
Modeling User Interactions for (Fun and) Profit:
Preventing Request Forgery Attacks on Web Applications

Karthick Jayaraman
Syracuse University

kjayaram@syr.edu

Paul G. Talaga
Syracuse University

pgtalaga@syr.edu

Grzegorz Lewandowski
Syracuse University

grlewand@syr.edu

Steve J. Chapin
Syracuse University
chapin@syr.edu

Munawar Hafiz
University of Illinois at
Urbana-Champaign

mhafiz@illinois.edu

ABSTRACT
The goal of a web-request forgery attacker is to manipulate
the intended workflow of a web application. Applications
that fail to enforce the designer-intended interactions are
vulnerable to this type of attack. This paper proposes a
systematic methodology for designing web applications to
strictly enforce the designer-intended interactions. Our ap-
proach captures workflow using the Web DFA model and
applies four design patterns to strictly enforce the intended
interactions. We argue that using patterns in conjunction
with a Web DFA model produces web applications that are
secure from request forgery attacks by construction; more-
over, our mechanism could be useful in designing workflow-
based applications in other domains.

1. INTRODUCTION
Web-request forgery attacks such as cross-site request forg-
eries (CSRF) and workflow attacks can adversely affect the
privacy and confidentiality of victim users. The root cause
of these attacks is a weakness in the construction of web
applications; most web applications are not designed to be
strict enough to enforce the intended user-application inter-
actions. Both variants of web request forgery attacks violate
the intended interactions assumed by an application devel-
oper. In a CSRF attack, a malicious site forges and injects a
request into a victim user’s active session with a trusted site.
In a workflow attack, an attacker skips intermediate steps
in a transaction and directly executes a request associated
with a later step in the transaction.

There are existing defense mechanisms against web-request
forgery attacks (e.g. [3]), but developers do not have any
systematic design methodology to identify where to apply
a countermeasure. The absence of a design methodology
creates several problems. First, developers have to locate
the places in the source code to apply the techniques. This
process is both cumbersome and arbitrary, if done manually.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,requires prior spe-
cific permission. Preliminary versions of these papers werepresented in
a writers’ workshop at the 16th Conference on Pattern Languages of Pro-
grams (PLoP). PLoP’09, August 28-30, Chicago, IL, USA. Copyright 2009
is held by the author(s). ACM 978-1-60558-873-5

Second, because these additions are not driven by systematic
design, the solution is often either incomplete or incorrect.
Finally, providing design fixes after a system is built is pro-
hibitively costly [9].

In this paper, we present a methodology for designing web
applications that are secure from request forgery attacks by
construction. Our methodology consists of two steps. The
first step uses a deterministic finite state automaton, the
Web DFA, to abstractly model the intended user-application
interactions or request behavior of a web application. The
second step is to augment the Web DFA using four design
patterns. The augmented Web DFA produces a model that
drives the implementation to strictly enforce the intended
interactions. This paper contains two contributions:

(1) We present a systematic methodology for designing web
applications that strictly enforce the intended user -
application interactions.

(2) We describe four design patterns that prevent web re-
quest forgery attacks.

Organization. The remainder of the paper is organized as
follows. Section 2 describes the two variants of web request
forgery attacks. Section 3 describes our proposed methodol-
ogy for building applications. Section 4 contains a discussion
of related work. Finally, we conclude in section 5.

2. WEB REQUEST FORGERY ATTACK
In a web request forgery attack, an attacker manipulates an
ongoing sequence of valid transactions. In contrast to web
attacks such as cross-site scripting and SQL injection, the
malicious requests are well formed and valid with respect to
the application. Hence, it is hard for a server to distinguish
between a malicious and non-malicious request. Broadly,
there are two types of web request forgery attacks: cross-
site request forgery (CSRF) [11] and workflow attacks [6].

2.1 Cross-site Request Forgery (CSRF) Attack
Figure 1 illustrates a typical CSRF attack. Alice visits a
malicious site (step 3) while having an active session with a
trusted site (step 1). The trusted site stores a cookie for the
ongoing session in Alice’s browser (step 2). The malicious
site hosts a crafted page that contains a request targeted to
the trusted site. When Alice’s browser renders the malicious

Figure 1: Steps in a cross-site request forgery attack

page (step 4), it forwards the crafted request to the trusted
site including the valid cookies identifying the ongoing ses-
sion (step 5). The trusted site has the CSRF vulnerability; it
mistakenly identifies the malicious request as one originating
from Alice and processes it (step 6). It might reveal unau-
thorized information about Alice to the attacker hosting the
malicious site or perform some malicious action against Al-
ice that she did not intend. The attack happens on a neutral
ground. The trusted site has the vulnerability, but the ma-
licious site exploits the vulnerability through Alice, and in
the process violates the security and privacy of Alice.

2.2 Workflow Attack
A workflow is a specific sequence of interactions that a user
has to perform to complete a transaction. Consider the
checkout transaction in a shopping application (figure 2).
Typically, a user chooses a product, provides shipping and
payment information, and reviews the order before final sub-
mission.

Each interaction is handled by separate pieces of code and
affects the values of one or more session variables. Usually,
web applications check the correctness of an interaction se-
quence by checking the session variables at each step. A
workflow attack exploits errors in these checks, or the lack
of them, to bypass certain steps [6]. In our example, an
attacker may directly visit the page associated with the fi-
nal step after submitting their shipping information, thereby
submitting an order without payment.

3. METHODOLOGY FOR DESIGNING SE-
CURE WEB APPLICATIONS

We propose a design methodology that drives the imple-
mentation to strictly enforce the intended user-application
interaction in web applications. Our methodology has two
steps. The first step is to model a web application’s intended
interactions using a Web DFA (section 3.1). The second step
is to apply four design patterns to augment the DFA (section
3.2). Combining patterns with a Web DFA model produces
a strict reference model that guides the implementation.

We illustrate our methodology with a running example: an
online shopping cart implementation. We refer to it in each
section.

3.1 The Web DFA Model
A web application’s request behavior consists of a finite set
of states which can be modeled using a DFA; we refer to this
model as the Web DFA. In a Web DFA model, each state
corresponds to a URL or specific functionality provided by
parameters to a URL. In each state, the application delivers
a web page to the user that could be used to issue subse-
quent requests. The transitions between states are HTTP
requests. A web server hosting an application processes the
request and produces the next page (goes to the next state
in a Web DFA).

The Web DFA model for our running example, the shopping
cart application, contains 10 states and 18 transitions (fig-
ure 3). The simplest interaction model of purchasing a single
product is represented by transitions T1 through T10 (solid
line transitions in figure 3) . In this interaction model, a
user comes to the home page, goes to sign in (T1), success-
fully completes authentication (T2), searches for products
(T3), adds a product to cart (T4), continues to checkout
(T5), confirms shipping and payment information (T6-T9),
and completes order (T10). Transitions T11 through T18
represents some other valid user interactions. For simple il-
lustration, we omit other valid interactions. For example,
transitions T11–T15 illustrates that a user can at any point
resume their shopping. Similarly, at any point the user may
decide to go to the main page, or they might decide to logout
and be moved to the main page. These transitions (origi-
nating at various states and ending at the main page state)
are omitted. These omissions are for illustration purposes;
they do not affect the final outcome.

Identifying Vulnerable Request Classes. After creat-
ing the initial Web DFA, the states in the DFA are classified
into two categories. There are two types of states: non-

Figure 2: A workflow violation in a purchase transaction where a user skips step 3

Figure 3: A Web DFA model for an online shopping cart application.

sensitive and sensitive.

A state is non-sensitive if the transitions that lead to it do
not have any side effects. An application does not modify
the session data or database when processing these requests.
A side effect free request does not modify an application’s
state irrespective of the number of times that it is issued.

A state is sensitive if a transition that leads to it has side
effects, i.e. it modifies application state. A transition with
side effects could affect a user or the correctness of an appli-
cation, if it is forged by an attacker. A web application needs
higher guarantees to ensure that a user knowingly performed

the transition and is not tricked into doing it. Transitions
from non-sensitive to sensitive states and between two sen-
sitive states should be protected from forgeries.

Figure 3 classifies each of the 10 states of the shopping cart
application into appropriate categories. Of the 7 states per-
forming the checkout transaction, from Shopping Cart Page
through Order Confirmation Page, 4 are sensitive. The re-
maining 3 states present a form to a user whose information
is then sent to the sensitive states. When a user decides to
check out (T5), he/she first goes to the non-sensitive Ship-
ping Info Page. In this state, the user is just presented a
static web page to add shipping info; there is no change in

the application state. Then the user provides shipping in-
formation (T6). The application takes the user to Submit
Shipping Page. This state is sensitive since the application
state is updated with the shipping information. The user,
however, does not see a separate webpage. Instead, a script
updates the application state and redirects (T7) the user to
the Payment Info Page.

An HTTP redirect (T7 and T9) is used by the sensitive
states to trigger loading the next state containing the next
form in the workflow. In practice the same script could be
used for data processing and form display based on the re-
quest type. We represent them as separate nodes in our DFA
due to their different functions and security requirements.

3.2 Design Principles
We describe four design patterns for enhancing Web DFA
models. The enriched Web DFA would act as a guide for
developers to securely construct a web application. These
patterns could be applied without the Web DFA model, but
tying the design patterns with Web DFAs makes the design
process systematic, complete, and less cumbersome. In this
section, we will describe each of the patterns and illustrate
how the patterns are applied using our running example. Ta-
ble 1 summarizes the patterns. The first three patterns pro-
tect a web application from CSRF attacks, while the fourth
one protects from workflow attacks.

3.2.1 Non-sensitive GET/ Sensitive POST

Intent

HTTP is the cornerstone of the World Wide Web. HTTP
(version 1.1) defines eight request methods, each with its
explicit recommended usage [7]. HTTP methods for reading
and updating content follow the CRUD model of relation
databases: PUT is used to create, GET to read content,
POST to update content, and DELETE to delete content
from a URL. GET and POST are more common in web
applications, while PUT and DELETE are seldom used.

Despite the explicit specification of method roles, HTTP
methods are often misused in web applications [1, 14]. For
example, a developer who is considering whether to use
HTTP GET, should follow these guidelines:

• GET should be used when a request does not affect
application state. The HTTP protocol defines GET as
safe and idempotent : an HTTP GET request should
not have any effect on an application’s state and the
effect of multiple requests should be identical to that of
a single request [7].

• For making sensitive requests, POST is favored over
GET. It is harder for an attacker to forge a POST re-
quest, but GET requests are easily forged. This is be-
cause GET requests can be issued by putting URLs in
the attribute header of many HTML tags (e.g., img,
iframe, etc). When a user visits the page, GET re-
quests are initiated without the user noticing them. On
the other hand, forging a POST request requires ei-
ther user interaction or JavaScript. To forge a POST
request, an attacker has to coerce a user to submit a
form. Alternatively, JavaScript programs can submit

the form, but security setting in browsers prohibits un-
trusted JavaScript programs.

In practice, GET is often mistakenly used for making sen-
sitive requests and modifying application state [4]: Blog-

lines sync API uses GET request to mark unread items as
read, Flickr API previously used GET to delete a photo
set, del.icio.us API uses GET to delete a post from the
site, etc are some examples. Implementing a GET request in
a web application is typically easier and results in less code
than a POST request, possibly explaining their improper
use.

Web application developers arbitrarily choose request meth-
ods, instead of considering which one is the most appropri-
ate. The request type is treated as an implementation detail.
Since the factors that influence the choice, such as whether
the request is expected to have side effects or not, are known
during design, it is best to determine the appropriate request
type during design.

Forces

The following forces should be considered when choosing
to use this pattern.

• Web applications should choose the most appropriate
HTTP request type for each request.

• Choosing the wrong request type would facilitate re-
quest forgery.

• Choosing the most appropriate request type is best done
during design.

Solution

Identify the type of processing and side effects associated
with each request during the design phase and use this in-
formation to choose the appropriate HTTP request method.
Strictly use POST for any request of a sensitive state, i.e. it
modifies database or a web application’s session data. Use
GET for non-sensitive requests that do no have side effects.

There are certain requests that may have side effects, but
they may still be considered side-effect free. For exam-
ple, a request to visit the index page of a web site may
automatically update page visit statistics. However, these
statistics may not be considered as part of the application
state. Therefore, such requests may still be considered non-
sensitive and implemented as GET requests.

Example

This section describes how the pattern is applied to aug-
ment the Web DFA model in figure 3. Figure 4 shows the
modified Web DFA.

Transitions to non-sensitive states are not expected to have
any side effects; they can be implemented as HTTP GET
requests. All transitions to the non-sensitive main page or
the product search page can be implemented as HTTP GET
requests. On the other hand, transitions to sensitive states
should be implemented as POST requests.

Pattern Summary

Non-sensitive GET/ Sensitive Choose the correct type for an HTTP request.

POST

Secret-token Validation Use a secret token whenever a sensitive request is made to distinguish
between genuine and forged requests.

Intent Verification Add an additional verification step to a request to verify whether a user
intends to issue the request.

Guarded Workflow Check preconditions and postconditions for each transition.

Table 1: Design patterns to prevent web request forgery attacks

Main
Page

Login
Page

T1: Sign In

T2: Successful
Sign In

T4: Add to Cart

T15: Continue
 Shopping

T5: Check out

T6: Provide
Shipping

Information

T8: Provide
Payment

Information

T13: Continue
Shopping

 T14: Continue
 Shopping

T16: Continue
/Resume
Shopping

Sensitive
State

Legend:

T10: Confirm
Order

T18: Back to Main
T3: Search

Product

T12: Continue
Search

T7: Redirect T9: Redirect

Shopping
Cart
Page

Product
Search
Page

T17: Search
Product

Shipping
Info
Page

Submit
Shipping

Page

Payment
Info
Page

Submit
Payment

Page

Order
Completion

Page

Order
Confirma

-tion
Page

T11: Continue
Shopping

Non-sensitive
State

HTTP GET Request

HTTP POST Request

Figure 4: Web DFA for our shopping application with appropriate request type

Consequences

Applying the pattern has the following consequences.

• Easy to understand. Applying this pattern would make
a web application easy to understand. Each request
becomes intention-revealing; its type gives a hint of the
operation to be invoked.

• Weak Defense. Attackers can forge POST requests [16].
This pattern provides the first layer of defense; more
mechanisms are necessary following the defense in depth
principle [17].

• Increased complexity. Applying this pattern could make
a web application more complex. The simplest option
for implementation is to use one HTTP request for all
purposes; GET is the most suitable candidate. Having
more than one HTTP request type would add more

complexity; however, this is essential complexity [5] to
make a web application secure.

Known Uses

phpBB and punBB are multi-user message board applica-
tions. osCommerce is an online shopping cart application.
In all three web applications, HTTP GET requests are used
only for non-sensitive requests, and POST is used otherwise.

3.2.2 Secret Token Validation

Intent

Strictly using POST to make sensitive requests provides a
weak defense. An attacker can adjust the attacks to be form-
based or use JavaScript to automatically invoke a request.
Replacing GET with POST makes it harder for an attacker
to launch an attack, but it is not hard enough to prevent
the attack.

The underlying problem that enables cross-site request forgery
is that a vulnerable web request can be repeatedly made.
Typically, applications store session cookies in a web browser
to customize each user’s request, but session cookies are at-
tached whenever a browser makes a request. Session cookies
are static; the same cookie is presented for all requests made
from a user. Hence, an application has no way of distin-
guishing a legitimate request from a request that a user has
unsuspectingly made on behalf of an attacker.

A user and a web application should have a secret that an
attacker cannot know. If the secret is part of a web request,
an attacker cannot forge it.

Forces

The following forces should be considered when choosing
to use this pattern.

• HTTP requests can be repeatedly made.
• Session cookies are used to customize each user’s re-

quest, but they provide an insufficient mechanism to
prevent forgery. This is because, for all requests to a do-
main, a browser automatically attaches that domain’s
cookie.

• Cryptographic mechanisms could be used to create a
unique token between an application and a user; an
attacker cannot guess the token.

Solution

Use a secret token whenever a sensitive request is made.
Protect the secret token, so that an attacker can not know
it. Verify each incoming request for a sensitive action to
check that the secret token is present and correct.

In secret token validation, all HTML form tags that create
HTTP requests include a random value as a hidden input
field. This random value is passed to the server, and the
server processes a request only after validating it. An at-
tacker cannot access this random value since, 1) the value
is available only in the web page given to the user, and 2)
the security policy in web browsers prohibits the value to be
shared.

Example

Consider the Web DFA model of the online shopping ap-
plication in figure 4. All transitions to sensitive states are
attractive targets for request forgeries. The processing of
these requests should additionally incorporate a secret-token
validation technique.

Consequences

Applying the pattern has the following consequences.

• Strong Defense. Secret tokens offer very strong protec-
tion with minimal computational overhead.

• Need for Protecting Secret. The session secret should
be protected from attackers. One-time-use token values
per form can be used, but they increase complexity and
overhead.

Known Uses

This pattern is widely used for preventing cross-site request
forgery attacks. phpBB, a message board application, adds
a session identifier additionally as a hidden field to all web
forms. The server-side scripts validate requests based on the
session identifier. phpMyAdmin is a web application used for
remotely administering MySql database. phpMyAdmin asso-
ciates a random token for each session and adds the random
token as a hidden field in forms.

3.2.3 Intent Verification

Intent

CSRF is a form of confused deputy attack [8]. The victim
user, whose browser is making the request, does not know
that he/she is being attacked. The user is tricked into sub-
mitting a request on behalf of the attacker. If a user is always
asked before his/her browser sends a request, the user knows
when he/she is about to be tricked by an attacker. Conse-
quently, there will be no CSRF attacks. However, asking
for consent at every step is impractical as users will find it
annoying. There should be a lightweight approach that en-
sures usability of the application while assuring the integrity
of each submitted request.

Many web applications use long expiration values for their
browser cookies to keep a user continuously signed in. The
cookies are used to track a session as well as to keep a user
logged in so that users revisiting a site will not need to re-
login. Applications which use long expiration values for their
session cookies are highly vulnerable to CSRF.

Forces

The following forces should be considered when choosing
to use this pattern.

• Users do not know when they are tricked by an attacker
into a CSRF attack.

• Web applications should verify the intent of each sub-
mitted request.

• The intent verification reduces the usability of the ap-
plication.

Solution

Introduce an additional verification step in the beginning
of each transaction for verifying intent, i.e ascertaining that
the correct user has consciously issued the request.

Force a user to re-authenticate at the start of a transaction.

Alternatively, use a CAPTCHA [18] to ensure that a request
is coming from a consenting human.

Example

In a Web DFA model, the transitions from non-sensitive
to sensitive states are the stepping stones for initiating a
transaction. An attacker can host a CSRF attack on a non-
sensitive page, but he/she is not gaining anything. It is
when the attacker is stepping from a non-sensitive page to a
sensitive page, is he/she starting a transaction. These step-
ping stones should be hardened using an additional intent
verification step. The subsequent steps could proceed if the
intent has been verified at the stepping stone.

In the Web DFA model (see figure 4) of our running example,
the stepping stone to the checkout transaction is transition
T4: adding a product to a cart. The web application should
verify the intent of the user on this transition.

However, intent verification at T4 will hinder usability. A
user, who is adding a lot of products to the shopping cart
(following the T4–T11–T12–T4 cycle), has to verify for every
product added (T4). Clearly, this is annoying. A better way
is to check on transition T5 instead, when the products have
been added to the cart and the user is opting for checkout.
Real online shopping applications, such as www.amazon.com,
verify a user at this step.

Consequences

Applying the pattern has the following consequences.

• Informed User. A victim user is informed when he is
unsuspectingly initiating a sensitive request on behalf
of an attacker.

• Better detection of bots. As a side effect of applying the
pattern, web applications may distinguish Internet bots
from real users.

• Hindered Usability. The verification step might be an-
noying for a user legitimately using the application.

Known Uses

Several web applications employing long login timeouts
verify the user intent at the stepping stones of transac-
tions. Both www.ebay.com and www.amazon.com allow users
to search for products and add them to the shopping cart
using long-term login. However, when a user tries to ini-
tiate a checkout transaction, the web application requests
for a username and password. The checkout transaction is
initiated only after correctly executing the verification step.

3.2.4 Guarded Workflow

Intent

A workflow is essentially one compound task composed of
subtasks that have to be executed in a particular sequence.
Each subtask expects its caller to meet some preconditions.
In a web application, the preconditions are constraints on
session variables or the application’s contents in a database.

If a subtask does not strictly check that its preconditions
have been met, an attacker can violate the conditions and
invoke the task nevertheless. Workflow attacks attempt to
create an unintended interaction, in which certain subtasks
are skipped by an attacker.

Forces

The following forces should be considered when choosing
to use this pattern.

• Subtasks in a workflow should be executed in a pre-
defined order.

• Attackers want to manipulate the normal execution or-
der.

• Subtasks have preconditions that a caller should satisfy
before invocation.

Solution

Identify the preconditions for each subtask in a workflow
during design. During implementation, add checks to verify
that all the preconditions are satisfied when a caller calls a
subtask, otherwise identify it as a workflow violation.

Each of the subtasks have a set of preconditions. After invo-
cation, each subtask creates a set of postconditions, which
becomes the set of preconditions for the next subtask in
the sequence. The precondition of any subtask is the union
of postconditions of all the preceding subtasks. For each
subtaskn that should strictly follow a sequence of subtasks
{subtask1, subtask2,, subtaskn−1},

postconditions1 ∪ postconditions2 ∪ ∪
postconditionsn−1 ⊂ preconditionsn

The design specification should outline an exception han-
dling procedure for failing preconditions. The exception
handler may either direct the caller to execute a preceding
subtask or terminate the transaction.

Example

Consider the checkout transaction in the Web DFA model
of figure 4. The transaction comprises of four steps: opting
for check out (T5), submitting payment (T6), submitting
shipping (T8) and confirming order (T10). Each transition
has preconditions and postconditions (figure 5).

The postconditions in each transition are chained so that
they become the preconditions of the subsequent transition.
As a result, there is no way an attacker can skip intermediate
steps in the checkout transaction.

Exception handling procedures can also be described for
workflow violations. For example, if the pre conditions asso-
ciated with T8: Provide Payment Information are not sat-
isfied when processing T10: Confirm Order, the application
may direct the user to a web page to provide the payment
information.

Shopping
Cart
Page

Shipping
Info
Page

Payment
Info
Page

Order
Completion

Page

Non-sensitive
State

Sensitive
State

Legend:

T5: Check out T6: Provide

Shipping
Information

T8: Provide

Payment
Information

Order
Confirm
-ation
Page

T10: Confirm

Order

User signed in

User signed in
Shopping Cart
 not Empty
Total Cost > 0

User signed in
Shopping Cart
 not Empty
Total Cost > 0
Shipping Info
 not Empty

User signed in
Shopping Cart
 not Empty
Total Cost > 0
Shipping Info
 not Empty
Shipping Cost > 0

User signed in
Shopping Cart
 not Empty
Total Cost > 0
Shipping Info
 not Empty
Shipping Cost > 0
Payment Info
 not Empty

User signed in
Shopping Cart
 not Empty
Total Cost > 0
Shipping Info
 not Empty
Shipping Cost > 0
Payment Info
 not Empty
Payment Author izat ion
 not Empty

User signed in
Shopping Cart
 not Empty
Total Cost > 0
Shipping Info
 not Empty
Shipping Cost > 0
Payment Info
 not Empty
Payment Author izat ion
 not Empty

User signed in
Shopping Cart
 not Empty
Total Cost > 0
Shipping Info
 not Empty
Shipping Cost > 0
Payment Info
 not Empty
Payment Author izat ion
 not Empty
Order Completed

Precondi t ions

Postcondi t ions

Transition that omits
some intermediate
states

Figure 5: A checkout workflow annotated with required preconditions and postconditions.

Consequences

Applying the pattern has the following consequences.

• Design by Contract. Each of the preconditions and
postconditions are determined carefully during design.
The implementation that follows checks the conditions.
Hence, the chance of a workflow violation is minimized.

• Hard to Determine Preconditions. In practice, deter-
mining the appropriate preconditions might not be straight-
forward. There might still be workflow vulnerabilities
after applying this pattern. However, careful design
nearly eliminates the vulnerability.

Known Uses

Directed Session pattern [13] uses a different approach. An
application using Directed Session exposes a single URL.
All webpages are accessed via this single URL. A server,
using session data, determines which page be serve to the
client. This dynamic approach, however, does not support
the functionality of a back button in a browser. The Guarded
Workflow pattern combined with the Web DFA is a more
systematic way of exploring preconditions; it also supports
the back button of a browser.

Design by contract [15] is a software engineering theory that
describes formal contracts among software entities. A con-
tract is the set of preconditions that a caller must guaran-
tee before calling a module and the set of postconditions
that would hold after the call. This pattern is essentially
an application of design by contract for modeling workflow
transactions in web applications.

3.3 Defense in Depth
The catalog of four design patterns is an ideal example of
defense in depth [17]. First, the Web DFA is augmented
by applying Non-sensitive GET/ Sensitive POST pattern.
It determines sensitive states where POST requests should
be used. But even POST requests could be forged. There-
fore, Secret Token Validation mechanism is added with each
POST request. Another line of defense is to keep a user
informed about his/her actions. Hence, Intent Verification
pattern is used to introduce verification mechanism in the
transitions between Web DFA states where the user is step-
ping from a non-sensitive action to the start of a sensitive
transaction. Finally, Guarded Workflow pattern is applied
to the Web DFA to enforce design by contract [15]. To-
gether, these patterns create multiple layers of defense that
successfully prevent web request forgery attacks.

4. RELATED WORK
Current work has proposed several mitigation methods for
web-request forgeries. The objective of mitigation methods
is to detect the attacks at runtime and can be categorized
into methods for detecting workflow violations and methods
for detecting cross-site-request forgeries.

Swaddler uses an anomaly detection approach for detecting
workflow violations [6]. Swaddler is a server-side method
that uses probabilistic models for characterizing the attributes
of internal session variables and for associating invariants
with blocks of code for detecting workflow violations. The
detection effectiveness is dependent on the accuracy of learn-
ing the invariants associated with blocks of code.

CSRF mitigation methods can be categorized into defen-
sive coding methods, client-side methods [10], HTTP refer-

rer header validation [12], proposals for new headers [3], and
secret-token validation techniques [11]. HTML form authen-
tication is a popular defensive coding technique for defeating
CSRF attacks. HTML forms that generate the requests may
carry a secret token specific to the form or session. Only re-
quests containing the correct secret token are processed by
the web application, and malicious sites cannot access se-
cret tokens in the trusted web page because of the access
restrictions in the web browser.

RequestRodeo [10] is a client-side technique that avoids CSRF
attacks by removing implicit authentication information, such
as cookies and authorization fields in the header, from re-
quests whose target URL and the URL of the web page from
which the request originate do not conform to the same-
origin policy. Kershbaum [12] proposes referrer header vali-
dation. Barth et al. [3] describes the login CSRF attack and
proposes strict referrer header validation over HTTPS as a
solution. NoForge [11] elegantly combines cookie-based and
URL-based session management schemes to defend against
CSRF attacks. It adds a secret-token to all the URL in the
web page using a server-side proxy. Because only genuine
requests would carry the secret-token and a malicious site
cannot access it, forged requests are detected.

In contrast to mitigation methods, the objective of this pa-
per is to present a systematic methodology for constructing
web applications to avoid the attacks in the first place. Also,
each mitigation method addresses only certain forms of re-
quest forgeries. On the other hand, the proposed methodol-
ogy leads to applications that are secure from several forms
of forgeries by design. Also, the cost of applying mitigation
methods after the application has been built is costly com-
pared to incorporating security in the application by design.

Prior work has used formal models similar to the Web DFA
for testing and model-checking web applications [2,19]. Our
work uses the Web DFA for creating a design methodology
for web applications that are secure from request-forgery
attacks.

5. CONCLUSIONS
We presented a novel method for designing web applica-
tions. We use a formal methodology, based on finite state
automaton, in conjunction with design patterns to model
and enforce intended user-application interactions in web
applications. In the future, we plan to build tools to allow
designers to build and analyze Web DFA models.

Web applications are heavily used and attractive targets of
exploitation. Both patching applications and providing de-
sign fixes after deployment has proved to be prohibitively
costly. Therefore, we need better methodologies for build-
ing web applications that are secure by construction.

Acknowledgments
We thank Dr. Jim Fawcett and the attendees of PLoP ’09
for their suggestions and comments.

6. REFERENCES
[1] P. Adamczyk, M. Hafiz, and R. Johnson. Non-compliant

and proud: A case study of HTTP compliance. Technical
Report UIUCDCS-R-2008-2935, UIUC, Jan 2008.

[2] A. A. Andrews, J. Offutt, and R. T. Alexander. Testing
web applications by modeling with fsms. In Software and
Systems Modeling, 2005.

[3] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses
for cross-site request forgery. In CCS ’08: Proceedings of
the 15th ACM conference on Computer and
communications security, pages 75–88, New York, NY,
USA, 2008. ACM.

[4] Blog Entry. Misunderstanding REST: A look at the
bloglines, del.icio.us and flickr APIs.
http://www.25hoursaday.com/weblog/PermaLink.aspx?
guid=7a2f3df2-83f7-471b-bbe6
-2d8462060263, Apr 2005. Blog Entry.

[5] F. P. Brooks Jr. No silver bullet Essence and accidents of
software engineering. Computer, 20(4):10–19, 1987.

[6] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna.
Swaddler: An Approach for the Anomaly-based Detection
of State Violations in Web Applications. In Proceedings of
the 10th Internation Symposium on Recent Advances in
Intrusion Detection (RAID), pages 63–86, 2007.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol
– HTTP/1.1. RFC 2616 (Draft Standard), June 1999.
Updated by RFC 2817.

[8] N. Hardy. The confused deputy (or why capabilities might
have been invented). ACM Operating Systems Review,
22(4):36–38, Oct. 1988.

[9] C. Henderson. Building Scalable Web Sites. O’Reilly, 2006.
[10] M. Johns and J. Winter. RequestRodeo: Client-side

Protection Against Session Riding. In OWASP Europe
2006.

[11] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross
site request forgery attacks. In In Proceedings of the Second
IEEE Conference on Security and Privacy in
Communications Networks (SecureComm, pages 1–10,
2006.

[12] F. Kerschbaum. Simple cross-site attack prevention. In
Third International Conference on Security and Privacy in
Communications Networks, 2007., pages 464–472, Sept.
2007.

[13] D. M. Kienzle and M. C. Elder. Security Patterns
Repository Version 1.0. www.scrypt.net/~celer/
securitypatterns/repository.pdf.

[14] B. Krishnamurthy and M. Arlitt. PRO-COW: Protocol
compliance on the Web — A longitudinal study. In
USENIX, editor, Proceedings of the 3rd USENIX
Symposium on Internet Technologies and Systems (USITS
’01), March 26–28, 2001, San Francisco, California, USA,
pages ??–??, pub-USENIX:adr, 2001. USENIX.

[15] B. Meyer. Applying ”design by contract”. Computer,
25(10):40–51, 1992.

[16] Robert Auger. The Cross-Site Request Forgery
(CSRF/XSRF) FAQ.
http://www.cgisecurity.com/csrf-faq.html#post.

[17] J. Viega and G. McGraw. Building Secure Software: How
to Avoid Security Problems The Right Way.
Addison-Wesley, 2002.

[18] L. von Ahn, M. Blum, and J. Langford. Telling humans and
computers apart automatically. Communications of the
ACM, 47(2):56–60, Feb. 2004.

[19] S. Yuen, K. Kato, D. Kato, and K. Agusa. Web automata:
A behavioral model of web applications based on the mvc
model. Information and Media Technologies, 1(1), 2006.

