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ABSTRACT 

This paper looks at the Scrum software development process 
through a lens that emphasizes small worldness, nestedness, and 
scale-freeness, all characteristic of networks that feature weak 
links between their modules.  Scrum has gained popularity over 
the past decade as a means of delivering valuable software to its 
host organization on a regular basis. Since weak links characterize 
natural and social systems at every scale, practitioners of Scrum 
should be able to improve their teams’ processes by applying 
lessons learned from studying weak links.  When practitioners 
look for weak links directly, they may find the task daunting and 
ask the question:  “How can I tell whether weak links are 
strengthening or weakening my team’s Scrum process if I can’t 
even find them?”     For the answer, this paper looks to 
Christopher Alexander’s characteristics of wholeness, integrity, or 

life – strong centers, levels of scale, echoes, alternating 

repetition, and, in particular, the characteristic called deep 

interlock and ambiguity -- which may correlate with the presence 
of weak links.   

Categories and Subject Descriptors 

K.6.3 Software Management -- Software development, Software 
process.  D.2.9 Management -- Programming teams.  D.2.8 
Metrics -- Process metrics 

General Terms 

Management, Measurement, Performance, Theory 

Keywords 

Scrum, patterns, Nature of Order, Christopher Alexander, weak 
links, life 

 

1. INTRODUCTION 
Imagine a world without jet engines, ecological systems, and the 
Internet, all casualties of eliminating the weak links [1] that 
characterize them.  Now, imagine a world without any living 
creatures – since weak links are also essential to life processes 
such as protein folding, cell repair, and protein-protein 
interactions [1].  Given their importance to life on this planet, an 
examination of weak links in the activities, structure and artifacts 
of the software development process represents an exciting 
opportunity.  This paper explores the Scrum [2, 3] software 
development process in terms of stabilization by weak links and 
suggests a relationship between them and Christopher 

Alexander’s concept of wholeness, integrity, or life [4].  Scrum 
was chosen because its perceived successes have motivated over 
15,000 people across the globe to seek certification as Scrum 
Masters (the leaders of Scrum teams) [5]. The goal of this 
investigation is to seek out the weak link-related factors behind 
Scrum’s appeal and suggest new areas of exploration for process 
improvement.  

These new areas of exploration involve small worldness, 
nestedness, and scale-freeness, all characteristic of networks that 
feature weak links (see the Glossary in a Box on the next page).  
If stabilization by weak links is at least partially responsible for 
Scrum’s success, it should prescribe practices, structures, and 
artifacts that exhibit these attributes, showing that weak links have 
emerged to help stabilize the software development process.  The 
attributes may show up in the way Scrum decomposes the work 
required to develop a system, the communication processes Scrum 
prescribes to keep stakeholders engaged, or the structures Scrum 
specifies for adapting to disruptions of the development process.  

Furthermore, if life indicates that weak links are stabilizing 
Scrum, then both its processes and their resulting products should 
exhibit the characteristics Christopher Alexander associates with 

life.  Efforts to improve the process should then focus on 
intensifying the evidence of life by altering the distribution of link 
lengths and strengths.  

In the book Weak Links: Stabilizers of Complex Systems from 

Proteins to Social Networks [1], author Peter Csermely develops a 
compelling case for the view that weak links in and around 
complex systems exert a stabilizing effect. Numerous diverse 
disciplines have examined weak links, studying their role in 
atomic, molecular, and macromolecular interactions [6, 7], 
interactions in social situations [8], software system architectures 
[9], and links among web pages [10].  While previous researchers 
had observed weak links, it was Csermely who speculated on their 
universal role in system stabilization.  Because every complex 
system is a network capable of weak link stabilization, software 
development should be no exception.   
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The pages that follow present key concepts common to weak links 
and Alexander’s phenomenon of life and shows how they are 
exemplified in Scrum.  

In very simple systems, there are no weak links because weak 
links between elements emerge due to interactions among 
interactions.  Simple systems have only one set of interactions – 
all of them strong links, so the removal of any link will likely 
destroy the system.  In contrast, removing a weak link often has 
little impact on the system in the short run because, by definition, 
“a link of a network is weak if its addition or removal does not 
change the mean value of a target measure, which is usually an 
emergent property of the network, in a statistically discernible 
way” [11].  Forgetting a birthday card can have huge 
repercussions if the forgetful party is a close friend or spouse, but 
the lack of a card from a distant relative has virtually no impact.  

As an example of weak links from software development, team 
productivity is often measured by metrics such as lines of code, 
function points, or story points per iteration.  Productivity, as 
measured by these metrics, may not suffer much if a water cooler 
is removed (see the Water Cooler organizational pattern [12]), but 
the effectiveness of the software delivered may suffer over an 
extended period of time because of the team’s losing touch with 
people and information from other domains.  A story reported by 
Gerald Weinberg [13] and cited by Alistair Cockburn [14] 
illustrates this principle in a parallel context: 

 

[At] a large university computing center ... a large 
common space was provided near the return window 
so that the students and other users could work on 
their programming problems. In the adjoining room, 
the center provided a consulting service for difficult 
problems, staffed by two graduate assistants. At one 
end of the common room was a collection of vending 
machines ... the noise from the revelers congregating 
at the machines often became more than some of the 
workers could bear ... [The computing center 
manager] went to investigate their complaint ... 
Without more than 15 seconds of observation, he went 
back to his office and inaugurated action to have the 
machines removed to some remote spot. The week 
after the machines had been removed – and signs 
urging quiet had been posted all around – the manager 
received another delegation ... They had come to 
complain about the lack of consulting service; and, 
indeed, when he went to look for himself, he saw two 
long lines extending out of the consulting room into 
the common room. He spoke to the consultants to ask 
them why they were suddenly so slow in servicing 
their clients ... For some reason, they said, there were 
just a lot more people needing advice than there used 
to be ... After some time, he discovered the source of 
the problem. It was the vending machines! When the 
vending machines had been in the common room, a 
large crowd always hovered around them ... they were 
chatting about their programs. ... Since most of the 
student problems were similar, the chances were very 
high that they could find someone who knew what 
was wrong with their programs right there at the 
vending machines. Through this informal  

 

Glossary in a Box 
NOTE: Throughout this glossary, the assumption is made that 
any system (i.e., anything) can be viewed as a network. 

 

Small-worldness: a characteristic of networks whose nodes are 
not necessarily connected directly, but are generally no more than 
a few short or long hops from each other.  Small worlds benefit 
from both clustering and long-range connections.  The notion that 
virtually any two people in the world can be connected in no more 
than six hops [15, 8] is a commonly cited example of small-
worldness. 

 

 

Nestedness: the characteristic of a network that allows a given 
node to appear as a leaf from the top of the network, but as a 
whole network from its own perspective.  The typical corporate 
organization chart is a perfect example of nestedness because each 
box can represent either a single employee or the manager of a 
network of subordinates, some with additional nested managers. 

 

 

Scale-freeness: the characteristic of a network that allows it to 
have the same properties regardless of how large it grows. Many 
people are familiar with Pareto’s 80-20 rule whereby 20% of the 
people in a given economy are responsible for 80% of the wealth 
[16].  Regardless of how large the economy grows, the percentage 
remains the same because the majority of the money finds its way 
into the hands of the wealthiest 20%.  Hence, the distribution of 
wealth is scale-free. 

 

 

Weak Links: low-intensity connections or transient higher 
intensity connections between network elements.  In a stable 
network, they constitute one end of a spectrum of link strengths 
comprising a very few strong links and increasingly more 
numerous and less intense links. The social network “Linked In” 
is an example of weak links between professionals.  Generally, a 
member will not correspond with all the people in his/her 
network, but during a period of unemployment, messages may be 
sent to even the most distant acquaintances.   

 

 

Motif: small groups of network elements that characteristically 
appear together in specific linkage patterns; e.g., Alexander’s 
architectural patterns joining context, forces, and solution, feed-
forward loops, and feedback loops.  

 

 

Module: a group of relatively isolated network elements that are 
more functionally or physically linked to each other than they are 
to the rest of the system; e.g., code that implements an object, a 
car full of people in a traffic jam, or a team on a large project.  



organization, the formal consulting mechanism was 
shunted, and its load was reduced to a level it could 
reasonably handle.   

In this example, if the consultants were the only source of the 
knowledge required to solve the students’ problems, then the 
system would have been a simple system with a bottleneck.  
Because the knowledge could be constructed or obtained from 
others (whose identity was not known by the students but whose 
location might be inferred as the common area), the system is 
complex. Systems with only strong links are susceptible to 
disruption and even disintegration when disrupted by a  
disturbance because the perturbation cannot dissipate except by 
passing through the whole system or by breaking off an entire 
subsystem. In the example above, the long line that formed is a 
perturbation that slowed the students’ access to the consultants.  If 
all the students had given up on obtaining help because of the 
long lines, the consulting system would have disintegrated 
without further intervention.  If the students had formed their own 
study groups as an alternative to the consulting service, that 
would have been an example of breaking off an entire subsystem.   

In the grand scheme of complex systems, the student/consulting 
service story is a relatively simple example.  In contrast, the 
software development process forms a highly complex system 
comprising enterprise and project-level goals and plans, realized 
by team and individual collaborations throughout the system 
development lifecycle.  Given all of these interactions among 
interactions, one should be able to detect evidence of motifs, 
modules, small worldness, nestedness, and scale-freeness there.   

Christopher Alexander was able to recognize the characteristics of 
weak links in spatial systems from around the world [4].  His 
book, The Phenomenon of Life, explores a theory “in which 
statements about relative degree of harmony, or life, or wholeness 
– basic aspects of order – are understood as potentially true or 
false.”  Because his fifteen basic characteristics of life relate 
strongly to the properties associated with weak links and because 
they provide a visual representation of several abstract concepts 
related to weak links, they are helpful in drawing the distinctions 

presented in the subsequent Core Concepts section.   

Table 1 Characteristics of Life 

Christopher Alexander’s 15 characteristics of “Life” in spatial systems 

Levels of scale – the range of sizes that centers generally exhibit in 
a series of discrete, well-marked levels; a ratio of 20:1 between 
centers is too large; 2:1 or 3:1 is appropriate. 

Contrast – intense differentiation caused by the disparity between 
distinctly opposed centers whose boundary emerges as a center 
itself 

Strong Centers – wholes, existing at different levels of a structure, 
that capture the observer’s interest as individual focal points.  They  
are locally symmetrical and structurally complementary in relation 
to the whole system 

Gradients – the gradual variation of a quality across space as its 
centers adapt to changes in the morphology of the space they 
inhabit 

Boundaries – that which both unites the center being enclosed with 
the world around it and intensifies the identity of the center itself.  
Boundaries must be of the same order of magnitude as the centers 
they bound and must also interlock and connect with them. 

Roughness – subtle variation in a system’s property due to its being 
created or evolved in a non-mechanical, egoless way that allows the 
property to optimize itself to its immediate environment 

 

Alternating Repetition – rhythmic intensification of centers caused 
by wave-like repetition of two or more systems whose centers 
complement and enhance each other’s centers as well as their own. 

Echoes - deep internal similarities between the small centers and 
angled pieces of larger centers, which tie them together to form a 
single unity 

Positive Space – “when every bit of space swells outward, is 
substantial in itself and is never the leftover from an adjacent 
shape.” [4, p. 173] 

The Void - “In the most profound centers which have perfect 
wholeness, there is at the heart a void which is like water, infinite in 
depth, surrounded by and contrasted with the clutter of the stuff and 
fabric all around it.” [4, p. 222] 

Good Shape – a shape that comprises recursive compact coherent 
centers, each exhibiting the characteristics in this list 

Simplicity and Inner Calm – the slowness, majesty, and quietness 
inherent in structures that reveal only their essence, with no 
unnecessary appendages 

Local Symmetries – subtly interweaving small-scale symmetries 
that support organic, flexible adaptation to the system’s context by 
binding its centers into a coherent whole 

Not-separateness – when a center having deep life evokes a feeling 
of connectedness to what surrounds it and is not cut off, isolated, or 
separated 

Deep Interlock and Ambiguity – the  interface zone, both system and context, where centers hook into their surroundings 

 

Buschmann et al. in Pattern Oriented Software Architecture 

Volume 5: On Patterns and Pattern Languages [17, p. 380] 
stated that the fundamental properties of life are defined in a 
work (the four volumes of Nature of Order [4], [18], [19], [20]) 
whose “contributions will be primarily to support deepening of 
our understanding of pattern concepts such as pattern sequences 
and the notion of ‘centers’ in design.” While this may be true, its 

greater contribution may be to direct the pattern community’s 
gaze towards areas outside the existing focus of patterns.  It may 
be that the fundamental properties of life are actually symptoms 
or indicators of an order supported by weak links whose 
presence can be measured using methods borrowed or derived 
from those in other disciplines.  If so, then The Nature of Order 
may have made a far more profound contribution – bringing the 



process of software development into alignment with realities 
studied in other professions and expressed in nature.    

2. CORE CONCEPTS 
Note: Where Alexander’s characteristics appear, they are 

formatted in bold italics. 

2.1 Small-worldness  
The short definition of small-worldness is “a characteristic of 
networks whose nodes are not necessarily connected directly, 
but are generally no more than a few short or long hops from 
each other.”  While this definition suffices initially, it must be 
qualified to exclude random graphs, which are not small worlds 
but have elements that can reach each other with relative ease. 
The differentiator between the two is clustering, which enhances 
local searches.  Clusters are formed when neighboring nodes 
link not only to each other but to additional common nodes – a 
sort of “my friend’s friend is also my friend” phenomenon.   

 

Figure 1 Small-worldness in context [21] 

Figure 1, from a study by Watts and Strogatz [21], shows three 
types of networks: regular, small-world, and random.  Note that 
in the regular network, where breaking and reconnecting a link 
would always bring it back to the same node, every node is 
connected to its two nearest neighbors in each direction so that 
it can get to any of them very efficiently, giving it a high 
clustering coefficient.  Random networks, on the other hand, 
where the probability (p) of a disconnected node being 
reconnected somewhere else is 1, may reach nodes on the far 
edge of the circle quite easily, giving a short characteristic path 
length, but they lack the high clustering coefficient. Watts and 
Strogatz found that intermediate values of p characterized 
structures that benefit from the clustering of regular graphs and 
from the shortcuts of random graphs, giving them the enhanced 
signal-propagation speed, computational power, and 
synchronizability that distinguish small worlds.  Just a few 
shortcuts in a system with a large number of nodes enables a 
small path length without disturbing the clustering of the pre-
existing neighbors because each shortcut connects not only the 
affected node, but its entire neighborhood to the far side of the 
network. 

 

An example in the real world is a person needing an answer to a 
question, as shown in Figure 2.  The information might link 
strongly to one document because the author was a consultant 
(who may still have a strong link to the information, but whose 
access was eliminated due to contract termination – a major 
perturbation in the system that created the information).  The 

questioner’s path to the information might follow the paths 
between large boxes in Figure 2 and take precious time away 
from the task for which the information was required. 

 

Figure 2 Information strongly linked to a single document 

If, instead of the information being available only in the 
repository document, it was also available from a friend who 
was the document’s author, the same questioner might get to the 
information in just three hops instead of the eight required 
above.  The network in Figure 3 shows how the agile notion of 
osmotic communication [22] shortcuts the communication path, 
resulting in faster access to the information that will allow the 
questioner and team to continue working.    

 

Figure 3 Information available from the author’s whiteboard 

Viewing the network in Figure 3 from the perspective of 

Alexander’s life, the whiteboard would represent a strong 

center.  The system of whiteboards in people’s cubes, in the 
hallways, and at gathering points could constitute a system of 

strong centers if they contained information that encouraged 
people to cluster around them and discuss the information 

displayed there.  Information gradients form around these 
strong centers – those closest to the centers are most conversant 
with their contents, while those farthest away know the least.  
Small worldness addresses communication within a co-located 
community, but when people are too far apart, the shortcuts can 
cost too much to sustain, causing the system to break into highly 
clustered subnetworks that do not communicate.   

Whether the reason is distributed teams or simply poor 
communication among stakeholders, lack of communication 
causes problems.  Conway’s Law, states “Any organization that 
designs a system (defined more broadly here than just 
information systems) will inevitably produce a design whose 
structure is a copy of the organization's communication 
structure.” [23].  Only a concerted effort to support the shortcuts 
– e.g., communication-focused roles such as business analysts, 
project managers, or leadership groups supported as needed by 
specialized collaborative tools – can stabilize the network and 
allow for scale-free growth, as described in the next section.  

 



2.2 Scale-freeness  
Scale-freeness is defined as the characteristic of a network that 
allows it to have the same properties regardless of how large it 
grows.   Adding more nodes to the 20 (a number too small for 
most research, but one that is easy to visualize) in the regular 
graph of Figure 1 will increase the average distance between 
nodes in a linear fashion.  Adding nodes to the random network 
in Figure 1 only increases the average distance between nodes 
proportionally to ln(N), where N is the number of nodes.  Even 
so, the random network does not show the benefits of a scale-
free network because, as noted above, it does not have the high 
clustering coefficient characteristic of networks that have many 
nearby neighbors.  The middle network of Figure 1 does show 
scale-freeness with growth because any new node leaves the 
clustering coefficient relatively high and the average distance 
between nodes relatively short due to its neighbor’s shortcuts. 

Examples of scale-freeness include the great cities of Europe 
(e.g., Budapest and Paris), whose neighborhoods are scale-free 
networks that developed fractally as self-organizing systems 
within ever larger self-similar systems.  Some dimensions 
showing scale-free distributions are object size (from small shop 
windows to town squares), verticality (small homes to large 
buildings and sometimes to large hills in the distance), and the 
fractal distribution of distances that can be walked without 
running into an obstacle [1]. 

From the realm of nature, the Roystonea or Royal Palm survives 
hurricane-force winds [24] by shedding its fronds when the 
force of the storm endangers the survival of the tree.  The fronds 
exhibit a distribution of “stickiness” to the tree such that a 40-50 
mile-an-hour wind from a thunderstorm will blow down one 
frond, while a hurricane will remove all the fronds but leave the 
tree standing to grow new ones.  Thus, as the author suggests, 
the number of fronds removed can provide an estimate of the 
strength of the storm.   

From the realm of human design, the Alhambra tile shown in 
Figure 4 could scale indefinitely because enlarging it involves  
only adding new self-similar modules.  The ratio of stars to the 
other elements of the design remains the same whether the  

 

Figure 4 Alhambra tile [25] 

observer looks at a small rectangle encompassing just one star 
and its surrounding elements or at a rectangle that encompasses 
the far-distant edges of the tile.  The ratio of each color to each 
other color is also maintained as the tile grows. The stars form 

strong centers, while the surrounding elements form 

boundaries, and ensure local symmetries.  The local 

symmetries combine to create coherence on a large scale 
because they emerge organically rather than being imposed by 
an overenthusiastic designer. 

In contrast, Figure 5’s view of the Renaissance Center in Detroit 
shows what happens in the absence of scale-freeness since the 
five large buildings emerge abruptly from the ground, without 
elements of intermediate heights producing scale-free verticality 
to bridge the stark contrast in height.  Because each tower 
diverges so drastically from its immediate surroundings and 
appears so disconnected from the other towers, there is no 

opportunity for local symmetries.  Figures 4 and 5 illustrate the 
coherence that emerges from small local symmetries and the 
lack of coherence apparent when large-scale symmetry is 

attempted without the ground of adjacent small local 

symmetries. 

 

 

Figure 5 Renaissance Center in Detroit [26] 

The presence of local symmetries contributes to a perception of 

not-separateness in the Alhambra tile because it exemplifies 
Alexander’s definition that: 

any center which has deep life is connected, in 
feeling, to what surrounds it, and is not cut off, 
isolated, or separated.  In a center which is deeply 
coherent, there is a lack of separation – instead a 
profound connection—between that center and the 
other centers which surround it, so that the various 
centers melt into one another and become 
inseparable.  It is that quality which comes about 
from each center, to the degree it is connected to the 
whole world. [4, p. 231] 

Viewing the tile from the perspective of not-separateness, there 
is a sense that removing any element of the pattern would cause 
a loss of balance in the relationships of its neighbors and draw 
the eye of the observer to the unexpected gap in that spot.  This 
would disturb the tile’s integrity; hence, each element of the tile 

exhibits not-separateness and contributes to the sense of 
wholeness of the entire tile.  In contrast, the Renaissance 



Center’s lack of local symmetries gives the observer no support 
for seeing the five towers and the space between them as one 

single whole; hence, there is no sense of not-separateness. 

2.3 Nestedness 
Nestedness is defined as the characteristic of a network that 
allows a given node to appear as a leaf from the top of the 
network, but as a whole network from its own perspective.  In 
symbiosis-driven nestedness or integration [27], nestedness 
evolves bottom-up, from relatively stable independent networks 
self-organizing into larger networks until they all associate to 
become elements of the top network.  This might happen in 
suburbs that merge their bus lines to support a transportation 
system around the city.  In contrast, modularization-driven 

nestedness or parcellation involves segregating parts of the top 
network into modules, which can then become top networks 
themselves – e.g., top-down decomposition of software designs 
characteristic of structured design or cities that govern through 
neighborhood councils.  We will examine modules in detail later 
in this paper. 

Employees recognize nestedness in a large company’s 
organization chart, an example of which is shown in Figure 6.  
Note that John Sampleboss sees the three nodes in Figure 6 that 
report to him as leaves, but in reality, only Sandy Sampleadmin 
is a leaf.  James Sampleposa and Jane Samplemgr are nodes that 
comprise additional nodes, some of them leaves and others 
further decomposable nodes. 

 
Figure 6 Nestedness in an Organization Chart 

 

Nestedness allows organizations to scale by incorporating 

employees into departments (modules) exhibiting levels of scale, 

strong centers, and boundaries that separate tightly linked 
employees within the department from those in other 
departments. 

Another example of nestedness, this one from economics, is the 
world economy that comprises countries whose social networks 
are composed of people powered by networks of cells made up 
of protein networks that can finally be broken up into atoms.  

This example exhibits strong centers in its nested nodes, 

boundaries with contrast between the centers, levels of scale 
that define the top and the bottom of the network, and 

roughness due to uneven distribution of resources.  Again, 
nestedness alone is not enough to guarantee life because the 
wholeness and integrity of the world economy, especially during 
the 2008 economic slowdown, appears to be questionable. 

 Some consequences of nestedness may not be obvious from the 
examples above.  M. C. Escher’s Print Gallery captures the 
concept of nesting visually in that the picture hanging in a print 
gallery appears to contain the gallery itself.  Douglas Hofstadter, 
in his analysis of Escher’s work [28, p. 714], speculates that the 
signature in the middle of the picture exists to cover up the fact 
that it would be impossible to capture the point at which the 
larger world intersects its nested image.  This phenomenon may 
affect intersections other than spatial intersections and will be 

explored in greater detail during the discussion of Scrum 
planning meetings. 

 

Figure 7 M. C. Escher's Print Gallery [29] 

In this case, where the picture contains a replica of the gallery, 
which would presumably contain an even smaller replica, the 



nested elements are replicas of each other, so they would be 
considered motifs. 

2.4 Motifs 
Motifs are defined as small groups of network elements with 
characteristic linkage patterns that occur in significant numbers 
within complex networks.  Christopher Alexander’s patterns are 
motifs that reflect the underlying processes of architectural 
design.  The entire patterns community is founded on the 
understanding that problems in a given context, subject to the 
specified forces, have been successfully handled by the solution 
presented in the pattern, which makes the problem-context-
forces-solution linkage a motif.   

Motifs in software become design patterns [30], architecture 
patterns from the idiom level to the application architecture level 
[31] or enterprise application architecture patterns [32].  Motifs 
in implemented software become reusable components when 
they are extracted from existing software systems by reverse-
engineering [33].  

Motifs have also been found in many fields outside of 
architecture and software, including biochemistry, neurobiology, 
ecology, and engineering [34].  Research by Milo et al. has led 
them to believe that network motifs “can define broad classes of 
networks, each with specific types of elementary structures” 
[34].  Systems like food webs that support the flow of energy 
from the bottom of the food chain to the top exhibit different 
distributions of motifs than information processing systems.  
Information processing networks feature 3-element feed-forward 
loops as shown on the left in Figure 8, although some bi-parallel 
structures are also found in these systems;  food webs, on the 
other hand, feature some feed-forward loops, but bi-parallel 
structures, allowing a choice of vehicles to the destination, are 
far more prevalent. 

 

Figure 8 Three-element Feed-forward loop and Four-element 

Bi-parallel structure 

In building architecture, motifs correspond to Alexander’s 

echoes, defined as deep internal similarities between the small 
centers and angled pieces of larger centers, which tie them 
together to form a single unity.  The houses of Alberobello, 
Italy, shown in Figure 9, constitute an example of simple motifs 
because they share a family resemblance based on the similar 
angles of their cone-like shapes.   

The Big Wild Goose Pagoda or Tower of the Wild Goose, 
shown in Figure 10 and built around 652 A.D. in Hunan 
Province, China, is another example of a structure that exhibits 

echoes or motifs (square structure-arched window-roof).  

Alexander [4] uses the tower to illustrate not-separateness in his 
description of the Fifteen Properties [4 p. 230], but he also 
presents it as an example of deep life [4 p. 11] because the  

 

Figure 9 Conical Motifs at Alberobello, Italy [35] 

collection of motifs and the supporting structure intensify the 

connection people feel for the tower by incorporating levels of 

scale, strong centers, boundaries, local symmetries, gradients, 

simplicity and inner calm, and alternating repetition into their 
arrangement. 

 

Figure 10 Tower of the Wild Goose, Hunan Province, China 

[36] 

2.5 Modules  
Modules are clusters of network elements that relate functionally 
or physically to each other much more strongly than they do 
with the other elements in the network.  In Figure 10, the 



tower’s motifs constitute modules that exemplify parcellation – 
“the differential elimination of cross-interactions involving 
different parts of the system” [27].   

Modules make scale-free networks more manageable by 
allowing adaptation of a given set of nodes relatively 
independently of the rest of the network.  Modularization is a 
prerequisite for the adaptation of complex organisms [27] and 
has been implemented in the software world as object-oriented 
programming, as well as component-based and service-oriented 
architectures.  

Modules are often called communities, and can be discriminated 
within diagrams created by network visualization tools.  Figures 
11 and 12 compare two types of networks, each containing 100 
agents and approximately 175 links – Figure 11 is a modular 
network, and Figure 12 is a scale-free network without modules  
[37].  Notice the similarities – both show evidence of weak links 
in their small-world clustering, scale-free shortcuts, and 
nestedness.  The modular network, however, contains a number 
of elements that are much more highly connected to elements 
within their own module than to elements outside their modules. 

 

 

Figure 11 Modular network [37] 

 

 

Figure 12 Small World network [37] 

As noted in the section on nestedness, modularity is important in 

Alexandrian life because it fosters the development of strong 

centers, levels of scale, and boundaries, and supports the 

development of local symmetries, contrast, gradients, 

roughness and alternating repetition in some networks.  One 
might imagine the Alhambra tile losing Alexandrian life as it 
scales to encompass the entire side of a building because the size 

of the individual modules would be too small relative to the size 
of the wall – therefore, even the best designs need to be 
modularized to maintain their viability as they scale. 

3. WEAK LINKS 
Now that some of the features of weak links have been 
described, their relationship to topological phase transitions over 
time can be explored.  Because networks are often dynamic, 
their configuration can vary over time as they develop in 
complexity, undergo stress or experience resource replenishment 
[38, 39].  In a random network, generally found where 
complexity is lower and resources are plentiful, the network can 
support every node possessing close to the same number of 
connections, as shown in Figure 13.  Increasing the amount of 
stress slightly causes structure to emerge so that the use of 
available resources can be optimized.  The Alhambra tile shown 
in Figure 4 is one example of a network produced with plentiful 
resources and constrained to follow a pattern; therefore, it 
exemplifies a relatively simple scale-free network.   

 

Figure 13 Network Topologies [1, p. 75] 

A collection of small towns, each with its own hardware store, 
pharmacy, grocery, or general store is another example of a 
random network, as there is no advantage to traveling in one 
direction over another, because any direction will provide 
whatever services are needed.  The towns, however, represent a 
network that can change in response to both internal and 
external forces.  If the population shifts and some stores close, 
residents may choose to shop in neighboring towns, depending 
on distance, thus developing a scale-free network.  The third 
topology illustrated in Figure 13 illustrates a star network, in 
which nearly all connections in the network pass through a 
central hub, which might happen when all the small stores close 
in response to a new super-store opening.  When the star 
network experiences more stress, it will rip apart and no longer 
have a “giant” component.  As an example, if oil prices make 
travel to the super-store too expensive, the towns in the area will 
no longer have their familiar old stores, but they won’t be able 
to shop at super-store either, so new stores or online shopping 
may emerge as an alternative.   



The reason infinite resources support a random network is that 
energy is required to support each of the links [40].  As stress 
increases and resources decrease, there is an advantage to 
sharing paths to the far side of the network, but there is also a 
benefit to the short-range clustering of the scale-free network.  
As resources continue to decrease, the energy required to 
support the extra links is not available, so a star network is 
formed.  Finally, with even less energy, the network’s giant 
component “dies” and decomposes into subgraphs.  Thus, the 
giant component no longer exhibits the characteristics of 
Alexandrian life because its subgraphs have no relations with 
each other via weak links. 

As the discussion above implies, weak links provide a 
mechanism for stabilizing a giant component as it is subjected to 
perturbations or disturbances due to increased complexity, 
decreasing resources, or increasing stress.  Modules can 
dissipate energy from a perturbation by reorganizing their links 
or by detaching from the giant component.  (This is also an 
organizational pattern [12] called “Sacrifice One Person.” In 
this pattern, one member of a team takes on the responsibility of 
protecting the integrity of the rest of the group by accepting a 
highly disruptive task such as handling support calls or 
committing to a task required by the external organization but 
not required for the work the team is doing.)   

Biological networks exhibit both redundancy (duplicate 
elements) and degeneracy (different elements that can reprogram 
themselves away from their normal function to perform the same 
function as a different element, depending on the context [27]) 
to support stabilization of their giant components.  The fact that 
the functions performed by an element or module disabled 
because of a perturbation can be delegated to a different 
structure in the network distinguishes biological networks from 
technological networks, which rely almost exclusively on 
redundancy.  This may be explained by the fact that evolutionary 
systems tinker with or reuse what already exists in their system 
to derive comparable functionality and can never be assembled 
by simply attaching something brand new.  Enhancements to 
engineered or technological systems, on the other hand, can be 
effected by adding new and/or modifying existing components.  
As an example of weak links supporting biological network 
robustness, mutations in a single gene can often be compensated 
for by a different gene or set of genes that can perform the same 
function.  However, networks of genes are subject to the same 
scale-free forces as other networks – i.e., mutations of some 
highly-connected genes, such as the p53 tumor suppressor gene 
that participates in programmed cell death and prevention of 
tumor cell proliferation, can have a profound effect (cancer), 
while some genes can be fully suppressed without any outward 
indication. [27] 

Software architectures exhibit scale-freeness and small 
worldness when modules are integrated into the system if design 
principles such as maximizing cohesion, minimizing coupling, 
avoiding the creation of hubs with many dependencies, and 
minimizing development time, are applied [27]. Comparable 
design principles, such as optimization involving cross-network 
shortcuts and short paths within the neighborhood operate in the 
realm of cellular nets, but cellular nets are able to parlay their 
scale-freeness and small worldness into free homeostatis (robust 
stabilization mechanisms) against random failure.  If researchers 
could discover the roots of such mechanisms, practitioners 

might be able to create both software development processes 
and software products that exhibit homeostatis.   

Then, software systems may start to exhibit what Buckminster 
Fuller [41, p.7] calls synergy, as exemplified by chrome-nickel- 
steel.  This alloy contradicts the belief most people have that a 
chain is only as strong as its weakest link – if that were true, 
then its tensile strength would never exceed 60,000 pounds per 
square inch (psi), the tensile strength of iron, which is the 
weakest of the three metals.  Instead, the tensile strength of the 
alloy is 350,000 psi, which exceeds the sum of the tensile 
strengths of all its constituents (260,000 psi) because the 
structure deforms when it is stressed.  Fuller’s explanation is 
“Chains in metal do not occur as open-ended lines. In the atoms, 
the ends of the chains come around and fasten the ends together, 
endlessly, in circular actions. Because atomic circular chains are 
dynamic, if one link breaks, the other mends itself.”  The result 
is a metal of such strength that it can withstand temperatures 
generated by combustion in jet engines; hence, the goal is not 
just an increase in the software’s robustness but enabling new 
kinds of software that were impossible until homeostasis 
emerged. 

Remembering Conway’s law, which states that software 
architecture mirrors the communication structures of its creators, 
if the organization’s goal is to achieve what only homeostatic 
software can enable, the first step in this direction may be the 
creation of homeostatic software teams, which is essentially 
what Scrum can enable, with its endless circular structures 
around each delivery of production-ready software. 

4. SCRUM 
By its founders’ definition, Scrum is an “iterative, incremental 
process for developing any product or managing any work.  It 
produces a potentially shippable set of functionality at the end of 
every iteration.” [3].  Scrum acts as a framework within which 
relevant engineering, team-building, and knowledge 
management principles may be applied to enable the team’s 
meeting of its commitment to the organization.  The rules are 
deceptively simple, just as are the design rules that produce 
complex software architectures, but they too are rooted in deep 
concepts, like weak links and complex adaptive systems, that 
give them great power.  Disciplined attention to the application 
of rules and principles underlying Scrum is required to attain the 
benefits promised by its adherents.  When that disciplined 
attention is applied and continually developed, both the product 
of the Scrum process and the process itself exhibit Alexandrian 
life. 

The rules of Scrum involve roles, artifacts, and activities.  The 
roles involved in Scrum are: 

� Product Owner – the voice of the customer who stewards 
the product vision and finances, reflecting his/her 
constituents’ needs in the prioritized product backlog 

� Scrum Team – the self-organizing, cross-functional group 
responsible for delivering an agreed-upon segment of the 
highest-priority functionality within the selected time-box 

� Scrum Master – the facilitator of team success responsible 
for focusing the team’s attention on their commitments, 
representing management to the team and the team to 
management, and steward of the Scrum implementation 

 



 

The artifacts of Scrum include: 

� Product Backlog – the list of features, functionality, and 
quality attributes implicit in the product vision 

� Sprint Backlog – the list of tasks required to implement the 
agreed-upon segment of the Product Backlog that will be 
delivered within the next time-box (called a Sprint) 

� Sprint Burndown Chart – a graph showing the rate at which 
the effort required to reach the Sprint goal (which reflects 
the agreed-upon product increment) is declining.  Time 
remaining must hit zero on the last day of the Sprint.  
Figure 14 illustrates burndown for a standard 30-day 
Sprint.  (Note that the actual burndown does not decline 
linearly but varies based on new information, negotiated 
decisions, and revised designs.) 

 

Figure 14 Sprint Burndown Chart 

The activities of Scrum include: 

� Sprint Planning Meeting  
o Part I - Review the prioritized product backlog, 

consider what work will be possible during the next 
Sprint, and define a Sprint goal around which to 
organize the work.   

o Part II - Define and estimate the tasks entailed by the 
work, and reconfirm its feasibility.  If no longer 
feasible, renegotiate the work with the Product Owner.  

� Sprint – both the timebox and the development activities 
inside the timebox that will lead to the delivery of 
production quality code that realizes the Sprint goal. 

� Scrum Meeting – the daily 15-minute synchronization 
period during which team members answer the questions: 
o What did you do since the last Scrum Meeting? 
o What will you do before the next Scrum Meeting? 
o What is standing in your way? 

� Sprint Review 
o Demo – the team’s opportunity to tell the story of the 

production-quality increment constructed during the 
Sprint and the product owner’s opportunity to review, 
accept, and/or adapt its functionality 

o Retrospective – a period of reflection during which the 
team and invited stakeholders build community, 
identify best practices, and suggest improvement 
experiments – a time to “discover, share, and pass 
along the learning from experience—something we 
also call ‘wisdom’”  [42].   

 

When all of these elements come together, the resulting structure 
is often captured in a diagram like Figure 15, which identifies 
the relationships between the activities and the artifacts [43].  It 
also highlights some of the characteristics of Scrum: 

� visibility into the process and the Product Owner’s 
priorities 

� feedback on at least a daily basis (more if the team is 
collocated and taking advantage of osmotic communication 
– learning by hearing and seeing ambient information) 

� continuous adaptation of the work distribution and 
approach within the team 

� continuous adaptation of the product backlog by any 
stakeholder (subject to the Product Owner’s prioritization 
before the next Sprint planning meeting) 

 
 

 
Figure 15 Scrum flow [43] 



When a team first adopts Scrum, it executes the entire lifecycle 
of a small part of the desired system – all requirements are 
identified, analyzed, and reflected in the product design, and the 
design is reified by the team’s code, supported by 
documentation (e.g., user manuals, help files), and tested against 
user acceptance criteria.  Although this description sounds 
sequential, everything happens at once as the team optimizes 
itself like a surgical team to deliver working software that meets 
the Sprint goal within the Sprint timebox.   

Team members switch roles to the extent possible in hopes of 
avoiding bottlenecks, but this approach to Scrum (called Scrum 
Type A in [44] and illustrated in Figure 16) results in “dead” 
time while the team reorganizes for the next Sprint.  This dead 
time prompted an evolution into Scrum Type B.  In Scrum Type 
B (see Figure 16), the requirements for the subsequent Sprint are 
developed in the current Sprint, so that only items that already 
have buy-in from the organization are on the product backlog at 
the Sprint planning meeting.  This removes the development 
bottleneck and can result in the production of more value than 
the organization can handle.  Finally, a single experienced 
Scrum team executing appropriate engineering practices can 
work on simultaneous Sprints of one week, one month, and 
three months if they are supported by a well-designed product 
architecture, automated testing and automated presentation of 
the integrated Sprint backlogs by team member.  This version of 
Scrum is an adaptation of Takeuchi and Nonaka’s original 
“overlapping development phases” [45] in that multiple smaller 
Sprints can be completed before their containing Sprint is 
completed.   This approach resulted in 45 releases per year for 
PatientKeeper, an organization that currently employs it [3]. 

 

 

Figure 16 Three implementation styles of Scrum [44] 

In order to support Scrum Type C, the product backlog must be 
prioritized and available to the team at very short intervals.  This 
means that the Product Owner continually manages the list as it 
adapts to changes in business conditions, team capabilities, 
technological factors and the capability context resulting from 
the most recent product releases.  To maintain the priorities of 
the product backlog, the Product Owner must ensure that the 
organization’s executives implement a process analogous to the 
Scrum team’s process, but with different inputs and outputs, as 
shown in Figure 17, the diagram of Meta-Scrum.  Note that the 
team’s flow takes the output of the management flow as its input 
and returns the team’s new functionality to the executive team as 
revised process / technology needs and context.   

 

Figure 17 Meta-Scrum for the Executive Team 

 

Given the size of the smallest Sprint in Scrum Type C, the Meta-
Scrum meeting must occur weekly in order to ensure that the 
next week’s work will reflect the organization’s highest 
priorities and to accommodate perturbations such as a customer 
offering to buy $1 million worth of product if a certain feature 
can be delivered in a short timeframe.  If that particular feature 
had been a low-priority feature or did not exist on the product 
backlog, it would have to replace a feature that had been high-

priority.  Therefore, the product of a Meta-Scrum meeting may 
be a list of actions that need to be taken in order to take 
advantage of the reported opportunity.  The resulting tasks may 
include notifying customers who were expecting the high-
priority feature in a certain release of the new timetable, 
estimating the tasks required, extracting related items from the 
product backlog at the next planning meeting, and possibly 
starting requirements work immediately, thus causing premature 



termination for some teams.  Premature termination involves 
breaking links that had previously formed in favor of forming 
new and potentially more valuable links related to the new 
information, one of the many parallels between Scrum, 
Alexandrian life and weak links to be explored in the next 
section.  

5. WEAK LINKS AND ALEXANDRIAN 

LIFE IN SCRUM  
Note: Where weak link concepts appear, they are formatted in 

bold.   

This section looks at Scrum from a weak links perspective, 
seeking evidence of Alexandrian life and the stabilizing 
characteristics of small worldness, nestedness, and scale-
freeness.  It identifies and considers the purpose of motifs and 
modules in Scrum’s practices, structures, and artifacts, 
examining each in terms of its contribution to the stability of a 
highly functional Scrum implementation.   

5.1 Sprints  
Scrum defines its dynamic structure in terms of the Sprint, 
which opens with planning and estimating meetings, closes with 
a demo and retrospective, and allows execution to take place 

within the boundaries these meetings impose.  Each Sprint that 
reprises this structure over an equivalent time scale is a temporal 

module with a strong center that echoes its neighbors with 

alternating repetition.  The strength of the center should 
increase as the team matures in terms of its ability to self-
organize around the Sprint goal, deliver a production-quality 
increment as the Sprint’s output, and improve its performance in 
the next sprint.   

Figure 18 illustrates a motif echoed by every Sprint.  The 
execution node is represented in the diagram by the star (with its 
points representing closely collaborating team members and its 
center capturing their shared links to information and tasks).  
The left side of the star denotes input, with one element 
representing what is taken from the product backlog and the 
other signifying the estimates of how much time that work will 
take.  The right side denotes output from the Sprint, with one 
element symbolizing what was put onto the product backlog as a 
result of the demo and retrospective and the other corresponding 
to the realization of the Sprint goal.  The top elements represent 

each team’s Scrum Master, who acts as the contrasting 

boundary between the team and the organization, removing 
impediments, bringing external resources close enough that the 
teams can take advantage of those resources, and channeling 
information from outside the team as required.   

 

Figure 18 Sprint Motif for 3 teams using Scrum Type A 

This figure looks very much like Scrum Type A in Figure 16.  
There are spaces between the Sprints during which teams 

prepare for the next Sprint.  Alexander identifies not-

separateness and good shape as characteristics of life, which 

suggests that Scrum Type A is not the final goal of organizations 
adopting Scrum.  It seems to be a stop-gap implementation that 
allows the team to discover how they can reinforce each Sprint’s 

strong center by adjusting their commitments to the Sprint 

length, adapt to its boundaries by strengthening their 
community’s communication and feedback skills, and 

acclimatize to the cyclical rhythm Alexander calls alternating 

repetition.  To the extent that the organization has adapted to 
Scrum, they will develop a greater sense of wholeness by filling 
the gaps and overlapping the Sprints in such a way that the 

levels of scale corresponding to Scrum Type C emerge, as 
illustrated in Figure 19.  Note that even the smallest Sprints 

exhibit the same Sprint motif. 

 

Figure 19 Scrum Type C Motifs and Levels of Scale in a 3-

month release, 1-month patch, and 1-week bug fix 

When the increment to be delivered requires a number of teams 
to work on the same product simultaneously, Scrum 
recommends a Scrum of Scrums approach, whereby each Scrum 
Master meets with the other teams’ Scrum Masters to 
synchronize their teams’ efforts.  From these meetings, each 
Scrum Master can gain information that affects the team they 
serve, report it to the team, and determine with the team what 
impact that information will have on their ability to meet the 
Sprint goal.   Based on their decision, the Scrum Master may 
call a meeting with the Product Owner to terminate the Sprint, 
or the team may redesign the work to meet the Sprint goal. 

The Scrum of Scrums might be represesnted as shown in Figure 
20.  Note that its purpose is to provide the backbone for the 

integrated teams or modules to communicate with each other.  
Note also that the Scrum of Scrums does not effect top-down 

parcellation to modularize the teams for control, but is 

integrative, bringing each team’s progress into the top-level 

network for coordination through dissemination of information 
across the whole system. 

 

Figure 20 Scrum of Scrums with Scrum Teams 

Because the team can self-organize according to its distribution 
of skills, the center of each star can adapt to the resources 
available, the complexity of the problem, and the level of stress 



as needed.  Figure 13 is reproduced in Figure 21 to remind the 
reader that in the absence of stress, with a full complement of 

resources and a relatively simple problem, a random network 
organization will prevail.  This might correspond to a team with 
highly overlapping skillsets such that any team member has the 
skills and information to undertake any task, thus avoiding all 
bottlenecks.  It might also correspond to a new team within 
which the team members do not know the distribution of skills.  
As specialization within the team or complexity of the tasks 

increases stress, or if the team becomes smaller, scale-freeness 

and small worldness might emerge to take advantage of those in 
the group with specialized skills required by multiple tasks.  
Because of clustering, this arrangement may allow several 
concurrent tasks to take advantage of the same resource so that 
the team becomes more productive.  With greater stress, 

modularity helps to make a large, complex problem more 
manageable and still takes advantage of the signal-propagation 

speed and synchronizability benefits of scale-freeness.  As 
Sprint goals change across time, Scrum teams may modify their 
communication patterns to optimize the resources available 
against the work required, causing phase changes among the 
network topologies.   

 

Figure 21 Network Topologies [1, p. 75] 

In those methodologies where unrealistic dates are imposed on 
the team, the higher level of stress might cause the team to adopt  
a star configuration, possibly calling for a “hero” to emerge and 
save the day.  If the hero fails, then the project might decompose 
into subunits, resulting in the finger-pointing that often 
accompanies failed projects.   

To avoid this situation, the team must understand the Product 
Owner’s expectations well enough to make a valid commitment 

leading to positive space and good shape.  The abililty of the 
team to commit to a reasonable workload during the course of a 
Sprint is dependent on the quality of the product backlog.  If the 
product backlog has only items that exceed the team’s ability to 
deliver within a single Sprint or Priority 1 items, they will fall 
into the same trap as non-Scrum teams.  Thus, the quality of the 
planning that goes into the product backlog and the distribution 

of attributes (levels of scale and scale-freeness) across the 
product backlog constrain the Alexandrian life of the Sprint. 

5.2 Product Backlog and Planning 
The product backlog captures the work required to realize the 
Product Owner’s vision of the product.  Thus, it contains large-
grained items that have been envisioned but are too far in the 

future to describe in detail, medium-grained items that should be 
delivered within the next 6 months to a year, and smaller items 
that are visible in high relief due to the immediacy of the need 
for them or their importance to a smooth-functioning 
organization.  These levels of detail correspond to the 

nestedness of the product, its releases, and the increments 

delivered in each Sprint, thereby contributing to the modularity 
of both the representation of the work in the product backlog 
and the work itself as implemented in the Sprints.   

Scrum software development teams within traditional 
organizations often suffer due to the standard budgeting cycle, 
which depends on commitments to highly speculative estimates.  
Therefore, Scrum teams function best in an environment that 
integrates input from all perspectives, including marketing, 
sales, IT, and corporate executives into the planning process.  In 
this type of an organization, the executive team operates on the 
Sprint schedule as well, as described by the Meta-Scrum flow in 
Figure 17.  The executive team members accept emerging 
business and market conditions, along with process and 
technical competency as input into their Meta-Scrum meetings, 
and update the product backlog by adding new items, 
eliminating obsolete items, consolidating some items, and 
breaking others into smaller elements.  The revised product 
backlog produced as output from these meetings is presented to 
the teams at the next Sprint planning meeting, and the teams 
commit to the highest priority items they can deliver.  Note that 
in Figure 22, the Scrum Master facilitates the Sprint Planning 
meeting but does not interpret the product backlog for the team.  

Thus, the modularity supported by the Scrum Master interface 
that facilitates execution during the actual Sprint turns into 

small worldness between the team and the organization again 

during Sprint planning and Sprint review, reflecting alternating 

repetition and another example of echoes.  

 

Figure 22 Sprint Planning Meeting with Product Backlog 

Updated by Meta-Scrum 

As illustrated in Figure 15, Scrum requires a planning meeting 
before the start of each iteration so that the team can commit to 
delivering the highest priority items from the product backlog.  
These meetings may serve the same function as Escher’s 

signature in that they allow the boundary between the product 
backlog items and the team’s fine-grained tasks for realizing 
those items to be negotiated rather than assumed.  Planning 
meetings provide a venue for links to information, activities, 
people and goals to be created, shuffled, or modified in response 
to forces that have arisen since the last planning meeting or in 
response to improved understanding of the organization’s needs.  

These links are the source of deep interlock and ambiguity 
across both time and space.  In the space dimension, the links 

serve as shortcuts that bind the team module and the 



organizational modules the stakeholders represent.  The nesting 
between the team and the rest of the organization will be 
discussed further in the Scrum Structure section.  In the time 
dimension, the links are the long-range relationships between 
the vision captured in the product backlog and the tasks the team 

will perform during the next Sprint.   The nesting between the 

product backlog and Sprint backlog fosters levels of scale across 
the team’s delivery horizon, the immediacy of the organization’s 
need, and the clarity of the organization’s perception of its 
needs.   

In addition to selecting items from the product backlog into the 
Sprint backlog at the planning meeting, the team and product 
owner select a Sprint goal that reflects the reason for building 
the chosen work.  This goal represents the meaning or 
significance to the organization of the production-ready software 
that the team has committed to delivering during the Sprint.  The 
Sprint goal is one of several sub-goals that must be met in order 
to deliver the value reflected in the overarching release goal.  
The release goal itself reflects larger product goals, which in 
turn reflect business strategies for the entire organization.  Thus, 
the goals developed at planning meetings provide a further 

reflection of nestedness and multiple levels of scale. They also 
allow the team to commit at the goal level, which avoids  
premature commitment to specific deliverables and allows the 

team to redesign as needed during the sprint.  Weakly linking 
deliverables and goals is desirable because the same goal can be 
reached through multiple design paths, and the team and 
Product Owner should be free to negotiate the most appropriate 
path, given the priorities, time and skillsets available within the 
Sprint.  This ability to redesign or renegotiate what a goal entails 
dissipates perturbations due to new knowledge, missed 
dependencies, misunderstandings, etc. 

The finest-grained planning takes place within the daily Scrum 
meetings, within which each team member commits to the day’s 
work.  Once again, the team members can reshuffle the strength 
of their links so that someone who was working independently 
may volunteer to form a stronger link with someone who needs 
help.  An observer who expects rigid adherence to the plan may 

interpret this “deviation” as roughness, but it is evidence of 
judgment being applied to maximize value delivery in the 
context of .Scrum Structure.   

5.3 Scrum Structure 
Within the team, members pass information and make decisions 
with a high degree of clustering, while the Scrum Master 
removes barriers that keep them from accessing sources of 
information external to the team.  James Coplien [46] studied 
communication patterns across many projects in large 
telecommunications organizations and found several 
characteristic patterns.  These patterns bear a striking 
resemblance to those that show small worlds and random 
networks, as illustrated in Figure 23 and 24.  Cain and Coplien 
used these words to describe their findings [46]: 

In a mature process, one that has evolved over a 
decade in a relatively constant domain, load 
balancing takes place. Information flow is broadly 
distributed across process roles (Figure 23). The 
network of communication between roles is not 
fully distributed, but the total distance between two 

roles is rarely more than two hops, and there is a 
good mapping between direct, strong coupling and 
‘‘need-to-know’’ relationships. We also know that 
these processes have largely distributed decision-
making loci and are not centrally orchestrated. In 
fact, the Manager role in these processes is usually 
at the outer edge, with tighter coupling to resource 
organizations (e.g., the computer center) than to the 
principals in the process! There is likewise no 
centralized decision making in a ‘‘mess,’’ and 
managers are likewise at the periphery of the 
process. However, a ‘‘mess’’ process tends to be a 
more fully connected graph than a ‘‘mature’’ 
process, indicating that the communication 
overhead on each role is unfocused and intense. 
(Figure 24) 

 

Figure 23 A Mature Process 

 

 

Figure 24 A Messy Process 



Note that the mature process in Figure 23, which is found in 

product-oriented groups, closely resembles Figure 21’s scale-

free network topology, while Figure 24, which is found in more 

service-oriented groups, resembles its random network with 
unfocused and intense communications requiring a great 
expenditure of energy and resources.  This is consistent with 
findings that the highest and lowest socioeconomic classes, and 
social networks under stress do not exhibit scale-free 
relationships – they tend to interact only with those like 
themselves. [47, 48]  These are very small networks, so these 
ideas are not conclusive, but the phenomenon warrants attention 
to determine whether or not weak links are at work here.     

Scrum capitalizes on both of Coplien’s structures as it moves 
from Scrum A to Scrum B to Scrum C.  When Scrum A is 
implemented in an organization, the team self-organizes around 
tasks from all the disciplines involved in creating an increment 
of production-quality software. Scrum B separates out the 
requirements-gathering tasks into their own sprint or module, as 
preparation for the development tasks that dominate the 
implementation sprint – analysts participate in the latter, but 
their activities dominate in the preparatory sprint.  This type of 
modularization resembles parcellation or top-down 
modularization.  In Scrum C, the number of simultaneous 

sprints supported by a single individual increases, and modules 
corresponding to groups of tasks from each of the simultaneous 
sprints integrate into each individual’s daily schedule, reflecting 

the weekly, monthly, and quarterly sprint modules.  This 

becomes visible as levels of scale that echo each other in the 
backlogs and each team member’s daily schedule. 

Regardless of the organization’s implementation of Scrum, 
deformations appear within all Scrum teams as team members 
encounter tasks that require skills beyond their own or schedules 
that preclude a particular design decision.  Under these 
conditions, Scrum encourages disclosure of the need at the 
team’s daily Scrum meetings so that multi-disciplinary members 
can volunteer assistance or information to each other and avoid 
bottlenecks.  When the team unexpectedly encounters a task that 
requires skill beyond all of its members, the Scrum Master’s job 
is to find someone with that skill to train or mentor the team.  
This extends the team’s access to skills and solutions via the  
Scrum Master’s shortcut.  In nature, these frequent short 
searches interspersed with less frequent intermediate searches 
and rare searches of distant locations are called Levy flights.  
The behavior is characteristic of ants, bumble bees, deers, 
jackals, and monkeys looking for food because it balances cost-
efficiency with novel search locations that ensure energy is not 
spent duplicating previous searches [1].  

If no solution can be found within the team, the Scrum Master 
notifies the Product Owner of the problem, and the stress is 
removed by redesign, postponement of the item to a later sprint, 
or premature termination of the sprint.  Though termination is 
extreme, it dissipates stress on the team, allowing it to regain its 
former state and regroup for the next Sprint.   

Because the Scrum Master acts as a buffer between the team and 
the rest of the organization, dissipating the impact of external 
perturbations, the role often entails managing promises made by 
the Product Owner and the rest of the organization.  As such, the 

Scrum Master and Product Owner roles provide contrast and 

boundaries around their constituents.  They also support deep 

interlock and ambiguity but this feature will be discussed in 
greater detail below because it is so profoundly embedded in 
Scrum’s practices, artifacts, and structure.    

5.4 Deliverables 
Within each Sprint, the team produces an increment of 
production-quality code having strong links inside the increment 
and weaker links between preceding and succeeding increments.  
It generally takes several Sprints before the increments are 

released to production, which leads to the nesting of several 
increments inside each release, and multiple releases 
constituting the complete product.  In terms of Alexandrian life, 

products built by Scrum teams exhibit levels of scale (in-process 
work within the Sprint, Sprint increment, release, product), 
strong centers that include working code and whatever else is 

required to meet the team’s doneness criteria, and gradients of 
product completion that expand over time in the production 
environment.  Because Scrum does not specify engineering 
practices, it is difficult to predict which characteristics of weak 
links or Alexandrian life will be exhibited by its output, but one 
might expect the product to mirror the process that produced it. 

Following Conway’s law, a highly functional Scrum team 
applying the agile values of communication and feedback should 
produce high-quality software for deployment into the 
production environment.  Applying the simplicity value of 
extreme programming to an object-oriented paradigm should 

produce objects with strong centers and boundaries that echo 
the team’s accepted class hierarchy or patterns of composition.  
Simplicity requires producing only the objects or components 
needed to meet the customer’s needs as expressed in their 
acceptance tests, meaning that the software, its users, and its 

environment should exhibit positive space and not-separateness 

when all increments have been delivered.  Interfaces are always 
a challenge when multiple teams must connect their work 
products to each other or to existing systems, forcing the team to 
validate assumptions as tests that connect to test systems or 
simulated systems with analogous interfaces.  Once built, the 
adapters or components that allow these tests to pass exhibit 

contrast such that the boundary or interface between the systems 

on either side becomes a strong center in itself, suggesting that 
creating interface subteams or cross-team pairs would be an 

appropriate practice at the product boundaries.  While time 

constraints may sometimes force the team to accept roughness 

due to technical debt, refactoring should produce good shape 
before the end-of-Sprint demo. 

5.5 Demo and Retrospective 
Like its planning meeting, Scrum’s defined closure activities 
provide opportunities to break links between iterations 
deliberately, thereby dissipating perturbations due to forces such 
as schedule slippage, revised priorities, or externally imposed 
constraints.  Also like the planning meeting, the demo and 
retrospective provide an opportunity to connect with 
stakeholders, goals, and relevant information from outside the 
team.  While the demo examines the product from the 
perspective of the stakeholders’ needs, the retrospective 
examines the process with the goal of providing the team with 
the opportunity to continuously improve their ability to deliver.   



Once the team demonstrates its “production-ready” software, the 
customer can choose to break with the release schedule in order 
to take advantage of unanticipated value inherent in the features 

already created by the team.  Weak links between value and 
schedule allow the organization to prioritize pending work 
based on the anticipated release schedule, but capitalize on 
emergent utility when an unscheduled release needs to be 

arranged.  This may lead to roughness when the release 
landscape is observed, but the newly generated value may lead 

to a greater harmony or not-separateness among the 
organization, the team, and the delivered system.   

Within the team, the retrospective provides an opportunity to 
link the execution and outcome of the Sprint with lessons to be 
applied in future Sprints.  Regular examination enables the 

identification of motifs or echoes that support success or failure.  
The latter can be used as warning signs that trouble may be 
ahead, prompting vigilance even if the connection cannot be 
articulated explicitly.  As mentioned in Section 5.1, regular 

retrospectives provide alternating repetition of experiences 
designed to strengthen the team members’ links to each other by 
encouraging team-building, validating each other’s perceptions, 
and acknowledging contributions made by team members who 
play a supporting but critical role in the team’s success.  Like 
the watercarrier, who did not hold a position of designated 
power but delivered the water essential to the tribe’s survival, 
these team members are cited for exemplifying “the essential 
nature of all jobs, our interdependence, the identity of ownership 
and participation, the servanthood of leadership, the authenticity 
of each individual” [49, p. 62].  Their example teaches new 
members about Scrum’s culture by demonstrating awareness, 
listening, healing, empathy, and commitment to the growth of 
others.  Retrospectives also provide a time to celebrate 
successes, grieve fatal perturbations that destroy the team’s giant 
component, and recognize members’ skill advancement.  These 

contrasting boundaries become strong centers themselves as 

they evoke not-separateness between Sprints by interlocking 
past experience with commitments to the future and generating 

new insights that open pathways to greater capability – deep 

interlock and ambiguity. 

6. DEEP INTERLOCK AND AMBIGUITY 
Deep interlock and ambiguity abound in Scrum to an extent 
that is unique among software development methodologies.  The 

weak link characteristics of nestedness, motifs, and modularity 
are part of many software development methodologies – 
consider the standard phases of requirements gathering, analysis, 
design, coding, testing, and operations, where each provides 
input to the next, and every project replicates the motif.  What 
makes Scrum stand out is the frequency of opportunities to 
create weak links, the variability of the link lengths created 
during those opportunities, and the breadth of dimensions across 

which those links extend.  Deep interlock and ambiguity in the 

boundaries between strong centers or modules comprising 
goals, information, activities, and groups of people with 
different perspectives at different levels of the hierarchy give 

highly functional Scrum implementations a sense of not-

separateness from their organizational context, their history, 
their output, and their core attributes. 

Among Scrum’s core attributes are visibility, inspection and 
adaptation, all of which foster the development of shortcuts 

between the business and the Scrum team.  These core attributes 
find expression in Scrum’s frequent opportunities for creating 
links or restructuring existing links of varying strengths, lengths, 
and duration, including: 

� planning meetings where the Product Owner presents 
stakeholders’ priorities in the form of the product backlog 
to the team 
o links with business and external stakeholders  to 

negotiate the highest value that can be delivered in the 
next Sprint 

o links to the nested business goals reflected in the 
product backlog from which the Sprint goal will be 
drawn 

o strong links to Sprint goal negotiated with 
stakeholders 

o parcellation of product backlog items into Sprint 
backlog items and tasks (modularization)  

o links to history or analogous projects to determine 
estimates for tasks 

o selective formation of links between members and 
tasks via self-organization  

� daily Scrum meetings where the team synchronizes its 
members’ activities in the presence of all interested 
stakeholders 
o shortcuts to the Sprint backlog when reporting 

progress and committing to next day’s activities  
o shortcuts from outside the team to the team’s work for 

monitoring progress 
o emergent links to teammates whose impediments can 

be removed by team members 
o commissioning of Scrum Master to remove newly-

identified obstacles by linking to non-team members  
o emergent links from team to Product Owner via Scrum 

Master when the Sprint goal is in jeopardy so that the 
team’s options can be discussed 

� demos where the team re-engages with its stakeholders to 
connect its current increment to the future they envision  
o shortcuts to business and external stakeholders when 

determining the correspondence betwee the delivered 
increment and the Sprint and release goals 

o breaking of links to requested features that do not 
represent progress toward product vision 

o formation of links to new features suggested by the 
product’s current state 

o destruction of links between product backlog and 
schedule when accrued value warrants disruption of 
the schedule 

� retrospectives where team members recommit to 
continuous improvement and to the team as a community 
o reflective links with the activities and events of the 

past Sprint with the purpose of evaluating their value 
and impact 

o feed-forward loops with experiments designed by the 
team to improve its process 

o rites and ritual activities that link each Sprint to its 
predecessors and provide closure to the team 

� Scrum Master’s transient strong links to stakeholders who 
can remove team’s impediments by providing needed 
resources, information, privileges, etc. 



� Product Owner’s spectrum of link strengths and lengths to 
other stakeholders whose needs must be reflected in the 
product backlog  

� information radiators that foster osmotic communication 
with anyone passing by, regardless of their involvement 
with the project 

� engineering practices featuring 
o small releases – 2-6 weeks to production-ready code 

to accommodate varying link strengths to item priority  
o simple design – no premature generalization to avoid 

strong links to an over-engineered solution 
o refactoring – evolutionary tinkering to break links 

with worthless code and add or abstract what’s needed 
o continuous integration – surfacing integration issues 

immediately to allow creation, repair and dissolution 
of links between components 

o customer acceptance tests – test-driven requirements 
to create strong links between strong business centers 
and the boundaries of components that support them 

o test-driven development – tests written before code to 
allow link evolution (ambiguity) inside the boundary 
defined by the tests but remain connected to the 
original purpose (deep interlock) on the outside 

o coding standards – team-defined standards for naming, 
configuration control, design, etc. to support weakly 
linked motifs/echoes in both process and deliverables 
from past, current, and future releases 

o whole team – customer, QA, architecture, developers, 
BAs, as needed to support real-time formation and 
dissolution of information and interpersonal links 

o sustainable pace – workweek defined by the team to 
meet corporate standards and foster viable links to co-
workers, information, and output, as well as to family 
and community 

7. IMPLICATIONS 
Because Scrum offers so many opportunities for deep interlock 
and ambiguity, unsuccessful Scrum teams may find themselves 
starting their search for process improvement at these 
boundaries.  Investigation may identify lack of stakeholder 
participation from a scale-free distribution of distances up the 
organizational hierarchy (one executive sponsor and many 
subject matter experts), or periods of stakeholder engagement 
with the team (many short engagements with a few long 
engagements).  Although support for executive involvement has 
always been identified as a success factor, the analogies with 
weak links may provide new models for justifying that support 
and possibly new ways to compensate for a lack thereof.  The 
improvement of success rates in the Standish CHAOS reports 
from 1994 to 2004 were partially attributed to agile 
requirements process [50], which may be more rigorously 
defined using notions of scale-free distributions, small worlds, 
and modularity.  The emphasis on clean interfaces between 
modules may be re-examined in light of Alexander’s notion of 
contrast and boundaries appropriate to the size of the strong 
centers they encapsulate, possibly causing an evolution to 
“smart boundaries” for both teams and the software they build.   
The purpose of this paper was to raise awareness of the 
relationships among weak links, Alexandrian life and Scrum so 
that interested parties could construct new ways of improving 
their Scrum implementations and share their results with the 

community.  As an example, process improvements may be 

more effective if they enhance deep interlock and ambiguity 
where ambiguity refers to augmenting the organization or team’s 
choices relative to optimizing its resources for the current 
context.  The enhancement mechanisms may become the process 
design patterns of future Scrum teams.  Enhancing deep 
interlock may provide scale-free access to all affected parties so 
that the entire system reacts synchronously, giving rise to a 
whole new branch of organizational patterns or a deeper 
understanding of existing ones.  These are just two ideas, meant 
to seed the field of possibilities for a new community of 
discourse around these topics. 

8. CONCLUSIONS 
This paper has illustrated key aspects of weak links, examining 
Scrum in terms of those aspects and suggesting that they express 
themselves as characteristics of Christopher Alexander’s life.  
This section is not intended to be a conclusion but an invitation 
to further investigations in this area, with the ultimate goal of 
redefining what makes an effective software development 
process in the context of the socio-economic system it supports.  
Scrum supporters have said for years that their process has its 
practical basis in empirical process control but is informed by 
such abstract theoretical disciplines as artificial life and complex 
adaptive systems.  Its success may rest, however, not in its 
similarity to these areas, but in a shared ancestor grounded in 
weak links.  Mining other disciplines for diagnostic and 
measurement techniques may provide agile software 
development, and Scrum in particular, with a completely new 
set of metrics that generate far greater insight into the 
connections between IT, management, and business than 
anything currently defined.   
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