
Freeway Patterns for SOA Systems
Vinod Sarma N
MindTree Ltd.

Global Village, RVCE Post, Mysore Rd
Bangalore – 560069, India

+91-80-67064000

vinodsn@mindtree.com

Srinivas Rao Bhagavatula
MindTree Ltd.

Global Village, RVCE Post, Mysore Rd
Bangalore – 560069, India

+91-80-67064000

srinivasrb@mindtree.com

ABSTRACT

Business processes typically contain multiple process steps. In a

service oriented landscape, these process steps are realized as

services. An implementation of a business process is hence

composed of multiple service invocations. In a service oriented

landscape, a process model doesn’t exist in isolation; it is

supplemented by other paradigms which allow the process model

to be executed. This paper presents all of these as patterns, and

describes how these can be tied together to create a dynamic

service oriented landscape. The patterns that this paper describes

are:

- Service orchestration – the modeling of a business process as

a set of process steps

- Service registry – a mapping of process steps to service

endpoints

- Service monitor – a mechanism to monitor the health of an

endpoint

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures – Patterns

General Terms
Design

Keywords
SOA, Pattern, Architecture

1. INTRODUCTION
This paper describes three architecture patterns for use in building

a service oriented architecture (SOA) solutions. It then describes a

fourth pattern that composes these three patterns.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior

specific permission. A preliminary version of this paper was presented in

a writers’ workshop at the 15th Conference on Pattern Languages of

Programs (PLoP). PLoP ’08, October 18–20, 2008, Nashville, TN, USA.

Copyright 2008 is held by the author(s). ACM 978-1-60558-151-4.

2. INTENDED AUDIENCE
The first three patterns are targeted at people who are starting out

on service oriented architecture. The fourth – Freeway – is

targeted at solution architects who are looking to design service

oriented landscapes.

3. PATTERN 1 – SERVICE

ORCHESTRATION

3.1 Context
Consider a business process that consists of multiple steps to

achieve its functionality. In an SOA environment, each of these

steps could be realized as services. While it is possible to string

together these services in code to implement this entire process,

this makes it hard to quickly change the process.

3.2 Problem
In a service oriented landscape, how can a business process be

implemented as a composition of multiple services?

3.3 Example
The creation of a customer savings account in a bank requires the

following steps:

- Gathering customer information

- Verifying customer information

- Checking for duplicates in the bank’s systems

- Carrying out a background check

- Creating the account in the core banking system

Each of these is implemented as a service. The services that

perform these steps are:

1. Add Customer Information Service – invoked by a front-

end application to enter customer information as present

in the KYC (Know your Customer) form, into the system

2. Check Customer Information Service – used to enter

validity of customer information as gathered by field

agents, into the system

3. Check Duplicate Service – used to check if this customer

exists in the bank’s loan account system

4. Link Account Service – used to link the customer’s loan

account to this savings account

5. Blacklist Check Service – used to query blacklist lists

6. Create Customer Account – used to create the customer

account in the core banking system

A flowchart for this is:

Start

Get Customer

Information

Verify Customer

Information

Is Duplicate?

Do Blacklist Check

Create Customer

Account

N

Link Customer

Account
Y

Stop

Stop

Figure 1. Example flowchart for customer account creation

While this is the current process, it should be possible to modify

this process – for instance, the process could be changed to also

check for political exposure.

3.4 Forces
In solving this problem, various forces need to be balanced. Some

of these are:

1. Business processes consist of multiple steps, and are liable to

change with steps being changed, added, or removed.

2. The steps can be executed either in a serial or a parallel

fashion, or a combination.

3. Business processes can also contain constructs like loops,

decision points, joins, etc.

4. There may be multiple service implementations that can

service a process step; the model may not have adequate

information to decide on the actual service endpoint during

its design.

3.5 Solution
Represent the business process as a composition of process steps

using a well-defined schema. The schema is a representation of

two types of elements – paths, and tasks. Paths are a serial

combination of tasks. Tasks are of multiple types. Some examples

are:

- Service tasks that invoke a service endpoint

- Decision tasks that choose between two paths

- Parallel tasks that spawn off a new parallel path of execution

- Synchronization tasks that join multiple paths

The tasks are not tied to a particular service endpoint. Rather, they

are identifiers of services that can be looked up via the Service

Registry. This distinction allows the business process description

to be independent of the implementation, and allows for choosing

different endpoints based on QoS or SLA requirements.

This representation is termed Service Orchestration.

3.6 Structure
Service Orchestration

Path Task

Service Task Decision Task Parallel Task Sync Task ...

1 1..*

1

1..*

spawns

synchronizes

1..*

1..*

2

Figure 2. Service Orientation Structure

As described above, a service orchestration is a collection of

paths, each of which contain a number of tasks. All tasks derive

from an abstract task, which contains common functionality

across tasks. Tasks can themselves result in additional paths being

created (for instance, the decision task, or the parallel tasks), and

can coalesce multiple paths into one (for instance, the sync task).

3.7 Example Resolved
The example in the Example section can be represented as an

orchestration in XML format; a sample representation is shown

here:

<?xml version="1.0" encoding="utf-8"?>
<process name="CreateCustomer">
 <path id="start">
 <task id="GetInfo" type="service">
 <service id="AddCustomerInfo"/>
 </task>
 <task id="CheckInfo" type="service">
 <service id="CheckCustomerInfo"/>
 </task>
 <task id="CheckDuplicate" type="decision"
 decisionservice="CheckDuplicate">
 <path id="IsDuplicate" type="TruePath">
 <task id="LinkAccount" type="service">
 <service id="LinkLoanAccount"/>
 </task>
 </path>
 <path id="NotDuplicate" type="FalsePath">
 <task id="CheckBlacklist"
type="service">
 <service id="CheckBlacklist"/>
 </task>
 <task id="CreateCustomer"
type="service">
 <service id="CreateCustomerAccount"/>
 </task>
 </path>
 </task>
 </path>
</process>

Figure 3. Sample XML representation for customer creation

process

Each of the service IDs here represent an identifier that allows the

actual service implementation to be looked up from the Service

Registry. Through this model, the process definition can be

modified by modifying the XML representation. For example, to

add a check for political exposure – assuming the service to do

this is already implemented – a new task element is added

between the blacklist check and customer creation tasks.

3.8 Consequences
Using a service orchestration has the following positive

consequences:

1. The definition of the business process is moved from code to

a separate representation, thus making this representation

directly editable.

2. The model contains information about how steps are to be

executed, and how they can be combined.

3. The model contains information about constructs like

decisions, etc.

4. The tasks in the orchestration are not explicitly tied to

service endpoints, thus making it easy to replace endpoints

without changing the business process itself.

The service orchestration pattern has the following negative

consequences:

1. The model needs to be interpreted by an “orchestration

engine” which adds complexity.

2. The model itself does not directly address issues like

exception handling; this needs to be sufficiently specified in

the orchestration engine.

3.9 Implementation
Implementing service orchestration has the following steps:

3.9.1 Model Specification and Storage

The orchestration model can be specified as XML, and stored on

the file system. The schema can then be specified using an XSD.

The orchestration model may also be loaded and cached in

memory to improve performance.

3.9.2 Model Interpretation

The orchestration model can then be parsed by a parser, and the

different types of elements and their sequence can be interpreted.

The parsed model can also be kept cached in memory, to avoid

repeated caching. The action taken for each of the elements

depends on the type of the element:

- Service task elements need to have the indicated service

invoked.

- Decision task elements need to have the deciding service

invoked, and based on the outcome, execute either of two

paths. Each of these paths can be composed of any number of

tasks.

- Parallel task elements need to fork multiple paths of

execution, and execute them on different threads of

execution.

- Synchronization tasks wait for multiple target threads of

execution to complete, before passing on control to

subsequent steps.

3.9.3 Model Processing

In processing the mode, the following key aspects need to be kept

in mind:

- Context flow: Since the entire model is about executing a

business process, the different steps need to operate in the

context of that business process. The context must hence

flow across the steps of the model. The system executing the

model must create an initial context, and pass that in through

each of the tasks of the model. A task can modify the context

with the result of its operation, thus enabling downstream

tasks to modify their behavior if required. When the model

requires creating new threads of execution, the context must

be passed into each thread of execution. When parallel

threads of execution are joined back in a synchronization

task, the context must be merged back, and any conflicts

must be resolved.

- Transactional Behavior: The model may need to be

augmented to specify transactional behavior of the business

process. Each task then needs to honor this transaction

specification, and also pass on this context in any threads of

execution that have been created. Services that implement a

standard like WS-Transaction [1] can participate directly in a

transaction, while those that do not will need to implement

compensating transactions, which can be called in the event

of a rollback.

- Exception Handling: An exception that occurs in any of the

tasks needs to be signaled. This can be done in multiple

ways. The simplest is to set an exception flag in the context,

and let the model executor take the appropriate action.

3.10 Known Uses
1. Business Process Execution Language (BPEL) [2] provides a

way to represent business processes in a defined schema that

allows the representation of the elements described above,

for the service orchestration pattern. Web Services BPEL

(WS-BPEL) [3] also allows representation of abstract

processes, which are the representation of abstract tasks

without endpoint information.

2. Sonic ESB [4] has the concept of an Itinerary [5] that is

equivalent to the service orchestration.

4. PATTERN 2 – SERVICE REGISTRY

4.1 Context
Consider a service orchestration that provides a representation of

a business process. If the orchestration definition is tied to

specific service endpoints, then the successful execution of the

orchestration depends on whether or not all the endpoints are

operational. This context also applies to any client applications

that are tied directly to a specific endpoint.

In another context, consider a process step in an orchestration that

is implemented by multiple service endpoints, but which have

different QoS or SLA specifications. In this case, there needs to

be a way to store which endpoints implement which process steps,

with which SLA, so as to be able to choose one appropriately.

4.2 Problem
In a service oriented landscape, how can an endpoint be

interchanged for another, without affecting callers?

4.3 Example
When creating a bank account for a customer, one of the steps is

that of checking a blacklist. Checking the blacklist is a vey

intensive process, since it involves checking against multiple

databases, and thus takes a lot of time. For high net-worth

individuals (HNI), it is required that this check take place more

quickly than others. For this purpose, the service is being planned

to be hosted on two sets of servers – one more powerful than the

other. The account creation program must not be hard-coded to

use either service hosting.

4.4 Forces
The following forces need to be balanced here:

1. A caller is only aware of the service contract, and not the

actual service implementation itself.

2. One process step can be implemented by multiple endpoints,

each of which has a different SLA or QoS specification.

3. A service implementation’s health may vary with time, load,

and other factors.

4.5 Solution
Abstract the knowledge of actual service endpoints from callers

by having a registry of service endpoints that include both regular

services, as well as service orchestrations, identified by unique

identifiers, and let callers look up the endpoint from the identifier.

In the context of a service orchestration, the identifiers are

representations of the process steps of the orchestration.

In its raw form, the service registry is just that – a registry of

service endpoints – but in a service oriented landscape, where

multiple service endpoints can implement the same functionality,

it is also important to attach additional information along with the

endpoint. Examples of such information could be the QoS level

for this endpoint, the SLA that can be associated with this

endpoint, etc. These will subsequently be used to discover

services based on SLA requirements of callers.

In addition to the above additional information, the registry can

also contain information related to the current state or health of

the service endpoint. This information is updated by the service

monitor. (See sec. 4 for more detail on the service monitor).

4.6 Structure

Figure 4. Service Registry Structure

The service registry contains a number of registry entries, each of

which contains all information about the service endpoint. The

information is that of the endpoint’s location, (the address) the

binding (how the service is to be invoked), the contract

implemented by the service endpoint, the QoS or SLA supported

by the service endpoint, and the current health of the endpoint.

The service contract is not an instance of the contract, but the

location of the contract description. In a web service scenario, this

would be the location of the WSDL [6] for the service.

Since a given functionality (a process step in the context of

service orchestration) can be implemented by multiple services,

each process step / functionality is identified uniquely by a

process ID. In the service registry, there can be multiple registry

entries for one process ID, each corresponding to an

implementation of this functionality at one endpoint.

The registry will contain multiple ways to lookup a registry (one

is illustrated as a method in the class diagram as an example).

These lookups can be based on complete or partial SLA

requirements, in addition to the process identifier itself, which is

essential. The process identifier is an identifier for the process

step functionality that this service implements. The lookup

operation will return one service registry endpoint that satisfies

this SLA requirement, and that is considered healthy.

4.7 Example Resolved
In the bank account creation scenario, the service registry contains

the following entries: (The contract, and health columns are

omitted, and SLA is shown in a simplified fashion here.)

Table 1. Sample service registry entries for customer creation

process

Process ID Endpoint (Address, Binding) SLA

AddCustome

rInfo

http://banking.example.com/AddCu

stomer.asmx
Normal

CheckCusto

merInfo

http://banking.example.com/Check

Customer.asmx
Normal

CheckDuplic

ate

http://banking.example.com/Check

Duplicate.asmx
Normal

LinkAccount http://banking.example.com/LinkLo

anAccount.asmx
Normal

CheckBlackli

st

http://banking.example.com/CheckB

lacklist.asmx
Normal

CheckBlackli

st

http://hni.example.com/CheckCusto

mer.asmx
High

CreateCusto

mer

http://banking.example.com/Check

Customer.asmx
Normal

In this example, when a caller requires a blacklist check operation,

instead of binding directly to a specific service endpoint, the caller

requests the service registry to return a service endpoint based on

the process ID (CheckBlacklist). The blacklist check operation

requested for a HNI will have a requested SLA of “high”, while

that for a regular account has a requested SLA of “Normal”. The

registry can then return the correct blacklist check service

endpoint. In case one of the endpoints is down, the registry can

choose to return the other endpoint, thus extending availability.

4.8 Consequences
Using a service registry has the following positive consequences:

1. The caller is decoupled from the actual endpoint of the

service, thus allowing for a switch to a different endpoint as

required.

2. One service contract can be implemented at multiple service

endpoints, thus resulting in flexibility of providing different

SLAs for each implementation.

3. The logic of ascertaining an appropriate endpoint based on

various parameters is moved from the caller to the registry.

This makes implementing the caller simpler.

4. The registry acts as an authoritative directory of all services

present in the landscape.

The service registry has the following negative consequences:

1. The caller needs to call into the registry at least once, to look

up the endpoint, as opposed to directly being aware of the

endpoint. There is hence a tradeoff between the overhead of

this additional lookup and the benefit of the abstraction.

4.9 Implementation
Implementing the service registry has the following aspects:

4.9.1 Service Information Storage

The set of services can be stored in any durable store, such as a

database. Since the number of service lookups may be high, the

set of service can be kept cached in memory, and synchronized

with the durable store. The cache can then be used for queries.

4.9.2 Service Lookup

Service lookups can be provided in multiple ways, based on a

variety of parameters. The service registry can hence choose to

expose multiple methods, each of which provides for different

parameters being passed. A better alternative is to pass in a

lookup context that encapsulates these parameters, and let the

service registry return an endpoint based on the values of the

parameters. The implementation of the lookup logic itself can

follow the strategy pattern, so as to enable new implementations

of the lookup logic at a later point.

Basic lookup implementations could simply be a round-robin

across entries, while more sophisticated ones could involve

selections based on advertised SLAs, requested SLAs, and actual

current health.

4.9.3 Calling Clients

Calling clients can choose to lookup the registry for every call. On

the other hand, to mitigate the overhead of repeated lookups, a

client may choose to cache the returned registry entry, either for a

period of time or till the entry becomes invalid. This would

require additional error handling and retry logic on the client side.

4.10 Known Uses
Most enterprise service bus [7] implementations have a service

registry. Examples of service registry are those in the Sonic ESB,

and the WebSphere Service Registry [8].

5. PATTERN 3 – SERVICE MONITOR

5.1 Context
Consider a service oriented landscape where callers are abstracted

from actual service endpoint information, by means of a service

registry. In such a scenario, when a caller needs to actually use the

service, the endpoint may or may not be available, or be able to

deliver a particular performance level. The health of the endpoint

is hence variable, and dependent on many factors. This can then

affect the SLA or response time of the caller itself.

5.2 Problem
How can the health and performance of a service endpoint be

monitored and published, so that callers are aware of this

information prior to calling the service?

5.3 Example
One of the steps in the customer creation process is that of

checking duplicate entries for a customer. If the duplicate-check

service is down, the caller of this service would attempt to make a

call to this service, and only if the service doesn’t respond in time,

would the caller choose alternative actions like returning an error,

etc. In some cases, the caller may need to wait for a timeout in

case the service is down. If the duplicate-check service were also

hosted on multiple endpoints, then the caller would need to make

the same check on each service endpoint in turn, thus potentially

taking a lot of time trying to make this call, which may not be

acceptable.

5.4 Forces
The following forces need to be balanced here:

1. Having self-monitoring built into the service overloads the

service, and isn’t isolated from the service.

2. Services can be implemented on multiple technology stacks,

monitoring on each of which could be different.

3. Querying endpoint information repeatedly can be an

overhead both on the caller, and the entity supplying the

health information.

5.5 Solution
Have external agents that monitor one service endpoint each. A

central service monitor communicates with each agent, for

consolidating results across all services. The service monitor then

publishes these results either into its repository, or into the service

registry. The agents record the current characteristics of health

and status of the endpoint at multiple levels – at a physical node

level, at a service level, and at specific functionality level.

Monitoring at a specific functionality level requires the service to

have additional functionality to do the health check – for instance,

providing a heart beat function that can be called by the monitor.

The agent is specific to the operating system it is deployed on, but

is generic across the technology stack of the endpoint itself, as

long as standards, like web services, are used by the endpoint.

5.6 Structure

Service Monitor

Service Agent

Service Caller

1

1..*

polls

1 1..*

monitors

1..*

1

queries

+Address

+Binding

Service Endpoint

Figure 5. Service Monitor structure

This structure depicts the core participants, and doesn’t depict

additional participants that would result for the implementation

of the subscription or polling models.

The service agent communicates with the service endpoint for

checking its health. One service agent would typically monitor

multiple endpoints on the same physical machine. The service

monitor gets its data from the various service agents present. An

alternative is to have the agent publish its results to the service

monitor. The service caller queries the service monitor for the

health for a given endpoint, before invoking it.

5.7 Example Resolved
In the above example, the agent monitoring the duplicate-check

endpoint checks would have detected that the particular endpoint

is down, and updates the status with the service monitor. The

caller of this service then, before trying to invoke the service,

checks its health first. The caller thus becomes aware of the

service health without having to invoke it and wait. The caller can

then take alternative actions, like returning an error, or using other

endpoints.

5.8 Consequences
Using a service monitor has the following positive consequences:

1. Having an agent separate from the service allows the service

to focus on its functionality, and not affect its own

performance.

2. A per-OS agent allows multiple operating systems to be

targeted. The agent interaction with the service itself is

independent of technology in the scenario of a standard

technology like web services.

3. The centralized service monitor allows endpoint health

queries not to impact service performance.

4. A service monitor centralizes the mechanisms of collecting

health information from disparate endpoints. It hence moves

this concern out of callers, so callers are aware only of one

monitor, as opposed to multiple mechanisms per endpoint.

The service monitor has the following negative consequences:

1. Depending on the type of notification mechanism used, there

will be an overhead on the endpoint itself, due to the

monitoring.

5.9 Implementation
Multiple mechanisms can be employed for keeping the health

status up-to-date. These are listed below:

1. Polling-based: The service monitor polls each agent on a

periodic basis; the agent then queries the health, and returns

the health information to the monitor.

2. Subscription-based: The service agent is subscribed to events

on the endpoint, and is notified of health changes. The

monitor is subscribed to these agent events and is notified

when the agent is notified of health changes. This mechanism

is limited in that it doesn’t automatically detect outages.

3. Polling + subscription based: Have agents collect health

information via both subscriptions to events and polling, to

detect outages. The monitor is subscribed to these agent

events and is notified when the agent updates health

information. This mechanism doesn’t detect agent outages.

The monitor itself can then expose a mechanism such as publish-

subscribe using the Observer [9] pattern, and a query mechanism

for callers to use, to be notified of health changes, or to query for

current health status.

The service health can be stored directly in the service registry

itself, thus allowing the service registry to directly return a service

endpoint based on the additional facet of service health.

5.10 Known Uses
1. SNMP systems [10] use monitors and agents to monitor

system health.

6. PUTTING IT ALL TOGETHER – THE

FREEWAY PATTERN

6.1 Context
In a service oriented landscape, even with entities such as a

service orchestration, a service registry, and a service monitor, the

task of actually executing an end-to-end business process is still

complex. To correctly ascertain which service endpoint to invoke,

the system must perform the following steps:

1. A caller looks up a service orchestration from a process

identifier.

2. The caller then parses the service orchestration, and picks up

the individual process steps.

3. For each process step, the caller queries the service registry

to match an endpoint to the service ID and the SLA required.

4. The caller then queries the service monitor for the current

health of the endpoint.

5. The caller then invokes the endpoint, and passes control

through the rest of the orchestration.

Executing the end-to-end business process in this fashion is

similar to working out a physical path from one destination to

another:

1. A commuter looks up a map to figure out how to get from

one place to another.

2. The commuter then “parses” the map, and works out

intermediate towns that will be encountered.

3. The commuter then works out choices of which type of road

(freeways, by lanes, country roads, etc.) to use for each of the

segments on the map, based on the requirements for speed,

traffic conditions, etc.

4. When traveling, the commuter ensures that the road in

question is actually still okay (for instance, by listening to

traffic reports, looking for deviation signs, etc.), and if

needed, re-evaluates alternatives (for instance, use a parallel

country road instead.)

5. The commuter then continues through the rest of the map.

6.2 Problem
How does a caller execute a service orchestration without needing

to bother about the underlying complexity of discovering and

matching the most appropriate endpoints to individual process

steps?

6.3 Example
The creation of a customer savings account in a bank requires the

execution of a number of steps. The overall creation process has a

different expected completion time based on the type of customer

– whether the customer is a regular customer, or a high net worth

individual (HNI). Each of the steps in the process, such as

customer information entry, duplicate checks, background checks,

etc. are implemented as services. These services are deployed in

two sets of environments, so that the performance of creation of

the HNI accounts is not impacted by that of the creation of regular

customer accounts. The software which drives the account

creation process is generic, and hence must choose the service

endpoints based on the end to end process, the type of account,

and which of the services is capable of performing better.

6.4 Forces
The following forces need to be balanced:

1. Getting to the set of endpoints takes a number of steps.

2. Each of the steps can be realized in multiple ways – SLA

matching can be implemented via varied algorithms,

orchestration parsing is dependent on the format of the

orchestration, etc.

3. Callers should not be aware of too many entities (like the

orchestration, registry, monitor, etc.) to be able to take

advantage of a service oriented landscape.

6.5 Solution
Have an orchestration engine to which callers can supply what

functionality is to be achieved, and what SLAs are required, and

let the orchestration engine encapsulate the various steps needed

to decide the actual endpoints to be invoked, and carry out the

invocation of these endpoints as per the orchestration.

The orchestration engine ties together the three patterns described

above, to be able to achieve this function. This is done via two

additional components – the orchestration interpreter, and the

service dispatcher – in the following sequence:

1. Caller invokes the orchestration engine to execute a process.

2. The orchestration engine looks up the service registry to pick

up the service orchestration for this business process.

3. The orchestration engine invokes an orchestration interpreter

to parse the orchestration, and to derive individual process

steps and paths.

4. The orchestration engine then evaluates and executes each of

the process steps. For each process step that involves

invoking a service, the orchestration engine passes control to

a service dispatcher component.

5. The service dispatcher uses the service registry to look up the

endpoint, and evaluates the current health of the endpoint

using the service monitor. If required, the dispatcher can

look up additional endpoints as well.

6. The service dispatcher invokes the endpoint, and returns the

results back to the orchestration engine.

7. The orchestration engine then goes through the rest of the

orchestration.

The pattern of how the orchestration engine interacts with and ties

together the service orchestration, the service registry, and the

service monitor, using the other components of the service

dispatcher and the orchestration interpreter is termed the Freeway

Pattern.

6.6 Structure

Figure 6. Freeway Pattern structure

The roles in this structure are:

1. The Caller: The caller interacts with the orchestration engine

to execute a business process.

2. The Orchestration Engine: The orchestration engine is

aware of the following entities:

o The service registry, to look up the orchestration.

o The orchestration interpreter to interpret the

orchestration returned by the registry.

o The service dispatcher to which it passes the steps

returned by the orchestration interpreter.

3. The Orchestration Interpreter: The orchestration

interpreter is essentially a parser that is aware of the schema

of the orchestration. The orchestration interpreter parses the

orchestration, and returns the set of paths that make up the

orchestration.

4. The Service Dispatcher: The service dispatcher is

responsible for invoking the service specified in the task

returned by the orchestration interpreter. In this, it interacts

with the service registry to look up the service endpoint for

the task, and for the endpoint, it fetches the health of the

endpoint through the service monitor, based on which it

invokes the endpoint. The result of the invocation is passed

back to the orchestration engine, which then goes through

the rest of the steps specified in the orchestration.

6.7 Example Resolved
The account creation now simply invokes the orchestration

engine, and asks it to execute the customer account creation

process. The orchestration engine then goes through the steps

detailed above, to invoke the individual services. During the

lookup of the service from the service registry, it also passes along

a priority (high, for HNI, normal, for regular accounts), based on

which the service registry returns the most suitable endpoint.

Before invoking the endpoint, the actual health is obtained via the

service monitor. If the intended endpoint is busy or down, then an

alternative endpoint is invoked, thus ensuring that the overall

process is completed in an optimal manner.

6.8 Consequences
Using the freeway pattern has the following consequences:

1. The caller only follows a one-step process of invoking the

orchestration engine.

2. The specifics of different operations are encapsulated in the

service dispatcher and the orchestration interpreter, thus

shielding the caller from the complexity of their

implementation. The implementation can subsequently be

varied if needed.

3. The caller is aware of only one entity – the orchestration

engine.

4. Service orchestrations can be executed in an optimum

fashion, taking into account both static factors (for instance,

an endpoint’s QoS) and dynamic factors (for instance, the

health of an endpoint).

5. Additional services and service endpoints can be plugged in

with little or no impact to the rest of the landscape.

6.9 Implementation
6.9.1 Orchestration Engine

The orchestration engine manages the state of the overall process.

In addition, since each of the services may need to act within the

context of the business process, the orchestration engine passes a

context to each of the services through the service dispatcher.

Services can update this context, which can then be used for

subsequent decisions by the orchestration engine.

6.9.2 Orchestration Interpreter

The orchestration interpreter’s implementation is dependent on

the schema of the orchestration. The implementation can be done

using the Builder pattern [11].

6.9.3 Service Dispatcher

The service dispatcher’s implementation is straightforward, and

involves a service lookup using the service registry, and a health

lookup using the service monitor. The dispatcher passes along the

context it obtains from the orchestration engine to the endpoint,

and returns the resulting context and the invocation results back to

the orchestration engine.

6.10 Known Uses
1. Enterprise Service Bus [7] implementations like Sonic ESB [4]

follow similar paradigms, using a service orchestration, a

service registry, and a service dispatcher. The service

dispatcher essentially sends a message to an “endpoint”

which is an abstraction of the actual connection. The

endpoint is then mapped to a “connection” which is the

actual service endpoint that receives the invocation.

2. Microsoft’s Connected Service Framework (CSF) [12]

implements a way to specify a service combination, a registry

of services, and a service monitoring mechanism to

dynamically map, invoke and route between services.

3. MindTree’s SOA framework, Momentum, provides similar

functionality using a service registry and a service monitor,

though it doesn’t have the orchestration component in it.

7. RELATED PATTERNS
Table 2. Related Patterns

Item Description

Observer
Is used in this pattern for monitors and brokers

to be notified of service host status

Pipes and

Filters [13]

Is a “straight-path” implementation of a service

orchestration that provides a single line of

control flow

Broker [14]

Pattern to hide the implementation details of

identifying the service host by encapsulating

them into a layer other than the business

component itself

Factory

Method [15]

Optionally could be used in this pattern to

create the service proxy

8. ACKNOWLEDGMENTS
Bobby Woolf, for PLoP shepherding and for feedback during the

IBM-Hillside Patterns Workshop.

Ademar Aguiar, Adriana Chis, Alexander M Ernst, Atsuto Kubo,

Filipe F Correia, Hugo Ferreira, Joseph W. Yoder, Nuno Flores,

Peter Sommerlad, Peter Swinburne, Ralph Johnson, Rebecca

Wirfs-Brock, for the Writers’ Workshop in PLoP 2008, Nashville.

Richard Gabriel, Rebecca Rikner, Kyle Brown, for the Writer’s

Workshop (IBM-Hillside Patterns Workshop).

Paul Adamczyk, for shepherding in preparation for VikingPLoP.

9. GLOSSARY
This section contains a brief description of some of the terms used

in this document.

Table 3. Glossary of Terms

Item Description

Address

In this context, the location of a service

endpoint (for example, a URL for a web

service)

Binding

In this context, the protocol by which a service

is invoked (for example, SOAP over HTTP is

the binding for web services)

BPEL
Business Process Execution Language – a way

to specify a service orchestration n model

(Service)

Caller

An invoker and consumer of a service’s

functionality

(Service)

Contract
The specification of a service’s interface

(Service)

Endpoint

A concrete implementation of a service

contract

ESB

Enterprise Service Bus – middleware that

allows callers of services, and implementations

of services to be connected via a hub-and-

spoke model

(Service)

Host
A process that hosts a service endpoint

QoS
Quality of Service; in this context, a measure of

a service endpoint’s performance capability

SLA

Service Level Agreement; in this context, a

measure of a service endpoint’s performance

and availability guarantee

SNMP

Simple Network Management Protocol – a

protocol to monitor hardware resources like

servers

WSDL
Web Service Definition Language, a way to

specify the service contract for web services

XML
Extensible Markup Language – a HTML-like

tag-based representation of data.

XSD
XML Schema Definition – a way to describe

the schema of an XML document

10. REFERENCES
[1] OASIS: Web Service Atomic Transaction –

http://docs.oasis-open.org/ws-tx/wsat/2006/06

[2] Business Process Execution Language –
http://en.wikipedia.org/wiki/Business_Process_Execution_L

anguage

[3] OASIS: Web Services Business Process Execution Language

– http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-

OS.html

[4] Progress Software: Sonic ESB –
http://www.sonicsoftware.com/products/sonic_esb/index.ssp

[5] Progress Software: Sonic ESB – ESB Architecture &
Lifecycle Definition –

http://www.sonicsoftware.com/products/sonic_esb/architectu

re_definition/index.ssp

[6] Web Services Description Language (WSDL) 1.1 –

http://www.w3.org/TR/wsdl

[7] Enterprise Service Bus -
http://en.wikipedia.org/wiki/Enterprise_Service_Bus

[8] IBM: WebSphere Service Registry and Repository -

Software – http://www.ibm.com/software/integration/wsrr

[9] Observer pattern: Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides – Design Patterns: Elements of

Reusable Object Oriented Software

[10] Simple Network Management Protocol –
http://en.wikipedia.org/wiki/Simple_Network_Management_

Protocol

[11] Builder pattern: Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides – Design Patterns: Elements of

Reusable Object Oriented Software

[12] Microsoft Connected Services Framework –
http://msdn.microsoft.com/en-us/library/aa303436.aspx

[13] Pipes and Filters pattern – Buschmann, F., R. Meunier, H.
Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented

Software Architecture: A System Of Patterns

[14] Broker pattern – Buschmann, F., R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal. Pattern-Oriented Software

Architecture: A System Of Patterns

[15] Factory Method pattern: Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides – Design Patterns: Elements of

Reusable Object Oriented Software

