal of such strength that it can withstand temperatures
generated by combustion in jet engines; hence, the goal is not
just an increase in the software’s robustness but enabling new
kinds of software that were impossible until homeostasis
emerged.

Remembering Conway’s law, which states that software
architecture mirrors the communication structures of its creators,
if the organization’s goal is to achieve what only homeostatic
software can enable, the first step in this direction may be the
creation of homeostatic software teams, which is essentially
what Scrum can enable, with its endless circular structures
around each delivery of production-ready software.

4. SCRUM
By its founders’ definition, Scrum is an “iterative, incremental
process for developing any product or managing any work. It
produces a potentially shippable set of functionality at the end of
every iteration.” [3]. Scrum acts as a framework within which
relevant engineering, team-building, and knowledge
management principles may be applied to enable the team’s
meeting of its commitment to the organization. The rules are
deceptively simple, just as are the design rules that produce
complex software architectures, but they too are rooted in deep
concepts, like weak links and complex adaptive systems, that
give them great power. Disciplined attention to the application
of rules and principles underlying Scrum is required to attain the
benefits promised by its adherents. When that disciplined
attention is applied and continually developed, both the product
of the Scrum process and the process itself exhibit Alexandrian
life.

The rules of Scrum involve roles, artifacts, and activities. The
roles involved in Scrum are:

� Product Owner – the voice of the customer who stewards
the product vision and finances, reflecting his/her
constituents’ needs in the prioritized product backlog

� Scrum Team – the self-organizing, cross-functional group
responsible for delivering an agreed-upon segment of the
highest-priority functionality within the selected time-box

� Scrum Master – the facilitator of team success responsible
for focusing the team’s attention on their commitments,
representing management to the team and the team to
management, and steward of the Scrum implementation

The artifacts of Scrum include:

� Product Backlog – the list of features, functionality, and
quality attributes implicit in the product vision

� Sprint Backlog – the list of tasks required to implement the
agreed-upon segment of the Product Backlog that will be
delivered within the next time-box (called a Sprint)

� Sprint Burndown Chart – a graph showing the rate at which
the effort required to reach the Sprint goal (which reflects
the agreed-upon product increment) is declining. Time
remaining must hit zero on the last day of the Sprint.
Figure 14 illustrates burndown for a standard 30-day
Sprint. (Note that the actual burndown does not decline
linearly but varies based on new information, negotiated
decisions, and revised designs.)

Figure 14 Sprint Burndown Chart

The activities of Scrum include:

� Sprint Planning Meeting
o Part I - Review the prioritized product backlog,

consider what work will be possible during the next
Sprint, and define a Sprint goal around which to
organize the work.

o Part II - Define and estimate the tasks entailed by the
work, and reconfirm its feasibility. If no longer
feasible, renegotiate the work with the Product Owner.

� Sprint – both the timebox and the development activities
inside the timebox that will lead to the delivery of
production quality code that realizes the Sprint goal.

� Scrum Meeting – the daily 15-minute synchronization
period during which team members answer the questions:
o What did you do since the last Scrum Meeting?
o What will you do before the next Scrum Meeting?
o What is standing in your way?

� Sprint Review
o Demo – the team’s opportunity to tell the story of the

production-quality increment constructed during the
Sprint and the product owner’s opportunity to review,
accept, and/or adapt its functionality

o Retrospective – a period of reflection during which the
team and invited stakeholders build community,
identify best practices, and suggest improvement
experiments – a time to “discover, share, and pass
along the learning from experience—something we
also call ‘wisdom’” [42].

When all of these elements come together, the resulting structure
is often captured in a diagram like Figure 15, which identifies
the relationships between the activities and the artifacts [43]. It
also highlights some of the characteristics of Scrum:

� visibility into the process and the Product Owner’s
priorities

� feedback on at least a daily basis (more if the team is
collocated and taking advantage of osmotic communication
– learning by hearing and seeing ambient information)

� continuous adaptation of the work distribution and
approach within the team

� continuous adaptation of the product backlog by any
stakeholder (subject to the Product Owner’s prioritization
before the next Sprint planning meeting)

Figure 15 Scrum flow [43]

When a team first adopts Scrum, it executes the entire lifecycle
of a small part of the desired system – all requirements are
identified, analyzed, and reflected in the product design, and the
design is reified by the team’s code, supported by
documentation (e.g., user manuals, help files), and tested against
user acceptance criteria. Although this description sounds
sequential, everything happens at once as the team optimizes
itself like a surgical team to deliver working software that meets
the Sprint goal within the Sprint timebox.

Team members switch roles to the extent possible in hopes of
avoiding bottlenecks, but this approach to Scrum (called Scrum
Type A in [44] and illustrated in Figure 16) results in “dead”
time while the team reorganizes for the next Sprint. This dead
time prompted an evolution into Scrum Type B. In Scrum Type
B (see Figure 16), the requirements for the subsequent Sprint are
developed in the current Sprint, so that only items that already
have buy-in from the organization are on the product backlog at
the Sprint planning meeting. This removes the development
bottleneck and can result in the production of more value than
the organization can handle. Finally, a single experienced
Scrum team executing appropriate engineering practices can
work on simultaneous Sprints of one week, one month, and
three months if they are supported by a well-designed product
architecture, automated testing and automated presentation of
the integrated Sprint backlogs by team member. This version of
Scrum is an adaptation of Takeuchi and Nonaka’s original
“overlapping development phases” [45] in that multiple smaller
Sprints can be completed before their containing Sprint is
completed. This approach resulted in 45 releases per year for
PatientKeeper, an organization that currently employs it [3].

Figure 16 Three implementation styles of Scrum [44]

In order to support Scrum Type C, the product backlog must be
prioritized and available to the team at very short intervals. This
means that the Product Owner continually manages the list as it
adapts to changes in business conditions, team capabilities,
technological factors and the capability context resulting from
the most recent product releases. To maintain the priorities of
the product backlog, the Product Owner must ensure that the
organization’s executives implement a process analogous to the
Scrum team’s process, but with different inputs and outputs, as
shown in Figure 17, the diagram of Meta-Scrum. Note that the
team’s flow takes the output of the management flow as its input
and returns the team’s new functionality to the executive team as
revised process / technology needs and context.

Figure 17 Meta-Scrum for the Executive Team

Given the size of the smallest Sprint in Scrum Type C, the Meta-
Scrum meeting must occur weekly in order to ensure that the
next week’s work will reflect the organization’s highest
priorities and to accommodate perturbations such as a customer
offering to buy $1 million worth of product if a certain feature
can be delivered in a short timeframe. If that particular feature
had been a low-priority feature or did not exist on the product
backlog, it would have to replace a feature that had been high-

priority. Therefore, the product of a Meta-Scrum meeting may
be a list of actions that need to be taken in order to take
advantage of the reported opportunity. The resulting tasks may
include notifying customers who were expecting the high-
priority feature in a certain release of the new timetable,
estimating the tasks required, extracting related items from the
product backlog at the next planning meeting, and possibly
starting requirements work immediately, thus causing premature

termination for some teams. Premature termination involves
breaking links that had previously formed in favor of forming
new and potentially more valuable links related to the new
information, one of the many parallels between Scrum,
Alexandrian life and weak links to be explored in the next
section.

5. WEAK LINKS AND ALEXANDRIAN

LIFE IN SCRUM
Note: Where weak link concepts appear, they are formatted in

bold.

This section looks at Scrum from a weak links perspective,
seeking evidence of Alexandrian life and the stabilizing
characteristics of small worldness, nestedness, and scale-
freeness. It identifies and considers the purpose of motifs and
modules in Scrum’s practices, structures, and artifacts,
examining each in terms of its contribution to the stability of a
highly functional Scrum implementation.

5.1 Sprints
Scrum defines its dynamic structure in terms of the Sprint,
which opens with planning and estimating meetings, closes with
a demo and retrospective, and allows execution to take place

within the boundaries these meetings impose. Each Sprint that
reprises this structure over an equivalent time scale is a temporal

module with a strong center that echoes its neighbors with

alternating repetition. The strength of the center should
increase as the team matures in terms of its ability to self-
organize around the Sprint goal, deliver a production-quality
increment as the Sprint’s output, and improve its performance in
the next sprint.

Figure 18 illustrates a motif echoed by every Sprint. The
execution node is represented in the diagram by the star (with its
points representing closely collaborating team members and its
center capturing their shared links to information and tasks).
The left side of the star denotes input, with one element
representing what is taken from the product backlog and the
other signifying the estimates of how much time that work will
take. The right side denotes output from the Sprint, with one
element symbolizing what was put onto the product backlog as a
result of the demo and retrospective and the other corresponding
to the realization of the Sprint goal. The top elements represent

each team’s Scrum Master, who acts as the contrasting

boundary between the team and the organization, removing
impediments, bringing external resources close enough that the
teams can take advantage of those resources, and channeling
information from outside the team as required.

Figure 18 Sprint Motif for 3 teams using Scrum Type A

This figure looks very much like Scrum Type A in Figure 16.
There are spaces between the Sprints during which teams

prepare for the next Sprint. Alexander identifies not-

separateness and good shape as characteristics of life, which

suggests that Scrum Type A is not the final goal of organizations
adopting Scrum. It seems to be a stop-gap implementation that
allows the team to discover how they can reinforce each Sprint’s

strong center by adjusting their commitments to the Sprint

length, adapt to its boundaries by strengthening their
community’s communication and feedback skills, and

acclimatize to the cyclical rhythm Alexander calls alternating

repetition. To the extent that the organization has adapted to
Scrum, they will develop a greater sense of wholeness by filling
the gaps and overlapping the Sprints in such a way that the

levels of scale corresponding to Scrum Type C emerge, as
illustrated in Figure 19. Note that even the smallest Sprints

exhibit the same Sprint motif.

Figure 19 Scrum Type C Motifs and Levels of Scale in a 3-

month release, 1-month patch, and 1-week bug fix

When the increment to be delivered requires a number of teams
to work on the same product simultaneously, Scrum
recommends a Scrum of Scrums approach, whereby each Scrum
Master meets with the other teams’ Scrum Masters to
synchronize their teams’ efforts. From these meetings, each
Scrum Master can gain information that affects the team they
serve, report it to the team, and determine with the team what
impact that information will have on their ability to meet the
Sprint goal. Based on their decision, the Scrum Master may
call a meeting with the Product Owner to terminate the Sprint,
or the team may redesign the work to meet the Sprint goal.

The Scrum of Scrums might be represesnted as shown in Figure
20. Note that its purpose is to provide the backbone for the

integrated teams or modules to communicate with each other.
Note also that the Scrum of Scrums does not effect top-down

parcellation to modularize the teams for control, but is

integrative, bringing each team’s progress into the top-level

network for coordination through dissemination of information
across the whole system.

Figure 20 Scrum of Scrums with Scrum Teams

Because the team can self-organize according to its distribution
of skills, the center of each star can adapt to the resources
available, the complexity of the problem, and the level of stress

as needed. Figure 13 is reproduced in Figure 21 to remind the
reader that in the absence of stress, with a full complement of

resources and a relatively simple problem, a random network
organization will prevail. This might correspond to a team with
highly overlapping skillsets such that any team member has the
skills and information to undertake any task, thus avoiding all
bottlenecks. It might also correspond to a new team within
which the team members do not know the distribution of skills.
As specialization within the team or complexity of the tasks

increases stress, or if the team becomes smaller, scale-freeness

and small worldness might emerge to take advantage of those in
the group with specialized skills required by multiple tasks.
Because of clustering, this arrangement may allow several
concurrent tasks to take advantage of the same resource so that
the team becomes more productive. With greater stress,

modularity helps to make a large, complex problem more
manageable and still takes advantage of the signal-propagation

speed and synchronizability benefits of scale-freeness. As
Sprint goals change across time, Scrum teams may modify their
communication patterns to optimize the resources available
against the work required, causing phase changes among the
network topologies.

Figure 21 Network Topologies [1, p. 75]

In those methodologies where unrealistic dates are imposed on
the team, the higher level of stress might cause the team to adopt
a star configuration, possibly calling for a “hero” to emerge and
save the day. If the hero fails, then the project might decompose
into subunits, resulting in the finger-pointing that often
accompanies failed projects.

To avoid this situation, the team must understand the Product
Owner’s expectations well enough to make a valid commitment

leading to positive space and good shape. The abililty of the
team to commit to a reasonable workload during the course of a
Sprint is dependent on the quality of the product backlog. If the
product backlog has only items that exceed the team’s ability to
deliver within a single Sprint or Priority 1 items, they will fall
into the same trap as non-Scrum teams. Thus, the quality of the
planning that goes into the product backlog and the distribution

of attributes (levels of scale and scale-freeness) across the
product backlog constrain the Alexandrian life of the Sprint.

5.2 Product Backlog and Planning
The product backlog captures the work required to realize the
Product Owner’s vision of the product. Thus, it contains large-
grained items that have been envisioned but are too far in the

future to describe in detail, medium-grained items that should be
delivered within the next 6 months to a year, and smaller items
that are visible in high relief due to the immediacy of the need
for them or their importance to a smooth-functioning
organization. These levels of detail correspond to the

nestedness of the product, its releases, and the increments

delivered in each Sprint, thereby contributing to the modularity
of both the representation of the work in the product backlog
and the work itself as implemented in the Sprints.

Scrum software development teams within traditional
organizations often suffer due to the standard budgeting cycle,
which depends on commitments to highly speculative estimates.
Therefore, Scrum teams function best in an environment that
integrates input from all perspectives, including marketing,
sales, IT, and corporate executives into the planning process. In
this type of an organization, the executive team operates on the
Sprint schedule as well, as described by the Meta-Scrum flow in
Figure 17. The executive team members accept emerging
business and market conditions, along with process and
technical competency as input into their Meta-Scrum meetings,
and update the product backlog by adding new items,
eliminating obsolete items, consolidating some items, and
breaking others into smaller elements. The revised product
backlog produced as output from these meetings is presented to
the teams at the next Sprint planning meeting, and the teams
commit to the highest priority items they can deliver. Note that
in Figure 22, the Scrum Master facilitates the Sprint Planning
meeting but does not interpret the product backlog for the team.

Thus, the modularity supported by the Scrum Master interface
that facilitates execution during the actual Sprint turns into

small worldness between the team and the organization again

during Sprint planning and Sprint review, reflecting alternating

repetition and another example of echoes.

Figure 22 Sprint Planning Meeting with Product Backlog

Updated by Meta-Scrum

As illustrated in Figure 15, Scrum requires a planning meeting
before the start of each iteration so that the team can commit to
delivering the highest priority items from the product backlog.
These meetings may serve the same function as Escher’s

signature in that they allow the boundary between the product
backlog items and the team’s fine-grained tasks for realizing
those items to be negotiated rather than assumed. Planning
meetings provide a venue for links to information, activities,
people and goals to be created, shuffled, or modified in response
to forces that have arisen since the last planning meeting or in
response to improved understanding of the organization’s needs.

These links are the source of deep interlock and ambiguity
across both time and space. In the space dimension, the links

serve as shortcuts that bind the team module and the

organizational modules the stakeholders represent. The nesting
between the team and the rest of the organization will be
discussed further in the Scrum Structure section. In the time
dimension, the links are the long-range relationships between
the vision captured in the product backlog and the tasks the team

will perform during the next Sprint. The nesting between the

product backlog and Sprint backlog fosters levels of scale across
the team’s delivery horizon, the immediacy of the organization’s
need, and the clarity of the organization’s perception of its
needs.

In addition to selecting items from the product backlog into the
Sprint backlog at the planning meeting, the team and product
owner select a Sprint goal that reflects the reason for building
the chosen work. This goal represents the meaning or
significance to the organization of the production-ready software
that the team has committed to delivering during the Sprint. The
Sprint goal is one of several sub-goals that must be met in order
to deliver the value reflected in the overarching release goal.
The release goal itself reflects larger product goals, which in
turn reflect business strategies for the entire organization. Thus,
the goals developed at planning meetings provide a further

reflection of nestedness and multiple levels of scale. They also
allow the team to commit at the goal level, which avoids
premature commitment to specific deliverables and allows the

team to redesign as needed during the sprint. Weakly linking
deliverables and goals is desirable because the same goal can be
reached through multiple design paths, and the team and
Product Owner should be free to negotiate the most appropriate
path, given the priorities, time and skillsets available within the
Sprint. This ability to redesign or renegotiate what a goal entails
dissipates perturbations due to new knowledge, missed
dependencies, misunderstandings, etc.

The finest-grained planning takes place within the daily Scrum
meetings, within which each team member commits to the day’s
work. Once again, the team members can reshuffle the strength
of their links so that someone who was working independently
may volunteer to form a stronger link with someone who needs
help. An observer who expects rigid adherence to the plan may

interpret this “deviation” as roughness, but it is evidence of
judgment being applied to maximize value delivery in the
context of .Scrum Structure.

5.3 Scrum Structure
Within the team, members pass information and make decisions
with a high degree of clustering, while the Scrum Master
removes barriers that keep them from accessing sources of
information external to the team. James Coplien [46] studied
communication patterns across many projects in large
telecommunications organizations and found several
characteristic patterns. These patterns bear a striking
resemblance to those that show small worlds and random
networks, as illustrated in Figure 23 and 24. Cain and Coplien
used these words to describe their findings [46]:

In a mature process, one that has evolved over a
decade in a relatively constant domain, load
balancing takes place. Information flow is broadly
distributed across process roles (Figure 23). The
network of communication between roles is not
fully distributed, but the total distance between two

roles is rarely more than two hops, and there is a
good mapping between direct, strong coupling and
‘‘need-to-know’’ relationships. We also know that
these processes have largely distributed decision-
making loci and are not centrally orchestrated. In
fact, the Manager role in these processes is usually
at the outer edge, with tighter coupling to resource
organizations (e.g., the computer center) than to the
principals in the process! There is likewise no
centralized decision making in a ‘‘mess,’’ and
managers are likewise at the periphery of the
process. However, a ‘‘mess’’ process tends to be a
more fully connected graph than a ‘‘mature’’
process, indicating that the communication
overhead on each role is unfocused and intense.
(Figure 24)

Figure 23 A Mature Process

Figure 24 A Messy Process

Note that the mature process in Figure 23, which is found in

product-oriented groups, closely resembles Figure 21’s scale-

free network topology, while Figure 24, which is found in more

service-oriented groups, resembles its random network with
unfocused and intense communications requiring a great
expenditure of energy and resources. This is consistent with
findings that the highest and lowest socioeconomic classes, and
social networks under stress do not exhibit scale-free
relationships – they tend to interact only with those like
themselves. [47, 48] These are very small networks, so these
ideas are not conclusive, but the phenomenon warrants attention
to determine whether or not weak links are at work here.

Scrum capitalizes on both of Coplien’s structures as it moves
from Scrum A to Scrum B to Scrum C. When Scrum A is
implemented in an organization, the team self-organizes around
tasks from all the disciplines involved in creating an increment
of production-quality software. Scrum B separates out the
requirements-gathering tasks into their own sprint or module, as
preparation for the development tasks that dominate the
implementation sprint – analysts participate in the latter, but
their activities dominate in the preparatory sprint. This type of
modularization resembles parcellation or top-down
modularization. In Scrum C, the number of simultaneous

sprints supported by a single individual increases, and modules
corresponding to groups of tasks from each of the simultaneous
sprints integrate into each individual’s daily schedule, reflecting

the weekly, monthly, and quarterly sprint modules. This

becomes visible as levels of scale that echo each other in the
backlogs and each team member’s daily schedule.

Regardless of the organization’s implementation of Scrum,
deformations appear within all Scrum teams as team members
encounter tasks that require skills beyond their own or schedules
that preclude a particular design decision. Under these
conditions, Scrum encourages disclosure of the need at the
team’s daily Scrum meetings so that multi-disciplinary members
can volunteer assistance or information to each other and avoid
bottlenecks. When the team unexpectedly encounters a task that
requires skill beyond all of its members, the Scrum Master’s job
is to find someone with that skill to train or mentor the team.
This extends the team’s access to skills and solutions via the
Scrum Master’s shortcut. In nature, these frequent short
searches interspersed with less frequent intermediate searches
and rare searches of distant locations are called Levy flights.
The behavior is characteristic of ants, bumble bees, deers,
jackals, and monkeys looking for food because it balances cost-
efficiency with novel search locations that ensure energy is not
spent duplicating previous searches [1].

If no solution can be found within the team, the Scrum Master
notifies the Product Owner of the problem, and the stress is
removed by redesign, postponement of the item to a later sprint,
or premature termination of the sprint. Though termination is
extreme, it dissipates stress on the team, allowing it to regain its
former state and regroup for the next Sprint.

Because the Scrum Master acts as a buffer between the team and
the rest of the organization, dissipating the impact of external
perturbations, the role often entails managing promises made by
the Product Owner and the rest of the organization. As such, the

Scrum Master and Product Owner roles provide contrast and

boundaries around their constituents. They also support deep

interlock and ambiguity but this feature will be discussed in
greater detail below because it is so profoundly embedded in
Scrum’s practices, artifacts, and structure.

5.4 Deliverables
Within each Sprint, the team produces an increment of
production-quality code having strong links inside the increment
and weaker links between preceding and succeeding increments.
It generally takes several Sprints before the increments are

released to production, which leads to the nesting of several
increments inside each release, and multiple releases
constituting the complete product. In terms of Alexandrian life,

products built by Scrum teams exhibit levels of scale (in-process
work within the Sprint, Sprint increment, release, product),
strong centers that include working code and whatever else is

required to meet the team’s doneness criteria, and gradients of
product completion that expand over time in the production
environment. Because Scrum does not specify engineering
practices, it is difficult to predict which characteristics of weak
links or Alexandrian life will be exhibited by its output, but one
might expect the product to mirror the process that produced it.

Following Conway’s law, a highly functional Scrum team
applying the agile values of communication and feedback should
produce high-quality software for deployment into the
production environment. Applying the simplicity value of
extreme programming to an object-oriented paradigm should

produce objects with strong centers and boundaries that echo
the team’s accepted class hierarchy or patterns of composition.
Simplicity requires producing only the objects or components
needed to meet the customer’s needs as expressed in their
acceptance tests, meaning that the software, its users, and its

environment should exhibit positive space and not-separateness

when all increments have been delivered. Interfaces are always
a challenge when multiple teams must connect their work
products to each other or to existing systems, forcing the team to
validate assumptions as tests that connect to test systems or
simulated systems with analogous interfaces. Once built, the
adapters or components that allow these tests to pass exhibit

contrast such that the boundary or interface between the systems

on either side becomes a strong center in itself, suggesting that
creating interface subteams or cross-team pairs would be an

appropriate practice at the product boundaries. While time

constraints may sometimes force the team to accept roughness

due to technical debt, refactoring should produce good shape
before the end-of-Sprint demo.

5.5 Demo and Retrospective
Like its planning meeting, Scrum’s defined closure activities
provide opportunities to break links between iterations
deliberately, thereby dissipating perturbations due to forces such
as schedule slippage, revised priorities, or externally imposed
constraints. Also like the planning meeting, the demo and
retrospective provide an opportunity to connect with
stakeholders, goals, and relevant information from outside the
team. While the demo examines the product from the
perspective of the stakeholders’ needs, the retrospective
examines the process with the goal of providing the team with
the opportunity to continuously improve their ability to deliver.

Once the team demonstrates its “production-ready” software, the
customer can choose to break with the release schedule in order
to take advantage of unanticipated value inherent in the features

already created by the team. Weak links between value and
schedule allow the organization to prioritize pending work
based on the anticipated release schedule, but capitalize on
emergent utility when an unscheduled release needs to be

arranged. This may lead to roughness when the release
landscape is observed, but the newly generated value may lead

to a greater harmony or not-separateness among the
organization, the team, and the delivered system.

Within the team, the retrospective provides an opportunity to
link the execution and outcome of the Sprint with lessons to be
applied in future Sprints. Regular examination enables the

identification of motifs or echoes that support success or failure.
The latter can be used as warning signs that trouble may be
ahead, prompting vigilance even if the connection cannot be
articulated explicitly. As mentioned in Section 5.1, regular

retrospectives provide alternating repetition of experiences
designed to strengthen the team members’ links to each other by
encouraging team-building, validating each other’s perceptions,
and acknowledging contributions made by team members who
play a supporting but critical role in the team’s success. Like
the watercarrier, who did not hold a position of designated
power but delivered the water essential to the tribe’s survival,
these team members are cited for exemplifying “the essential
nature of all jobs, our interdependence, the identity of ownership
and participation, the servanthood of leadership, the authenticity
of each individual” [49, p. 62]. Their example teaches new
members about Scrum’s culture by demonstrating awareness,
listening, healing, empathy, and commitment to the growth of
others. Retrospectives also provide a time to celebrate
successes, grieve fatal perturbations that destroy the team’s giant
component, and recognize members’ skill advancement. These

contrasting boundaries become strong centers themselves as

they evoke not-separateness between Sprints by interlocking
past experience with commitments to the future and generating

new insights that open pathways to greater capability – deep

interlock and ambiguity.

6. DEEP INTERLOCK AND AMBIGUITY
Deep interlock and ambiguity abound in Scrum to an extent
that is unique among software development methodologies. The

weak link characteristics of nestedness, motifs, and modularity
are part of many software development methodologies –
consider the standard phases of requirements gathering, analysis,
design, coding, testing, and operations, where each provides
input to the next, and every project replicates the motif. What
makes Scrum stand out is the frequency of opportunities to
create weak links, the variability of the link lengths created
during those opportunities, and the breadth of dimensions across

which those links extend. Deep interlock and ambiguity in the

boundaries between strong centers or modules comprising
goals, information, activities, and groups of people with
different perspectives at different levels of the hierarchy give

highly functional Scrum implementations a sense of not-

separateness from their organizational context, their history,
their output, and their core attributes.

Among Scrum’s core attributes are visibility, inspection and
adaptation, all of which foster the development of shortcuts

between the business and the Scrum team. These core attributes
find expression in Scrum’s frequent opportunities for creating
links or restructuring existing links of varying strengths, lengths,
and duration, including:

� planning meetings where the Product Owner presents
stakeholders’ priorities in the form of the product backlog
to the team
o links with business and external stakeholders to

negotiate the highest value that can be delivered in the
next Sprint

o links to the nested business goals reflected in the
product backlog from which the Sprint goal will be
drawn

o strong links to Sprint goal negotiated with
stakeholders

o parcellation of product backlog items into Sprint
backlog items and tasks (modularization)

o links to history or analogous projects to determine
estimates for tasks

o selective formation of links between members and
tasks via self-organization

� daily Scrum meetings where the team synchronizes its
members’ activities in the presence of all interested
stakeholders
o shortcuts to the Sprint backlog when reporting

progress and committing to next day’s activities
o shortcuts from outside the team to the team’s work for

monitoring progress
o emergent links to teammates whose impediments can

be removed by team members
o commissioning of Scrum Master to remove newly-

identified obstacles by linking to non-team members
o emergent links from team to Product Owner via Scrum

Master when the Sprint goal is in jeopardy so that the
team’s options can be discussed

� demos where the team re-engages with its stakeholders to
connect its current increment to the future they envision
o shortcuts to business and external stakeholders when

determining the correspondence betwee the delivered
increment and the Sprint and release goals

o breaking of links to requested features that do not
represent progress toward product vision

o formation of links to new features suggested by the
product’s current state

o destruction of links between product backlog and
schedule when accrued value warrants disruption of
the schedule

� retrospectives where team members recommit to
continuous improvement and to the team as a community
o reflective links with the activities and events of the

past Sprint with the purpose of evaluating their value
and impact

o feed-forward loops with experiments designed by the
team to improve its process

o rites and ritual activities that link each Sprint to its
predecessors and provide closure to the team

� Scrum Master’s transient strong links to stakeholders who
can remove team’s impediments by providing needed
resources, information, privileges, etc.

� Product Owner’s spectrum of link strengths and lengths to
other stakeholders whose needs must be reflected in the
product backlog

� information radiators that foster osmotic communication
with anyone passing by, regardless of their involvement
with the project

� engineering practices featuring
o small releases – 2-6 weeks to production-ready code

to accommodate varying link strengths to item priority
o simple design – no premature generalization to avoid

strong links to an over-engineered solution
o refactoring – evolutionary tinkering to break links

with worthless code and add or abstract what’s needed
o continuous integration – surfacing integration issues

immediately to allow creation, repair and dissolution
of links between components

o customer acceptance tests – test-driven requirements
to create strong links between strong business centers
and the boundaries of components that support them

o test-driven development – tests written before code to
allow link evolution (ambiguity) inside the boundary
defined by the tests but remain connected to the
original purpose (deep interlock) on the outside

o coding standards – team-defined standards for naming,
configuration control, design, etc. to support weakly
linked motifs/echoes in both process and deliverables
from past, current, and future releases

o whole team – customer, QA, architecture, developers,
BAs, as needed to support real-time formation and
dissolution of information and interpersonal links

o sustainable pace – workweek defined by the team to
meet corporate standards and foster viable links to co-
workers, information, and output, as well as to family
and community

7. IMPLICATIONS
Because Scrum offers so many opportunities for deep interlock
and ambiguity, unsuccessful Scrum teams may find themselves
starting their search for process improvement at these
boundaries. Investigation may identify lack of stakeholder
participation from a scale-free distribution of distances up the
organizational hierarchy (one executive sponsor and many
subject matter experts), or periods of stakeholder engagement
with the team (many short engagements with a few long
engagements). Although support for executive involvement has
always been identified as a success factor, the analogies with
weak links may provide new models for justifying that support
and possibly new ways to compensate for a lack thereof. The
improvement of success rates in the Standish CHAOS reports
from 1994 to 2004 were partially attributed to agile
requirements process [50], which may be more rigorously
defined using notions of scale-free distributions, small worlds,
and modularity. The emphasis on clean interfaces between
modules may be re-examined in light of Alexander’s notion of
contrast and boundaries appropriate to the size of the strong
centers they encapsulate, possibly causing an evolution to
“smart boundaries” for both teams and the software they build.
The purpose of this paper was to raise awareness of the
relationships among weak links, Alexandrian life and Scrum so
that interested parties could construct new ways of improving
their Scrum implementations and share their results with the

community. As an example, process improvements may be

more effective if they enhance deep interlock and ambiguity
where ambiguity refers to augmenting the organization or team’s
choices relative to optimizing its resources for the current
context. The enhancement mechanisms may become the process
design patterns of future Scrum teams. Enhancing deep
interlock may provide scale-free access to all affected parties so
that the entire system reacts synchronously, giving rise to a
whole new branch of organizational patterns or a deeper
understanding of existing ones. These are just two ideas, meant
to seed the field of possibilities for a new community of
discourse around these topics.

8. CONCLUSIONS
This paper has illustrated key aspects of weak links, examining
Scrum in terms of those aspects and suggesting that they express
themselves as characteristics of Christopher Alexander’s life.
This section is not intended to be a conclusion but an invitation
to further investigations in this area, with the ultimate goal of
redefining what makes an effective software development
process in the context of the socio-economic system it supports.
Scrum supporters have said for years that their process has its
practical basis in empirical process control but is informed by
such abstract theoretical disciplines as artificial life and complex
adaptive systems. Its success may rest, however, not in its
similarity to these areas, but in a shared ancestor grounded in
weak links. Mining other disciplines for diagnostic and
measurement techniques may provide agile software
development, and Scrum in particular, with a completely new
set of metrics that generate far greater insight into the
connections between IT, management, and business than
anything currently defined.

9. ACKNOWLEDGMENTS
This paper would not have been possible without the steadfast
encouragement and judicious counsel of my shepherd and
mentor, Linda Rising. The valuable criticism of Takashi Abi,
Miguel Carvalhais, Christian Crumlish, Christian Kohls, Kathy
Larson, Ricardo Lopez, Mary Lynn Manns,Lubor Sesera, Fran
Trees, Steve Wingo, all reviewers at PLoP’08 in Nashville, TN,
reshaped the paper and led to valuable insights that had
previously escaped the author. Finally, I owe a great debt of
gratitude to Curt McNamara and his IEEE systems book club in
the Twin Cities, which led to my discovery of weak links in the
first place. Because the entire paper was rewritten based on
PLoP feedback, any errors or omissions are solely the
responsibility of the author.

10. REFERENCES
[1] Csermely, P. 2006. Weak Links: Stabilizers of Complex

Systems from Proteins to Social Networks. Springer
Frontiers Collection, New York, NY.

[2] Beedle, M. and Schwaber, K. 2001. Agile Software

Development with Scrum. Prentice Hall, Upper Saddle
River, NJ.

[3] Sutherland, J. Agile Project Management With SCRUM:
Theory and Practice. Presented at OTUG Twin Cities on
June 3, 2005. Also at:
http://jeffsutherland.com/papers/OTUG2003/Scrum_Theor
y_files/v3_document.htm. Retrieved 7/19/2008.

[4] Alexander, C. 2001. The Phenomenon of Life: The Nature

of Order, Book 1. Oxford University Press. New York,
NY.

[5] Trifork A/S.
http://www.trifork.com/default.asp?Action=Details&Item=
17. Retrieved 12/15/2008

[6] Smith, M., Kulkarni, S. and Pawson, T. FF domains of
CA150 bind transcription and splicing factors through
multiple weak interactions. Molecular and Cellular

Biology, 24, (Nov 2004), 9274-9285.

[7] Swanson, K., Kang, R., Stamenova, S., Hicke, L. and
Radhakrishnan, I. Solution structure of Vps27 UIM-
ubiquitin complex important for endosomal sorting and
receptor downregulation. EMBO Journal, 22 (Sep. 15
2003), 4597-4606.

[8] Granovetter, M. The Strength of Weak Ties. American

Journal of Sociology, 78, 6, (May 1973), 1360-1380.

[9] Sole, R., Ferrer Cancho, R., Montoya, J. and Valverde, S.
Selection, tinkering and emergence in complex networks.
Complexity, 8, (Jan 21 2003), 20-33.

[10] Barabási, A. and Albert, R. Emergence of scaling in
random networks, Science, 286, (Oct. 15 1999). 509-512.

[11] Berlow, E. L. Strong Effects of Weak Interactions in
Ecological Communities in Nature. 422, (Mar 29 1999),
633-637.

[12] Coplien, J. and Harrison, N. 2004. Organizational Patterns

of Agile Software Development), Addison-Wesley, Boston,
MA.

[13] Weinberg, G. 1998. The Psychology of Computer
Programming. Dorset House, New York, NY.

[14] Cockburn, A. Good Old Advice, CrossTalk: The Journal of

Defense Software Engineering. 21, 8, (Aug 2008), 7-10.

[15] Guare, J. 19 90.Six Degrees of Separation: A Play Vintage
Books, New York, NY.

[16] Pareto, V. The New Theories of Economics, Journal of

Political Economics, vol. 5, (1897), 485-502.

[17] Buschmann, F., Henney, K., and Schmidt, D. 2007. Pattern

Oriented Software Architecture Volume 5: On Patterns and

Pattern Languages. John Wiley & Sons, Hoboken, NJ.

[18] Alexander, C. 2004. Process of Creating Life: The Nature

of Order, Book 2. Oxford University Press. New York,
NY.

[19] Alexander, C. 2005. Vision of a Living World: The Nature

of Order, Book 3. Oxford University Press. New York,
NY.

[20] Alexander, C. 2004. The Luminous Ground: The Nature

of Order, Book 4. Oxford University Press. New York,
NY.

[21] Watts, D.; Strogatz, S. Collective dynamics of 'small-
world' networks. Nature, 393, 6684 (June 4 1998), 409–10.
Also at http://www.sociology.columbia.edu/pdf-
files/watts08.pdf Retrieved 7/14/2008.

[22] Cockburn, A. 2001. Agile Software Development (The
Agile Software Development Series) Addison-Wesley
Professional. Boston, MA.

[23] Conway, M. How do Committees Invent, Datamation, 14,
5, (April, 1968), 28-31. Also at:
http://www.melconway.com/research/committees.html.
Retrieved 11/30/2008.

[24] Whitinger, D. Survivors! (June 18, 2008) Trees and plants
that will remain after the storm passes. At:
http://davesgarden.com/guides/articles/view/1268/.
Retrieved 11/30/2008.

[25] Sanderson, B. A pattern seen at Alhambra, Spain. in Dror
Bar-Natan’s Image Gallery at
http://www.math.toronto.edu/~drorbn/Gallery/Symmetry/Ti
lings/333/Alhambra.html. Retrieved 8/11/2008.

[26] Google Maps. Satellite view of the Renaissance Center in
Detroit. http://maps.google.com/maps?hl=en&tab=wl,
Renaissance Center, Detroit, MI. Retrieved 8/11/2008.

[27] Sole, R., Ferrer Cancho, R., Montoya, J. and Valverde, S.
Selection, tinkering and emergence in complex networks.
Complexity, 8, 1, (Jan 21 2003) 20-33.

[28] Hofstadter, D. 1979. Gödel, Escher and Bach: an Eternal

Golden Braid, Vintage Books, New York: Random House,
Inc.

[29] Gerten-Jackson, C.
http://sunsite.icm.edu.pl/cjackson/escher/p-escher13.htm.
Retrieved 12/15/2008.

[30] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1994.
Design Patterns: Elements of Reusable Object-Oriented

Software (Addison-Wesley Professional Computing
Series), Addison-Wesley, Boston, MA.

[31] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. 1996. Pattern-Oriented Software Architecture

Volume 1: A System of Patterns. John Wiley & Sons,
Hoboken, NJ.

[32] Fowler, M. 2002. Patterns of Enterprise Application

Architecture. Addison-Wesley Professional Series. Boston,
MA.

[33] Myers, C. 2003. Software systems as complex networks:
Structure, function, and evolvability of software
collaboration graphs. Physical Review E, 68, 046116

[34] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N.,
Chklovskii, D., Alon, U. Network Motifs: Simple Building
Blocks of Complex Networks. Science, 298, 5594,
(October 25 2002) 824 – 827.

[35] Alexander, C., Alexander, M., Schmidt, R., Littlestone, N.
Behrman, B., and Davis, H. Alberobello, Italy.
http://www.livingneighborhoods.org/ht-0/fifteen.htm.
courtesy of natureoforder.com. Retrieved 11/30/2008.

[36] Brad2512. Tower of the Wild Goose, Hunan Province,
China. Posted by Brad2512 to the Photo section of
http://www.travelpod.com.
http://images.travelpod.com/users/brad2512/1.1210868160.
big-wild-goose-pagoda.jpg

[37] Center for Models of Life, Neils Bohr Institute. Self-
Assembling of Information in Networks. Created using
demo at http://cmol.nbi.dk/models/infoflow/infoflow.html .
Retrieved 12/1/2008.

[38] Derenyi, I., Farkas, I., Palla, G. and Viscek, T. Topological
phase transitions of random networks. Physica A. 334, 3,
(Mar 15 2004), 583-590.

[39] Palla, G., Derenyi, I., Farkas, T. and Vicsek, T. Statistical
mechanics of topological phase transitions in networks.
Physics Review E. 69, 4 (Part 2), (April 2004), 046117.
DOI: 10.1103/PhysRevE.69.046117.

[40] Latora, V. and Marchiori, M. Economic small-world
behavior in weighted networks. The European Physical

Journal B – Condensed Matter and Complex Systems. 32,
2, (March 2003), 249-263.

[41] Fuller, B. 1975. Synergetics: Explorations in the Geometry

of Thinking. Scribner, New York, NY.

[42] Kerth, N. Retrospectives.com at:
http://www.retrospectives.com/. Retrieved 12/1/2008.

[43] Schwaber, K. Scrum Flow,
www.controlchaos.com/images/diagram/flow.gif .
Retrieved 12/1/2008.

[44] Sutherland, J. Future of Scrum: Support for Parallel
Pipelining of Sprints in Complex Projects. In Agile 2005

Proceedings and at:
http://jeffsutherland.com/Scrum/Sutherland2005FutureofSc
rum20050603.pdf. Retrieved 7/19/2008.

[45] Takeuchi, H. and Nonaka, I. The New New Product
Development Game, Harvard Business Review, 64, 1, (Jan-

Feb 1986), 137-146

[46] Cain, B. and Coplien, J. 1993. A Role-Based Empirical
Process Modeling Environment, Second International

Conference on the Software Process: Continuous Software

Process Improvement. 125-133.

[47] Granovetter, M. 1983. The Strength of Weak Ties: A
Network Theory Revisited. Sociological Theory, 1 202-
233.

[48] Killworth, P. and Bernard, R. 1978. The Reversal of the
Small-World Experiment? Social Networks,1, 159-192.

[49] DePree, M. 1992 Leadership Jazz. Dell Publishing, New
York, NY.

[50] The Standish Group International. 2003. Chaos
Chronicles.
http://www.standishgroup.com/chaos/introduction.pdf.
Retrieved 4/30/2004.

