
Towards a Pattern Language for FLOSS Development

Christoph Hannebauer Vincent Wolff-Marting Volker Gruhn

paluno - The Ruhr Institute of Software Technology
University of Duisburg Essen

Gerlingstrasse 16
45127 Essen, Germany

{christoph.hannebauer | vincent.wolff-marting | volker.gruhn}@paluno.de

ABSTRACT
There is a lot of research anticipating a “Free, Libre and
Open Source Software” (FLOSS) development process and
recurring characteristics of FLOSS projects have been dis-
cussed by various authors. Research suggests that a unique
FLOSS development approach does not exist and there is
a family of different development processes instead. Pat-
tern Languages have been used to describe distinctive and
common features of processes. In this paper, we identify four
FLOSS development patterns derived from related work and
discussion about FLOSS in the communities. Building on
that, we propose methods to verify the patterns.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—productiv-
ity, programming teams; K.6.3 [Management of Comput-
ing and Information Systems]: Software Management

1. INTRODUCTION
In his famous essay“The Cathedral and the Bazaar”, Ray-

mond was the first in describing a development style he as-
sociated with a “great babbling bazaar” [17], which became
generally known as the “Open Source software development
process”. This term is misleading since Open Source soft-
ware, in the meaning of software with publicly accessibly
source code, can be developed using any kind of process.
Raymond himself claimed that he “had already been in-
volved in Unix and open-source development for ten years”
using the cathedral-style development model. More recently,
the more specific term “Free, Libre and Open Source Soft-
ware” (FLOSS) has been used commonly in place of “Open
Source”. But the definitions [16, 7] of software, which is
available with broad modification rights at no cost, still do
not make any assumptions about the underlying develop-
ment process [5]. Companies using any kind of development
process can release their source code under a public license
and thus qualify to use the term FLOSS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. Preliminary versions of these papers were presented in a writ-
ers’ workshop at the 17th Conference on Pattern Languages of Programs
(PLoP).
PLoP ’10, October 16-18, Reno, Nevada, USA.
Copyright 2010 is held by the authors. ACM 978-1-4503-0107-7.

In spite of these facts, numerous researches exist compar-
ing closed source software to FLOSS [13, 19] or analyzing
properties of the FLOSS development process, like quality
of FLOSS projects [4] and the composition of FLOSS de-
velopment teams [12]. However, the mean number of devel-
opers in FLOSS projects is one, which Krishnamurthy first
showed for 100 mature FLOSS projects [12] and later Healy
and Schussman showed it for all projects that Sourceforge
had in its database in August of 2002 [10]. Healy and Schuss-
man concluded that having only one developer in a software
project contradicts the use of a bazaar development style as
proclaimed by Raymond [17]. Another result of Healy and
Schussman is that possibly quite different kinds of “mecha-
nisms” exist in FLOSS projects, because different measures
in FLOSS projects have consistent rank distributions and
still “different kinds of activities may cluster in different
sorts of projects” [10]. This empirical evidence against the
usage of only one FLOSS development process in all soft-
ware projects with a FLOSS license was later confirmed by
Gacek and Arief, who have shown that some characteristics
of FLOSS projects vary from project to project while some
others are always the same [8]. With the rise of agile de-
velopment methods in closed source development processes,
the distinction between the closed source “cathedral-style”
development and Open Source “bazaar-style” becomes more
and more problematic. For example, Warsta and Abrahams-
son compared Open Source development with agile methods
and found them “rather close” [20].

Kelly has conjectured that Open Source could be a pat-
tern language [11] and this paper attempts to build the
foundation for a FLOSS development process pattern lan-
guage. With the components of FLOSS development pro-
cesses formally described in a pattern language, comparisons
with other development processes can be more precise. The
distinction between FLOSS development and closed source
software development does not have to rely merely on the
licensing model but on specifics of the processes themselves.
It will also be possible to compare FLOSS development pro-
cesses with each other. With a FLOSS pattern language,
it is possible to extract valuable patterns used in FLOSS
development processes and use them in other development
processes. Further, parts of FLOSS processes that are prob-
lematic can be identified and improved.

Therefore, the target audience of this paper are researchers
of FLOSS development processes and members of the FLOSS
community seeking to improve their development processes.
With the help of this pattern language, it is possible to grow
a community around a project and keep it up, to increase

the number of features, and to improve software quality.

2. PATTERNS
When analyzing the structure of software development

processes, we distinguish between organizational patterns
and project characteristics. An organizational pattern as
defined by Coplien and Harrison describes a possible solu-
tion to a local problem of conflicting forces [3]. A project
characteristic is a property of the software project that in-
fluences or causes these forces but is not a behavior of the
project members. For example, the number of developers
or users that are involved in a project influences the devel-
opment process and it can be determined which processes
are appropriate solutions to the team’s problems. Still, no
specific behavior is required just because of the team’s size.
Therefore, project characteristics have a strong influence on
the patterns to be used in a project and vice versa. This sec-
tion will focus on organizational patterns but not on project
characteristics. We will regard project characteristics in the
statistical analysis that we will use to verify the patterns we
have found.

We identified the patterns described in this section in sci-
entific publications and discussions about FLOSS in com-
munities. Guidelines and ideas for the realization of FLOSS
projects have already been published [17, 8, 15, 6], but not
in a structured way like patterns organized in pattern lan-
guages. Also, the most comprehensive publication of this
kind, Raymond’s essay “The Cathedral and the Bazaar”,
does not only contain guidelines each of which corresponds
to a pattern but also common regularities in FLOSS pro-
cesses for which a pattern does not necessarily exist.

Our intention is to specify a pattern language such that
every FLOSS development process maps bijectively to a se-
quence of patterns. However, we have not yet verified the

pattern language empirically and further research may show
that additional patterns are required in a FLOSS pattern
language that comprises widely used development processes
of FLOSS projects.

This section contains the patterns we have found most
important. Every pattern begins with an icon that symbol-
izes the core idea of the pattern. Then the pattern itself
follows and eventually the last part depicts how researchers
can verify usage of the pattern. This last part comprises a
subsection Sources with evidence in literature for the pat-
tern described and a subsection verification with criteria to
empirically determine whether a specific FLOSS project uses
the pattern.

Verifying the patterns on a successful FLOSS project yields
a set of patterns that have proven to be usable for this
project. It is possible that the project has used less pat-
terns before and that it will use additional patterns in the
future. Given only one snapshot of the patterns used by
one project, it is not possible to see the complete order in
which the patterns were applied. However, if a pattern A
depends on a pattern B, a project will not use pattern A
without pattern B at any point in time. By evaluating the
set of used patterns in multiple successful FLOSS projects,
those dependencies can be tested and possible sequences will
become visible. This makes it possible to evaluate the rela-
tions between the patterns as they are used in practise. As
a foundation for further empirical research, Figure 1 shows
a pattern map that has not yet been verified with actual
FLOSS projects. Patterns marked with (§) are not yet de-
scribed or described elsewhere.

USER CONTRIBUTIONS

LINUS’S LAW (§)

MAINTAINER
HANDOVER

LOW-HANGING FRUIT
EXPOSED

ARCHITECTURE

RELEASE EARLY.
RELEASE OFTEN. (§)

CENTRAL INFORMATION
PLATFORM (§)

KEEP IN TOUCH WITH
YOUR USERS (§)

Pattern B requires
Pattern A

Pattern described in
this paper

Pattern to be
described (§) (Non-exclusive)

alternatives

CONTINUOUS/
INCREMENTAL

INTEGRATION [3]

NAMED STABLE BASES
[3]

Pattern A amplifies
Pattern B

Le
ge
n
d
:

A B

A B

A B

Pattern described in
the cited work

[Reference]

Figure 1: Pattern Map

2.1 User Contributions

Context
... when a project gathers momentum, a constant flow of
user requests, questions and comments comes in.

Problem
The growing number of users correlates with a grow-
ing number of expectations, which the existing con-
tributors cannot fulfill.

Forces
• The more users there are, the more different feature

requirements they have.

• Users have inherent knowledge of what the project
should deliver, but the developers cannot access this
knowledge directly [1, chapter 15]. Some of the users
are willing and able to develop patches that would sat-
isfy each other’s requirements.

• Users have little or no knowledge about the coding
style and architecture the core developers have agreed
upon.

• The core developers may have their own ideas where
the project should be going but these ideas might be
different from the other users’ requirements.

Solution
Treat your users as co-developers and have them
satisfy the users’ demand.

There are several ways in which users may contribute
to the project. Encourage your users to contribute to the
project and clearly point out how to contribute. For exam-
ple, have your users report bugs and request new features.
Provide the users with a communication platform where
they can provide support for each other. Users who want
to fix bugs and extend the application’s functionality must
be able to access the source code of your software and they
must be given the right to change the code. Describe how
to build the software from the source code and provide tools
that help with this task, like a download link to a precon-
figured build environment. Explain your own requirements
for code patches like coding style and design considerations.

When you receive contributions, take them seriously. If
a patch has insufficient quality, help the contributor to im-
prove the patch. “Stroke” your users whenever they send in
patches and feedback[17].

Consequences
! When the number of users is large enough, than only a

small fraction of users needs to contribute back in or-
der to handle a significant share of the project’s work-
load. Their contributions can easily equal or exceed
the workload that the core developers contribute.

! Having users and developers in a double role allows
projects to exist without “precise specifications or re-
quirements documents” [8]. The requirements specifi-
cation phase of the release cycle can be skipped, which
enables more frequent releases and a higher fraction
of the effort put into the project can be used for the
actual development.

% The core developers now need to split time between
reacting to input from users and pursuing their own
scheme. They need to help adapting code contribu-
tions to the project’s coding style and filter out the
code that does not work together with the project’s
architecture.

% Users acquire influence on the software development
and therefore the core developers lose some of their
influence. The core developers need to open up for
other people’s ideas.

Examples
This pattern is one of the key elements of what Raymond
described as the bazaar development style. Therefore, Ray-
mond’s own project “fetchmail” employed the pattern and
also the Linux kernel, which was Raymond’s primary object
of observation. Other examples include the Mozilla projects.

Related Patterns
Linus’s Law(§) is a special case of this Pattern and fo-
cuses on bug fixing. If you want a higher fraction of users
to become developers, you should save some Low-hanging
Fruit for beginners. New developers will find it easier to ex-
tend the software if you have an Exposed Architecture.

Sources
Gacek and Arief identified a characteristic “Developers are
always users” and found it to be common among all FLOSS
projects [8]. Other research suggests that in fact only part
of the successful FLOSS projects employ this pattern: On
the one hand, Krishnamurthy has shown that the number
of developers in successful FLOSS projects increases over
time –“The correlation between the age (in months) and the
number of developers was 0.228”. On the other hand, Figure
4 in his article reveals that the major part of FLOSS projects
that have been running for longer than 20 months still do not
have more than five developers [12]. This suggests that these
projects have recruited none or only few developers since
their foundation and thus, they have not successfully used
the pattern User Contributions, at least not to the extent
that users became developers. Raymond’s advice number
six is also a representation of this pattern: “Treating your
users as co-developers is your least-hassle route to rapid code
improvement and effective debugging.” [17].

Verification
First of all, a project subscribing to that pattern needs to
provide some platform to interact with the users. It will
be analyzed how contribution of unique users to mailing-
lists, code-base, bug- and feature-tracker changes over time.
Additionally, meta analysis of existing published statistics
will be conducted.

2.2 Exposed Architecture

Context
As the project grows, software complexity increases and it
becomes more and more difficult to understand the structure
of the program.

Problem
Developers will not add features to the project when
they do not know where to add their code.

Forces
• Active users who want to contribute to the project

need some starting points but they have trouble find-
ing the module where this functionality is best to be
added. If they are not willing to spend a lot of their
time to understand the software architecture, they ei-
ther need help from the core developers or they give
up before getting productive. Even if they do not give
up, they have to spend time searching the code for the
right place to add the new functionality.

• Software architecture is a well respected aspect in tra-
ditional software development. Development of the ar-
chitecture is considered in the budget and there are
architects dedicated to the task of delivering an archi-
tecture. An explicit architecture is necessary to plan
further budgeting and the organization of the develop-
ment teams. In a FLOSS project, the core developers
will probably also have some idea about the architec-

ture in mind but that idea is rarely explicitly docu-
mented since no formal budgeting is necessary and de-
velopers do not have to be strictly assigned to a team
within the organization.

• Project quality decreases over time, as extensions and
fixes will be inserted in suboptimal places.

• Following Conway’s Law, the organizational structure
of the project team is a representation of the software
architecture [2]. Small project teams reorganize them-
selves and their software’s architecture quickly when
the need arises.

Solution
Publish the program’s architecture.

You can publish the architecture in different places (see
Figure 2): In a dedicated document, in a well documented
source code or in the project’s structure. Choose one of those
places and publish this decision. Of course, combinations are
also possible.

Dedicated documents for the software’s architecture is
probably the best way for outsiders to understand the struc-
ture and dependencies of the project. However, ensure that
these documents are thoroughly maintained, otherwise they
may damage more than they help.

Up to a certain project size, a self-describing source code is
the least effort way to provide outsiders with an understand-
ing of the program architecture. For larger projects, it is still
a good idea to have self-describing source codes, so read-
ers understand the structure inside each module. There are
generally two complementary ways to create self-describing
source codes. Firstly, literate programming advocates source
code that is easy to understand without comments or other
explanation. One aspect of this are variable and function
names that accurately explain the function of this variable
and function, respectively. Secondly, tools like JavaDoc1

1http://www.oracle.com/technetwork/java/javase/

Figure 2: Relation between architecture, system, documentation and project structure

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

and Microsoft SandCastle2 allow the creation of code doc-
umentation from source code and its comments. This re-
quires extensive use of sensible comments, as there is no
use to method-descriptions that do not say more than the
method’s and parameter’s names already did.

Lay your project structure open. Show who is responsible
for which part of the program. Provide your project sections
with tools to publish information about themselves, allowing
aspiring developers to overview the open tasks and contact
the maintainer of the project section.

Consequences
! Prospective developers will find the place where to

change code more easily. The number of developers in-
creases, as the hurdle to join the project is lower. The
project structure is self-organizing and therefore new
developers are recruited more easily. These new devel-
opers use less time searching the code and discussing
with the core develpers about the right place where to
add patches. This saves time and less patches have
to be dismissed when they do not fit into the software
architecture.

! Developers are aware of the architecture and can po-
tentially improve the architecture.

∼ Understanding the architecture is key to find the best
place to add new code. That prospective develop-
ers understand the architecture cannot guarantee that
they find a place to add the demanded functionality
though. The architecture can miss the interfaces nec-
essary to add the new parts and changes to large parts
of the program may be necessary. The developers may
dismiss their contributions although they have under-
stood the project and software architecture. Publish-
ing the architecture does not help with this problem.

% Time spend on architecture cannot be used to develop
new features and a formal structure might also sup-
press creativity.

Examples
The Unified Modeling Language (UML) modeling tool Ar-
goUML3 documents its own architecture as UML diagrams4.
Also, they document their process like issue handling5 in
UML diagrams.

Related patterns
The pattern User Contributions aims at promoting users
to developers who therefore become part of the project’s
organizational structure. These new developers can inte-
grate into the existing structure only if information about
the structure is available.

It is not only sufficient to have an Exposed Archite-
cure, it must also be clear to all prospective developers that
it exists. Therefore, it is a good idea to provide a Central

documentation/index-jsp-135444.html
2http://sandcastle.codeplex.com/
3http://argouml.tigris.org/
4http://argouml.tigris.org/wiki/Design
5http://argouml.tigris.org/wiki/The_big_picture_
for_Issues

Information Platform(§) and promote the Exposed Ar-
chitecture there.

Sources
Gacek and Arief have found out that some FLOSS projects
have exposed architectures while others have closed archi-
tectures [8]. They call this property of a FLOSS project
“Visibility of software architecture”. An architecture can be
kept secret intentionally, which may be another pattern –
in case there are some forces that want to discourage others
from joining the project. Or it can be unintentionally be
closed if no developer ever formally wrote down the archi-
tectural considerations of the project.

The architecture of a software project has several different
representations. When the project starts, the first develop-
ers have a mental representation of the architecture. This
mental representation may be scripted in some formal way
like UML. The source code surely represents the architecture
as soon as it is written, although it may be more difficult to
read the architecture just from the source code. Following
Conway’s Law, the organizational structure of the project
team is another representation of the architecture [2].

Verification
As described in the pattern, an Exposed Architecture
can be visible in explicit documentation, in well documented
source code or in the organizational structure [2]. To fulfill
the pattern, the project also needs to advertise that struc-
ture in some way. If a structure just seems to be present
but is not mentioned at the project’s site, the pattern is not
met.

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://sandcastle.codeplex.com/
http://argouml.tigris.org/
http://argouml.tigris.org/wiki/Design
http://argouml.tigris.org/wiki/The_big_picture_for_Issues
http://argouml.tigris.org/wiki/The_big_picture_for_Issues

2.3 Low-hanging Fruit

Context
The project grows and gets more and more complex. The
core developers grew up with the project’s code and know
how to handle it. Although you encourage User Contri-
butions, the users cannot overview the project’s structure
and therefore they cannot work on the project.

Problem
No new developers join the project because there is
too much to learn before they could be helpful.

Forces
• Software developers work on an application because

they get paid for it or because they need the applica-
tion for themselves. An additional reason may be the
joy of programming in general but usually one of the
other two reasons also applies. However, users con-
tribute to the project if they are not only motivated
but also capable to do so.

• If no additional money is to be invested and still new
developers are wanted, the project must attract new
developers in the group of users and potential users.
The benefit for a FLOSS project is higher if the project
recruits developers out of its user base that are already
experienced developers. These developers may never-
theless stay users if they find all open issues in the
project bug tracker, including their own issues, to dif-
ficult for them to fix. Even for experienced developers,
this may be the case if their understanding of this spe-
cific project is still not very high.

• Most of the time, a project has some unfinished tasks.
Easy tasks can be finished quickly and hard tasks tend
to stay longer in the bug tracker.

• Developers spend only a little time on easy tasks and
much time on hard tasks.

• When developers work on the open tasks of a project,
easy tasks give a more immediate positive feedback
and lead to quicker improvements. These tasks may
therefore seem to be the ones to be worked on first.
However, if the experienced developers quickly solve
all easy problems, only the difficult ones are left for
developers who want to join the project.

Solution
“Save some low-hanging fruit for beginners”[15].

Experienced developers of the project shall focus on the
hard tasks that only they can solve. Leave some of the easy
tasks open. Users are more motivated to work on these
problems and therefore the transition from user to devel-
oper is more smoothly. Choose the tasks to be left open

with care: They should not be so critical that the software
quality suffers and they should not be so urgent that the
core developers are forced to fix them because none of the
users wanted to work on them in time.

You can encourage new developers to write and submit
code for the software by announcing open easy problems on
the project’s web site. Name an experienced developer as
contact who will provide help for developers willing to work
on the announced problem.

If users contribute source code, either to existing bugs
or for completely new features, encourage further contribu-
tions. If the source code has insufficient quality, core devel-
opers should not take over the bug and write new, higher
quality source code themselves. Instead, they should point
out the weaknesses of the original contribution, give exam-
ples of source code meeting the quality standards, and pro-
vide help with the tools that the other developers are using
for this kind of problem. It is the primary goal to teach the
user the abilities of a developer and fixing the bug is only
secondary.

Consequences
! Users may be able to adapt the software for their needs

and contribute their changes back to the project even if
they have little development experience in the problem
domain of the project. This is possible because the
tasks are easy enough and they are provided tutoring.

! Over time, the users learn more and more about the
project and contribute more regularly. The number
of developers and their knowledge about the project
increases.

% Some tasks seem to be easy, but they are difficult.
These tasks will be unfinished for a long time. The
software will have less features in the short term, since
there are features that are easy to implement, which
are left open on purpose.

∼ Core developers spend more time on difficult tasks,
which is a better use of their valuable time. They
might like the bigger challenges but they might also get
discouraged because they only seldomly finish tasks.

! In the short term, core developers spend more time in-
structing prospective developers than they save by not
working on the easy tasks. In the long term, there will
be a higher number of developers with project knowl-
edge and the project improves rapidly.

Examples
The Google Summer of Code6 is a program that encourages
students to work on FLOSS projects. Every participating
project clearly defines a work package that can be solved in
a three months time frame. The students are supported by
mentors from the FLOSS projects that help to get started
with the work. The students gain programming practice and
the FLOSS projects get additional contributions. Also, the
students may gain knowledge of the FLOSS project and stay
valuable contributors of the project.

6https://code.google.com/soc/

https://code.google.com/soc/

Related Patterns
You should first rely on User Contributions and only if
it is not possible for the users to contribute to your project,
you should save some Low-hanging Fruit for beginners.
Alternatively or additionally, you might document an Ex-
posed Architecture, so your users can figure out how to
fix the difficult tasks on their own, too.

Sources
One research thread in End-User-Programming tries to re-
duce the big leap from a user to a developer into a “gentle
slope” (see [14], page 382). Naramore suggested to “Save
some low-hanging fruit for beginners”[15], so new develop-
ers of FLOSS projects incrementally learn what is needed to
participate in the project.

Raymond noticed in his first rule in ”‘The cathedral and
the bazaar”’ that software developers work better if they
personally profit from their software: “1. Every good work
of software starts by scratching a developer’s personal itch.”
[17]. This means that there must still be itching problems
before an unpaid developer starts working.

Verification
Verification of Low-hanging Fruit can be quite challeng-
ing, as a general accepted definition of easy tasks (i.e. “low
hanging fruits”) might not be possible. It is probably save
to say that the pattern is met if a constant admission of new
developers can be observed. A constant admission of new de-
velopers is not necessarily the same as a growing developer
base, as others might leave the project at the same time.
Then again, if no new admissions are observed – which is
likely for many projects, given Krishnamurthy’s [12] findings
– a decision whether the pattern is met by a given project
can only be done after careful examination of source code
and the discussions in bug/feature trackers or mailing-lists.

2.4 Maintainer Handover

Context
For some reason, the leading maintainer / project owner lost
interest in his project. Others might still be actively working
on it, but it takes more and more time for him to respond to
requests, some remain unanswered. Decisions are no longer
made in a timely manner.

Problem
How can the development pace be kept when the
project is about to lose its maintainer?

Forces
• On the one hand, comments from project maintainers

that they are no longer maintaining the project are
found in Sourceforge rarely. One the other hand, it
is easy to find examples of abandoned projects. Some
have reached a certain degree of maturity and attracted
a community of at least some active users or even de-
velopers. The community is still interested in further
development, but somehow the project owner is no
longer as enthusiastic as he was once.

• Nevertheless the owner would rather see the project
flourish independently than to see it die.

• There might be aspirants to take over the project. In
a FLOSS project, any interested developer could just
take over such a project by launching an own branch.
However that might split the community and leave the
users puzzling which branch to use, where to report
bugs and feature requests to, etc. The replication of
the project’s infrastructure might not be trivial.

Solution
“When you lose interest in a program, your last duty
to it is to hand it off to a competent successor.” [17]

In a typical small project without an established base of
active/core developers, finding a successor and making sure
she brings the expertise needed will be the difficult part
of the handover. If the leaving owner has not yet built a
relationship of trust to some of the project’s developers, then
he might want to invest some additional time reviewing that
developer’s contributions before asking her if she was willing
to take over the responsibility. However, if at this point of
time there are no active developers contributing, then the
owner might want to advertise the upcoming vacancy via
the project’s site and mailing lists. In that case, he is well
advised to be patient – if no one feels a serious itch with the
current version of the project, it can take a long time till
a capable aspirant shows up. Then again, if no one feels a
serious itch, then the project should not need much attention
from the old owner, either.

Consequences
! A proper handover comes at low costs in time but

smoothes the process of transition. The project and
its community will benefit from a successful handover,
since the development will continue; the newly won
freedom and responsibility of the succeeding owner
might bring fresh impulses and innovation. It also
relieves the former owner of any burdens the project
might otherwise impose on him.

% The only truly unfortunate outcome from the leaving
owner’s point of view can be time wasted on searching
and building up a dedicated successor and be let down
afterwards.

∼ The old owner needs to be honest to himself about his
declining interest and needs to be prepared to let go.
There is also the risk of the new owner being not as
competent or dedicated as needed. The project might
suffer from a shift in direction and loss of vision. Such
progress is not necessarily worse than an abandoned
project, as it is still possible for discontent users to
start a clean branch.

Examples
Robles and Gonzalez-Barahona have researched core main-
tainer turnover in large FLOSS projects [18] and found that
the core group changed completely in some of the projects.
They did not look at small projects with a single owner.
There are examples for this pattern in use in smaller projects
like TeXnicCenter7 and CDex8. These examples also show
varying difficulty of the handover.

Related patterns
The pattern User Contributions can help to attract de-
velopers who care about the project. These developers are
potential candidates as the new maintainers.

Sources
Software developed by organizations can be categorized into
three groups: Firstly, the software is either a proof of con-
cept or prototype and is not intended to be used produc-
tively. Secondly, the software will only be used internally.
Thirdly, the target audience is outside the organization. In
the latter two cases, the organization has an interest to con-
tinue the development if the software is successful. Hence,
organizations staff their successful software projects if this is
profitable. This is not the case for FLOSS projects: Devel-
opers who lose interest in a FLOSS project will eventually
quit the project even if the project is successful and there
is demand on the user’s side for the project. The pattern
Maintainer Handover is therefore particularly important
for FLOSS projects where user demand does not necessarily
create the incentive to continue a project.

Raymond first described this behaviour as advice number
five in his essay “The cathedral and the bazaar”[17].

7http://www.texniccenter.org
8http://cdexos.sourceforge.net

http://www.texniccenter.org
http://cdexos.sourceforge.net

Verification
For each project, it will be analyzed whether there was a
change of ownership of the project. Possible outcomes are

no change The pattern is not applicable.

smooth transition The pattern was successfully applied.

abandoned The pattern would have been applicable, but
was not applied.

branched The pattern might have been useful, but instead
of a handover, a new development branch was initi-
ated.

complicated transition The project has been taken over,
however the transition was not smooth but ended in
or lead to conflicts. A significant share of users or de-
velopers seem to have left the project because of that.
So the pattern was not successfully applied either.

3. CONCLUSION AND FURTHER WORK
This paper raises the assumption, that the so called FLOSS

development process, which has been anticipated by numer-
ous sources, can be interpreted in terms of patterns and
pattern languages. Four patterns have been derived from
related works and discussions about FLOSS in the commu-
nities. For each pattern exists a short paragraph describing
how the pattern was identified and another paragraph about
the possible verification of each pattern.

The next step will be the verification of the patterns.
We will combine manual verification with an automated ap-
proach similar to the one described in [9]. During the identi-
fication of the patterns, some relations between the patterns
already emerged. We expect that it will be possible to con-
solidate the patterns in a language or a family of languages
during and after the verification. The FLOSS pattern lan-
guages can help to give a better insight into specific FLOSS
projects and support comparisons of projects. Furthermore
both FLOSS and proprietary projects might use these pat-
tern languages to improve their process.

4. ACKNOWLEDGEMENTS
We thank Allan Kelly for the very valueable hints and

ideas while being the shepherd for this paper. We also thank
our colleague Bettina Biel for her motivating feedback to
the early versions of the paper and we thank our Writer’s
Workshop group at PLoP for their feedback.

5. REFERENCES
[1] F. P. Brooks, Jr. The Design of Design.

Addison-Wesley, 2010.

[2] M. E. Conway. How do committees invent?
Datamation, 14(5):28–31, April 1968.

[3] J. O. Coplien and N. B. Harrison. Organizational
patterns of agile software development. Pearson
Prentice Hall, 2005.

[4] K. Crowston, H. Annabi, and J. Howison. Defining
open source software project success. In in Proceedings
of the 24th International Conference on Information
Systems (ICIS 2003), pages 327–340, 2003.

[5] A. Deshpande and D. Riehle. Continuous integration
in open source software development. In B. Russo,
E. Damiani, S. Hissam, B. Lundell, and G. Succi,
editors, Open Source Development, Communities and
Quality, volume 275 of IFIP International Federation
for Information Processing, pages 273–280. Springer
Boston, 2008.

[6] K. Fogel. Producing Open Source Software. How to
Run a Successful Free Software Project. O’Reilly
Media, 2007.

[7] Free Software Foundation. The free software definition,
2008. http://www.gnu.org/philosophy/free-sw.html,
last checked: 2010-05-24.

[8] C. Gacek and B. Arief. The many meanings of open
source. IEEE Software, 21:34–40, 2004.

[9] D. German and A. Mockus. Automating the
measurement of open source projects. In J. Feller,
B. Fitzgerald, S. Hissam, and K. Lakhani, editors, 3rd
Workshop on Open Source Software Engineering /
ICSE’03, pages 63–68, Washington, DC, USA, 2003.
IEEE Computer Society.

[10] K. Healy and A. Schussman. The ecology of
open-source software development. Technical report,
Department of Sociology. University of Arizona, 2003.

[11] A. Kelly. Patterns for technology companies. In
Proceedings of the 11th European Conference on
Pattern Languages of Programs, 2006.

[12] S. Krishnamurthy. Cave or community?: An empirical
examination of 100 mature open source projects.
Social Science Research Network Working Paper
Series, 7(6), June 2002.

[13] B. Mishra, A. Prasad, and S. Raghunathan. Quality
and profits under open source versus closed source. In
ICIS 2002 Proceedings, pages 349–363, 2002.

[14] B. A. Myers, D. Smith, and B. Horn. Languages for
Developing User Interfaces, chapter Report of the
’End-User Programming’ Working Group, pages
343–366. A K Peters, 1992.

[15] E. Naramore. Why people don’t contribute to os
projects, and what we can do about it., March 2010.
http://naramore.net/blog/why-people-don-t-
contribute-to-os-projects-and-what-we-can-do-about-
it, last checked:
2010-05-19.

[16] Open Source Initiative. The open source definition,
2004. http://www.opensource.org/docs/osd, last
checked: 2010-05-22.

[17] E. S. Raymond. The cathedral and the bazaar. 2000.
Revised version.
http://www.catb.org/ esr/writings/cathedral-
bazaar/cathedral-bazaar/, last checked
2010-05-24.

[18] G. Robles and J. Gonzalez-Barahona. Contributor
turnover in libre software projects. In OSS2006: Open
Source Systems (IFIP 2.13), pages 273 – 286.
Springer, 2006.

[19] I. Stamelos, L. Angelis, A. Oikonomou, and G. L.
Bleris. Code quality analysis in open source software
development. Information Systems Journal,
12(1):43–60, 2002.

[20] J. Warsta and P. Abrahamsson. Is open source
software development essentially an agile method? In
J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani,
editors, Proceedings of the 3rd Workshop on Open
Source Software Engineering, pages 143–147.
International Conference on Software Engineering,
2003.

	Introduction
	Patterns
	User Contributions
	Exposed Architecture
	Low-hanging Fruit
	Maintainer Handover

	Conclusion and Further Work
	Acknowledgements
	References
	Bibliography

