
Patterns for Consistent Software Documentation

Filipe Figueiredo Correia
Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n
filipe.correia@fe.up.pt

Hugo Sereno Ferreira
INESC Porto

Faculdade de Engenharia
Universidade do Porto

Rua Dr. Roberto Frias, s/n
hugo.sereno@fe.up.pt

Ademar Aguiar
INESC Porto

Faculdade de Engenharia
Universidade do Porto

Rua Dr. Roberto Frias, s/n
ademar.aguiar@fe.up.pt

Nuno Flores
Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n
nuno.flores@fe.up.pt

ABSTRACT
Documentation is an important part of the captured knowl-
edge of a software project, providing a flexible and effective
way of recording informal contents. However, maintaining
documentation’s consistency requires a considerable effort.
Existing solutions encompass different tools and approaches
that support the process of creating, evolving and using doc-
uments and other artifacts derived from the software devel-
opment process. Based on existing literature and exper-
tise, we have identified the key problems and solutions for
documentation consistency. In concrete, four distinct pat-
terns and their relations were identified, which are here de-
scribed — Information Proximity, Co-Evolution, Do-
main-Structured Information and Integrated Envi-
ronment.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Documentation; D.2.11 [Software Architectures]: Pat-
terns

1. INTRODUCTION
The artifacts created and evolved during from software de-

velopment process are forms of captured knowledge. They
are of different natures and capture several types of infor-
mation. Some of them are more structured and formal, and
thus specialized; others are more flexible and may be used
to express virtually any intended topic.

Despite being useful for any software project, the value of
software documentation depends on its ability to convey ac-
curate information. It is therefore imperative to assure that
it remains consistent. Yet, current production of software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. Preliminary versions of these papers were presented in a writ-
ers’ workshop at the 16th Conference on Pattern Languages of Programs
(PLoP).
PLoP’09 August 28-30, Chicago, Illinois, USA
Copyright 2009 is held by the authors. ACM 978-1-60558-873-5.

documentation still typically focuses on capturing informal,
unstructured, human-oriented information. Consequently,
ensuring its consistence is a hard to automate process, and
therefore highly dependent upon human intervention.

Also, software systems evolve frequently, implying changes
in code artifacts along with their related documentation (e.g.
requirements, architecture and design documents). In fact,
one of the highest costs of maintaining documentation for a
large system is to ensure that it is kept in-sync within itself
and among its related artifacts, a practice that may require
continuous review.

In this context, inconsistencies essentially occur when par-
ticular information evolves independently, without the evo-
lution of other related parts. Among other reasons, this may
happen because: (a) the author lacks a global knowledge of
all artifact dependencies; (b) a particular change cascades
into multiple other changes, thus making harder the task
of manually tracking them; or (c) as a deliberate way of
reducing the maintenance effort.

It is important to note that documents with different sub-
jects, target audiences, and frequencies of use are likely to
require different degrees of accurateness. This means that
deliberately allowing the documentation to become outdated
may be a reasonable choice in some circumstances. For ex-
ample, some types of documents are useful only within a
specific time period, and there may be no value in updating
them beyond it. For some projects, it is therefore advisable
to take an agile approach towards documentation, produc-
ing and evolving it just enough and when needed, to better
satisfy the project at hands.

Patterns addressing the topic of software documentation
have previously been documented. The book “Agile Docu-
mentation: A Pattern Guide to Producing Lightweight Doc-
uments for Software Projects” [18] introduces a set of pat-
terns covering a wide scope of concerns in the production of
software documentation, and the pattern language“Patterns
for Documenting Frameworks” [1, 3, 4, 5, 6] has focused on
framework documentation in particular. Ambler’s work on
agile documentation and modeling is also very relevant to
this topic [9, 8].

Although having some commonalities with the aforemen-
tioned works, the patterns presented in this paper address
software documentation from a consistency standpoint, keep-



ing other important issues in view. They are meant to sup-
port teams on the selection of documentation-related tools,
and to help tool developers to implement the most appro-
priate techniques to support documentation consistency.

2. PATTERNS OVERVIEW
An overview of the patterns, and how they relate to each

other, is depicted in Figure 1.
Since the same information may exist, partially, or totally,

in more than one document, there are implicit relations be-
tween those contents. With no easy way of recovering these
relations, the effort of maintaining consistency increases, as
information may be duplicated and scattered over several
documents. Information Proximity focuses on establish-
ing and using explicit relations among different artifacts.

Software artifacts change to better respond to new needs,
and documentation is required to accompany this evolution.
However, due to the aforementioned intrinsic relations be-
tween different parts of documentation, it is common that
locally introduced changes may render other documentation
parts inconsistent or obsolete. Co-Evolution focuses on
strategies to update documentation while maintaining its
consistency.

Domain-Structured Information deals with structur-
ing contents, with the main objective of automating the pro-
cess of assessing consistency.

Different types of artifact may require different types of
authoring tools. Integrated Environments articulate the
use of different tools and allow them to be used uniformly.

supports

Information
Proximity

Co-Evolution

Domain-Structured 
Information

Integrated 
Environment

supports

supports

converges to

helps

helps

Figure 1: Overview of the patterns and their rela-
tionships.

3. INFORMATION PROXIMITY
Software documentation can be captured as a set of doc-

uments of different types and purposes. Thus, they may
sometimes address the same information from different per-
spectives. However, as documentation evolves, the effort of
keeping them consistent rises due to the proliferation of du-
plicate and closely related contents.

3.1 Problem
How to preserve documentation consistency when frag-

ments of related content are scattered across documents?

Having related information fragments in close proximity
of each other, and having multiple uses of the same infor-
mation, across a set of different documents, are common
needs in software documentation.

There is value in a well established separation of concerns
among different artifacts, as it allows them to be reused
more easily, but there may exist the need to tailor them to
specific contexts, as to maintain a high fitness for purpose.

3.2 Solution
Keep related information fragments easily accessible from

each other, using a single source, links, views, or transclu-
sion, for example, so that it may be easier to assess if they
are in-sync.

The concrete approach to keep related information frag-
ments close to each other greatly depends on the purpose
of the document being produced. Four different alternatives
are considered here and further described in the following
sections.

The use of links is a good choice if the related contents
are not meant to be part of the same document, and single-
source, transclusion and views may be used otherwise.
Single-source may be a good choice if the related contents
can be made part of the same artifact (e.g. source-code and
API documentation are both frequently expressed as text in
the same file), and transclusion or views should be used
when the related contents already exist in other artifacts.
A view may be seen as a special case of transclusion, in
which all contents already exist in other artifacts, while, with
transclusion, the document being authored has contents of
it’s own, and only parts of it are used from other documents.

3.2.1 Variant: Links
Use explicit relations between different resources, so that

related contents are kept separated and readers may easily
travel between them.

Creating links between contents allows to explicitly relate
them, while keeping them as separate entities from both
the authors’ and readers’ viewpoint. Links allow readers to
quickly reach related pieces of information, hence making
easier the process of maintaining them consistent.

The following consequences should be considered when
applying this technique:

Web of Documents. Links leads to the creation of rela-
tions among the existing contents, forming a web of
related documents.

Reuse. Although not a reuse technique per se, links reduce
the need to duplicate contents.

Reachability. Even if information is created, stored and
presented separately, one may easily reach related con-
tents. However, it is worth noting that the achieved
proximity between contents is not necessarily bidirec-
tional — linking the artifact A to artifact B makes B
closer to A, but the opposite isn’t necessarily true, e.g.
if backlinks are not supported.

Effort. Removing duplicated contents requires an additional
effort to detect common information fragments and to
restructure them accordingly.

3.2.2 Variant: Single Source
Capture related information fragments in the same arti-

fact, so that they may be easily maintained close to each
other.



Although this isn’t possible for all kinds of information,
some can be captured together in the same artifact. Doing
so allows related information fragments to be kept consis-
tent since the author can more easily travel between them.
This is thus a form of physical information proximity as the
contents are stored together with the goal of being presented
together to readers and authors.

The following consequences should be considered when
applying this technique:

Single artifact. The reader is presented with a document
based in a single artifact, although including different
types of information.

Reuse. Capturing different information fragments in the
same artifact makes them less modular, and thus more
difficult to reuse.

Reachability. Related information is stored and presented
to the reader close to each other.

Effort. The flow of creating documentation is better than
if these contents were kept separately.

3.2.3 Variant: Transclusion
Import the contents of an information fragment into a doc-

ument by using a reference to it.

Isolating fragments of information as individual units eases
their use for different purposes. Transclusion consists of cre-
ating references to information fragments on a document in
such a way that they are presented to the reader as part
of the document itself. Documents can be composed this
way to fit the author’s intent. Transclusion is a form of
virtual information proximity since the contents are stored
separately.

The following consequences should be considered when
applying this technique:

Document-Oriented. Although leading to the creation of
individual information fragments, the final result is a
document tailored to a specific purpose.

Reuse. Abstracting information into individual units also
allows them to be reused more effectively.

Reachability. Information that may me created and stored
separately is presented to the reader near each other.
However, this proximity may be unidirectional — tran-
scluding the artifact A into artifact B makes A closer
to B, but the opposite isn’t necessarily true.

Effort. The flow of creating documentation may be hin-
dered when authors are faced with the need to abstract
existing information into new distinct units.

3.2.4 Variant: Views
Create a virtual document, composed by different individ-

ual fragments of information.

Views may be called virtual documents, as they have no
content of their own. Instead, they filter, transform and
combine contents according to a desired format into a single
document. It is thus a form of virtual information proximity
in the sense that contents are stored separately.

The following consequences should be considered when
applying this technique:

Document-Oriented. The final result is a document tai-
lored for a specific purpose, although contents may be
woven together from several sources.

Reuse. Weaving contents into a view is an effective way of
reusing them.

Reachability. Information that may be created and stored
separately is presented to the reader near each other.
However, this proximity may be unidirectional — the
contents may be close to one another on the context
of a given view, but it may not be possible to reach
one from the other outside of this context.

3.2.5 Creating Heterogeneous Documents
Using artifacts of different types to create a document

gives rise to a heterogeneous document. This may be achieved
by using techniques, like single-source, transclusion or
views, but different types of information may require dif-
ferent authoring tools, making information fragments more
difficult to combine. From these techniques, single-source
in particular is restrained to formats that may be combined
into the same file, while transclusion and views may more
easily be used with different types of content.

3.3 Related Patterns
This pattern helps Co-Evolution, as keeping related

contents near each other helps to change them together.
Moreover, the creation of explicit relations frequently im-
plies conferring more structure to the contents, which may
converge to Domain-Structured Information.

As with the other patterns in this paper, Information
Proximity greatly benefits from an appropriate tool sup-
port, which may be leveraged by an Integrated Environ-
ment.

Wikis [18] address the use of links but goes beyond the
creation of explicit and navigable relations between resources,
addressing the collaborative nature of this kind of systems.

Single-source is an approach similar to the one taken
by the Code-Comment Proximity pattern [18], but goes
beyond source code and comments, not restricting itself to
any particular type of information.

Transclusion is similar to the Import by Reference
pattern [18], although it focuses on consistency maintenance.

3.4 Known Uses
Hypertext-based systems in general, of which wikis are a

good example, allow to establish links between related re-
sources. The term transclusion appeared initially in the
context of hypertext-based systems. For example, Medi-
awiki, the wiki engine powering Wikipedia, uses this concept
to allow the inclusion of repetitive blocks of content. XS-
Doc [7, 2] is a wiki engine oriented for software development
that uses transclusion to weave together heterogeneous ar-
tifacts, thus giving origin to heterogeneous documents.



Using the technique of Code Annotations (based on sin-
gle source), documentation (or parts of it) can be gener-
ated from a unified representation of textual descriptions
and source code. It is primarily used in the creation of API
documentation and is supported by several tools: Javadoc
[15] is one of the first known uses of the technique, as is
Autoduck [10], a tool supporting code annotations in C++.
The .NET framework uses XML in code annotations to pro-
duce compendiums of API documentation (CHM, HTML,
etc.), in-editor assistance, and code-completion.

Views are frequently the product of an automatic gen-
eration process, in which several contents are combined ac-
cording to a pre-established document form — some tools
exist that support this approach [11].

Literate Programming (LP) [17] combines textual descrip-
tions and source code in a single source file, and provides
the mechanisms to extract such different contents to dif-
ferent artifacts whenever required. The LP tool set dot-
Noweb [20] further allows to combine textual descriptions
and source code with diagrams expressed using the dot lan-
guage. LP systems also usually provide a form of transclu-
sion, by allowing the creation of information fragments —
chunks – which can then be (re)used multiple times across
several documents.

Elucidative Programming [21] is a documentation tech-
nique that relies on the creation of links between source
code and documentation, allowing to mutually navigate be-
tween them.

Several office software suites, such as Microsoft Office and
OpenOffice, allow combining different kinds of artifact in a
same document, also resulting in heterogeneous documents.
Some uses of Literate Programming, such as VDMTools,
directly parse and write .rtf documents which have native
support for images.

4. CO-EVOLUTION
Software documentation can be captured as a set of doc-

uments of different types and purposes. Thus, they may
sometimes address the same information from different per-
spectives. However, as documentation evolves, the effort of
keeping them consistent rises due to the proliferation of du-
plicate and closely related contents.

4.1 Problem
When to update a related piece of information in docu-

mentation?

Changes are made by the authors having the introduc-
tion of added value in view. However, changes required to
ensure consistency don’t always provide immediate benefits,
and may shift the author’s main focus.

Furthermore, the primary goal of the project will not al-
ways be the same. For example, during an inception phase,
the change rate at which documented artifacts evolve is usu-
ally high. This means that changing just enough of the re-
lated information fragments might be the best choice. On
the other hand, deployment phases may benefit from pro-
ducing documentation with a higher level of detail.

Finally, tracking all the required changes may be difficult
to carry out without any kind of auxiliary support, since it
is easy to disregard global consequences during local modi-
fications.

4.2 Solution
When a change is introduced, update the related informa-

tion parts.

If all the related pieces aren’t updated at the same time,
they may grow harder to resync as time passes. Two variants
to the co-evolution of contents are considered here and are
further described on the following sections.

Synchronous co-evolution is a good option when it
is important that documentation is kept consistent at all
times, or if the effort of recovering consistency at a later
time is high. Time-shifted co-evolution may be used
when the effort of recovering consistency is reasonable. This
may happen when it is not difficult to assess the existence
of relations between contents and the presence of inconsis-
tencies between them.

4.2.1 Variant: Synchronous Co-Evolution
Whenever a change is introduced, update every related

piece of information.

Although the quantity of information to be updated may
be considerable, the most reliable way of ensuring consis-
tency is to update all related information at the same time.
Changes are made in small increments, in order to reduce
the risk of forgetting to update something.

The following consequences should be considered when
applying this technique:

State. Documentation is always in a consistent state.

Focus. The focus of the author on the task at hand is harder
to maintain, as some of the changes she is required to
do are not directly related with her main goal.

Effort. Introducing a change to a document carries a higher
up-front cost — it may take more time than expected,
as all the related contents will have to be updated at
the same time.

Efficiency. If a particular fragment has several others that
depend on it, and it has a high rate of change, it may
be inefficient to keep consistency at all times.

4.2.2 Variant: Time-Shifted Co-Evolution
Whenever a change is introduced, provide mechanisms to

track the pending related changes, and update the most rele-
vant pieces of information only when needed.

Related contents don’t need to be updated simultaneously
if the changes that are made are in some way recorded. Au-
thors will be able to, at a later time, assess which are the
pending related changes, and evolve documentation to a con-
sistent state as soon as they are addressed.

For example, using the concept of auditable document
(see section 4.2.3) authors may gain more awareness of the
required modifications, facilitating the detection of changes
that are still to be applied.



The following consequences should be considered when
applying this technique:

State. Consistency is not kept at all time.

Focus. The author may focus solely on the task at hand,
leaving related changes for later.

Effort. Only the changes that bring short term benefits are
required to be made, and related changes may be de-
ferred to a later time.

Efficiency. The task of updating documentation is distribu-
ted across the development process, as documentation
may be updated only when necessary. However, the
author may be faced with the additional effort of track-
ing which information needs to be updated, even if
tools that support this task may exist.

4.2.3 Creating Auditable Documents
An auditable document makes it possible to assess at any

time who, how, why, and what has been produced, by track-
ing information regarding the authoring process.

Being able to follow and understand how a document is
evolved makes the entire process more transparent and trace-
able. However, it is important to note that the tracking
mechanisms may increase the complexity of authoring the
document, and the extra information that is recorded may
increase the storage space consumption. Furthermore, for
heterogeneous documents, tracking the evolution as a whole
may involve tracking different types of artifact.

4.3 Related Patterns
Domain-Structured Information supports Co-Evo-

lution, since making richer information available allows
tracking the information that needs to be co-evolved in greater
detail. Information Proximity helps this pattern too,
since having related contents easily reachable from one an-
other assists in determining which contents are affected by
a particular change.

Some patterns already describe the use of auditable docu-
ments in more concrete scenarios, namely Document His-
tory [18] focuses on maintaining a list of past versions of a
document, and Annotated Changes [18] provides a way
to directly record, inside a document, which of its parts have
recently been modified.

4.4 Known Uses
Literate Programming and Code-Annotations, such as

Javadoc, may be regarded as a way of supporting syn-
chronous co-evolution, as providing Information Prox-
imity helps to co-evolve related information parts simulta-
neously.

Solutions that allow auditable documents to be produced
support time-shifted co-evolution. Wiki engines and ver-
sion control systems are good examples of such solutions,
which allow to track how documents evolve and support as-
sessing which changes are required to maintain consistency.

It is common for text processors to provide a track changes
feature, which is a form of Annotated Changes. This
feature may be used by authors and readers to track the
changes the document has recently gone through. Although
this makes the document auditable to a certain point, it is
usually very limited in time.

5. DOMAIN-STRUCTURED INFORMATION
Documentation usually follows a text-oriented structure,

using elements such as titles, paragraphs, lists, tables, etc.
Although it provides a lot of flexibility, the degree to which
a document is relevant will depend on how well it serves its
purpose and accurately expresses the intended ideas. More-
over, the same piece of information may be better con-
veyed using different perspectives, intrinsically related to
each other.

The main reason why maintaining documentation requires
continuous review is that relations between documentation
parts aren’t explicitly formalized. This decreases the capa-
bility to automatically process it, i.e. in order to automati-
cally assess its consistency.

5.1 Problem
How to structure the information in documentation?

As mentioned before, textual documentation is a flexi-
ble way of capturing knowledge. While this flexibility is an
important asset, formalizing the content itself makes infor-
mation less subject to multiple interpretations, and allows
it to be automatically processed.

However, the mechanisms used to allow a degree of formal-
ization higher than that provided by simple textual descrip-
tions may affect the simplicity in producing documentation.

5.2 Solution
Organize contents according to their domain, so that the

information form directly relates to domain concepts.

Textual documentation doesn’t provide the mechanisms
to formally express the relations between the concepts being
documented. Structuring the contents around the domain
concepts provides the support to automatically assess the
existence of inconsistencies, and prevents the introduction
of new ones.

The following consequences should be considered when
applying this pattern:

Flexibility. Some flexibility is lost whenever information
has to follow a predefined structure.

Automation. The use of a domain-oriented structure with
well defined semantics makes information less open to
different interpretations, and allows it to be processed
by computers.

5.3 Related Patterns
The individual information units often required by Infor-

mation Proximity tend to converge to Domain-Structu-
red Information, as the advantages of organizing the con-
tents around domain concepts emerge. This pattern also
supports Co-Evolution, as it provides a richer base of
traceable information.

As with the other patterns in this paper, Domain-Struc-
tured Information requires appropriate tool support, and
may benefit from the use of an Integrated Environment.

This pattern is similar to Structured Information [18],
in that it also address how documents’ contents are orga-
nized. However, Domain-Structured Information fo-
cuses on formalizing contents according to the information’s
domain, with the aim of automating consistency assessment,
while Structured Information focuses mainly in struc-
turing contents to ease the perception of the readers.



5.4 Known Uses
Code comments are a form of source code documenta-

tion. Code annotations, such as Javadoc comments [15], add
an additional level of structure to source code comments,
formalizing information elements with a lower granularity.
Javadoc allows to describe elements such as method param-
eters, authors, creation dates and references, among others.

Semantic Wikis support Domain-Structured Informa-
tion, and some semantic wiki engines may automatically
detect existing inconsistencies with the use of reasoners [13].

Some wiki engines allow templates to be applied for very
specific purposes. Mediawiki allows the creation of sidebar
templates, through which one may provide structured infor-
mation.

Systems taking an object-oriented approach to documen-
tation have also been use in the past [19, 12].

6. INTEGRATED ENVIRONMENT
Working with different kinds of artifacts frequently im-

plies the use of specialized and independent tools for each
of them. Although such artifacts are sometimes strongly
related, these tools don’t necessarily interoperate, making
the artifacts more difficult to combine and confront, and the
authoring environment heterogeneous and more difficult to
use.

6.1 Problem
How to support the maintenance of consistency between

independent artifacts with related content?

Tools that deal with a wide range of artifacts usually pro-
vide a more homogeneous and interoperable environment,
although they tend to be not as powerful and simple as spe-
cialized tools.

6.2 Solution
Use an integrated environment, where several types of ar-

tifact and their relations may be maintained uniformly.

An integrated environment goes beyond the capabilities
that general purpose tools possess. It supports handling
several types of artifact, providing specialized features for
each of them and an infrastructure through which they in-
teroperate.

This supports strategies of documentation maintenance
that focus on bridging related information parts regardless
of their nature.

The following consequences should be considered when
applying this pattern:

Specialization. Integrated environments strike a balance
between a generic approach, in which tools may han-
dle several types of artifacts with a basic level of func-
tionality, and a specialized approach, in which exists a
deeper support for a selected set of artifact types.

Simplicity. While potentially making each tool more com-
plex individually, their overall simplicity is increased
by providing a more homogeneous usage.

Interoperability. An integrated environment coordinates
the several tools it provides, and supports their inter-
operability.

6.3 Related Patterns
Integrated Environment directly contributes to the

remaining patterns of this paper by orchestrating the several
tools involved. It is also directly related to the pattern Few
Tools [18], which addresses the notion that supporting the
creation of documentation with too many and unconnected
tools may become a burden to authors.

6.4 Known Uses
Eclipse and Visual Studio are examples of integrated envi-

ronments that combine different kinds of artifact and tools,
supporting and articulating their work.

Trac [14] and Redmine [16] are Web-based environments
that integrate different kinds of information, including tex-
tual descriptions supported by a wiki, source-code browsing,
milestone management, issue-tracking, etc.

7. ACKNOWLEDGMENTS
We would like to thank our shepherd, Ralph Johnson, for

his help on the process of improving this paper, as well as
to all the participants of the writer’s workshops where this
paper was discussed, for their insightful comments and sug-
gestions — the Process Writers’ Workshop at PLoP’09, with
Christian Crumlish, Pam Rostal, Robert Hanmer, Xiaohong
Yuan and Zhen Jiang, and the MiniPLoP workshop at OOP-
SLA’09, with Dave West, Eduardo Fernandez, Joseph Yo-
der, Pam Rostal and Richard Gabriel. A special thanks to
Bob Hanmer for several suggestions regarding the English
language used on the paper.

We would also like to thank the Portuguese Foundation for
Science and Technology and ParadigmaXis, S.A. for spon-
soring this work through the doctorate scholarship grant
SFRH / BDE / 33298 / 2008.

8. REFERENCES
[1] A. Aguiar and G. David. Patterns for documenting

frameworks — Part I. Helsinki, Finland, Sept. 2005.

[2] A. Aguiar and G. David. WikiWiki weaving
heterogeneous software artifacts. In Proceedings of the
2005 international symposium on Wikis, pages 67–74,
San Diego, California, 2005. ACM.

[3] A. Aguiar and G. David. Patterns for documenting
frameworks — Part II. Irsee, Germany, July 2006.

[4] A. Aguiar and G. David. Patterns for documenting
frameworks — Part III. Portland, Oregon, USA, Oct.
2006.

[5] A. Aguiar and G. David. Patterns for documenting
frameworks: customization. In Proceedings of the 2006
conference on Pattern languages of programs, pages
1–10, Portland, Oregon, 2006. ACM.

[6] A. Aguiar and G. David. Patterns for documenting
frameworks - process. Recife, Brazil, May 2007.

[7] A. Aguiar, G. David, and M. Padilha. XSDoc: an
extensible wiki-based infrastructure for framework
documentation. Alicante, Oct. 2003.

[8] S. Ambler. Agile/Lean Documentation: Strategies for
Agile Software Development.
http://www.agilemodeling.com/essays/agileDocumentation.htm.

[9] S. Ambler. Agile Modeling: Effective Practices for
eXtreme Programming and the Unified Process. Wiley,
1st edition, Apr. 2002.



[10] E. Artzt. Autoduck user’s guide. Technical report,
2000.

[11] J. Bayer and D. Muthig. A view-based approach for
improving software documentation practices. In
Engineering of Computer Based Systems, 2006. ECBS
2006. 13th Annual IEEE International Symposium
and Workshop on, page 10 pp., 2006.

[12] B. Childs and J. Sametinger. Literate programming
and documentation reuse. In Software Reuse, 1996.,
Proceedings Fourth International Conference on, pages
205–214, 1996.

[13] B. Decker, E. Ras, J. Rech, B. Klein, and C. Hoecht.
Self-organized reuse of software engineering knowledge
supported by semantic wikis. In Proceedings of the
Workshop on Semantic Web Enabled Software
Engineering (SWESE), Nov. 2005.

[14] Edgewall Software. The Trac Project — Integrated
SCM & Project Management —
http://trac.edgewall.org/ [accessed on 2009/12/01].

[15] L. Friendly. The design of distributed hyperlinked
programming documentation. In Proceedings of the
International Workshop on Hypermedia Design,
Montpellier, France, 1995.

[16] Jean-Philippe Lang. Redmine —
http://www.redmine.org/ [accessed on 2009/12/01].

[17] D. E. Knuth. Literate programming. Comput. J.,
27(2):97–111, 1984.

[18] A. Ruping. Agile Documentation: A Pattern Guide to
Producing Lightweight Documents for Software
Projects. John Wiley & Sons, Inc., 2003.

[19] J. Sametinger. Object-oriented documentation.
SIGDOC Asterisk J. Comput. Doc., 18(1):3–14, 1994.

[20] A. Sousa. dotNoweb User’s Guide. Technical report,
2005.

[21] T. Vestdam and K. Nørmark. Aspects of internal
program documentation-an elucidative perspective. In
Program Comprehension, 2002. Proceedings. 10th
International Workshop on, pages 43–52, 2002.


	1 Introduction
	2 Patterns Overview
	3 Information Proximity
	3.1 Problem
	3.2 Solution
	3.2.1 Variant: Links
	3.2.2 Variant: Single Source
	3.2.3 Variant: Transclusion
	3.2.4 Variant: Views
	3.2.5 Creating Heterogeneous Documents

	3.3 Related Patterns
	3.4 Known Uses

	4 Co-Evolution
	4.1 Problem
	4.2 Solution
	4.2.1 Variant: Synchronous Co-Evolution
	4.2.2 Variant: Time-Shifted Co-Evolution
	4.2.3 Creating Auditable Documents

	4.3 Related Patterns
	4.4 Known Uses

	5 Domain-Structured Information
	5.1 Problem
	5.2 Solution
	5.3 Related Patterns
	5.4 Known Uses

	6 Integrated Environment
	6.1 Problem
	6.2 Solution
	6.3 Related Patterns
	6.4 Known Uses

	7 Acknowledgments
	8 References

