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1. INTRODUCTION 

An Adaptive Object-Model (AOM) (Yoder and Johnson 2001) system represents user-defined domain entities, 
their relationships, attributes and behavior as metadata (Foote and Yoder 1998, Yoder et al. 2001, Yoder and 
Razavi 2000). An AOM system relies on an object model, which is constructed at run time by interpreting 
externally stored definitions (metadata). Users change the object model (or the metadata) to reflect changes in 
the domain. 

Refining the definition of an AOM entity may require other dependent AOM entity definitions to change as 
well. To preserve model consistency under such evolution, the required series of changes to domain entities 
need to appear to be applied as a single modification. One way to support atomicity when making a change to a 
number of different domain entities is to take the system off-line, evolve the metadata and all the affected 
domain objects, and then perform a clean restart of the system. However, when a system must keep running, or 
when the system cannot be taken offline for the long period of time required for performing system-wide 
changes, then dynamic model evolution is a viable option: the incremental evolution of the metadata and the 
domain objects can be done when objects are loaded into memory. 

1.1 Contribution 

The pattern presented in this paper handles dynamic evolution of the domain model of an AOM. Aspects of this 
pattern can be applied to dynamically evolve metadata and object instances to co-exist with new versions of 
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AOM infrastructure code. This pattern may also be relevant to those who need to evolve other types of meta-
architectures. 

1.2 Background 

To understand the details of this pattern, the reader is expected to have some background knowledge of AOM 
systems. AOM architectures are usually implemented by applying several patterns to represent a domain 
model and its behavior. The TYPE OBJECT (Johnson and Wolf 1998) pattern is used to dynamically define new 
business entities for the system. Entities have attributes, which are implemented with the PROPERTY (Foote and 
Yoder 1998) pattern. The TYPE OBJECT pattern is used a second time to define the legal types of attributes, called 
ATTRIBUTETYPE. Thus, to represent an entity, TYPE SQUARE (Yoder et al. 2001) is used, i.e., a combination of TYPE 

OBJECT and PROPERTY patterns. Additionally, an AOM might use these patterns: ENTITYRELATIONSHIP 
(ACCOUNTABILITY),  (Welicki et al. 2009), RULEOBJECT (Arsanjani 2000), HISTORY OF OPERATIONS (Ferreira et al. 
2008), SYSTEM MEMENTO (Ferreira et al.2008), and MIGRATION (Ferreira et al. 2008). For an overview of the core 
patterns of this architectural style, see Appendix A. 

2. CONTEXT 

You are upgrading a 24x7 production system that is implemented in an AOM architecture style. Implementing 
new functionality requires modifications to definitions of existing domain entities. Your production system has 
considerable pre-existing metadata and domain objects, and you don’t want to halt the running production 
system to perform an off-line upgrade. 

3. PROBLEM 

How can one dynamically evolve at runtime the metadata definitions and the entities of a running AOM? 

4. FORCES 

There are four main forces: 
 
 High Availability: The AOM system must keep running 24x7. A long period of downtime for performing 

model upgrades is unacceptable. 
 Legacy Metadata: There are large amounts of stored instances, excluding the possibility for off-line data 

migration within a short maintenance window. 
 Type Refactoring: The changes include redefinitions of attribute types, subtypes and super-types. (Hence, an 

upgrade support that is unable to handle such redefinitions will be of limited utility). 
 Multiple Custom AOM Versions: There are several customers using the product and each customer may 

modify its own AOM entity definitions independently. (Hence, the architecture needs to be able to handle 
different versions of AOM definitions in a way that lets the customer team resolve conflicts autonomously 
without extensive reworking of any local customizations already made to domain entity definitions). 

5. SOLUTION 

The overall process requires a staging system as a mediator between the development and the production 
systems (Fig. 1). The new version and the customized domain model from the production system are both 
installed in the staging system.  

In the development system, the AOM core team prepares a new version of the core software product 
(“develop next version,” Fig. 1). For each change in the domain model that is not backward compatible, the core 
team prepares an upgrader that will transform instances of that domain entity to the new model as part of the 
de-serialization of existing AOM objects (“prepare upgraders,” Fig. 1). The new version along with the set of 
upgraders is then deployed into the staging system (“install,” Fig. 1). 



Dynamic Model Evolution: Page - 3 

 

 

Fig. 1. Activity diagram for the AOM evolution process. 

The customized domain model from the production system is also deployed onto the staging system 
(“import,” Fig. 1). The combined model then undergoes validation to detect inconsistencies (“validate new 
version,” Fig. 1). These inconsistencies are reported in a problems view, e.g., using the BREAK AND CORRECT 

pattern (Hen-tov et al. 2010), to be resolved by an AOM engineer (an end-user domain expert).  

For example, a conflict will be detected when a new core property in a revised entity type happens to have 
the same name as that of a property already defined in a custom AOM type. To resolve this conflict, the AOM 
engineer will need to rename the dynamically defined property. After the property is renamed, the AOM 
engineer has to deal with backward compatibility. For example, in order to correctly handle de-serialization of 
old instances, a value needs to be associated with the renamed property.  This is accomplished by either adding 
new upgraders or extending the behavior of existing ones (“fix conflicts and write upgrade scripts,” Fig. 1).  

The fix can be either written in a scripting language or specified declaratively using a library of generic 
configurable upgraders (e.g., property rename upgrader). Once all conflicts are resolved and the custom 
upgrade scripts are written, the customer can test the new version along with the entire set of upgraders. 
During production, the upgrade framework is invoked as a first step in the AOM BUILDER (Welicki et al. 2009) 
and performs just-in-time instance upgrade (“on-the-fly upgrade,” Fig. 1). 

The upgrade framework can be further integrated with specific technologies that support dynamic 
evolution. In Java, for example, a new release of a core product system typically includes a binary distribution 
in the form of executable jars. To avoid restarting the application server, there are various Java techniques that 
do not require any downtime when installing the new binary version. We briefly list here two such 
technologies: 
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 Dynamic class loading is part of the Java Core Reflection API. However, this technique is not commonly used, 
because it requires supporting infrastructure for error handling and robustness, such as handling existing 
instances, error recovery, etc. 

 OSGi is a set of specifications that define a dynamic module system for Java. It inherently supports versioning 
and evolution of Java modules (jars). There are several implementations of the OSGi specifications, such as 
Apache Felix (felix.apache.org) and Eclipse Equinox (www.eclipse.org/equinox).  

6. DYNAMICS 

When an entity is loaded into a running AOM system, a version migration commences. Fig. 2 depicts the main 
classes involved in the just-in-time evolution of an entity. Fig. 3 is the corresponding sequence diagram.  

An AOMBuilder (Welicki et al. 2009) is responsible for de-serializing entities retrieved from a repository 

(e.g., a relational database). It invokes a collection of BuildSteps in order to gradually build the entity. The 
first step is the UpgradeBuildStep (an interface implemented by UpgradeManager). If the data 

associated with an EntityType has been defined in an earlier version of the AOM, an appropriate Upgrader 
is invoked. The build process may involve the migration of data from several prior versions. Therefore, a series 
of version upgrades may be applied sequentially. 

An Upgrader is responsible for migrating data from one version to the next. For this to work, each Entity 
object needs a version property. A global variable holds the currently installed version. When upgrading the 
system, a collection of ModelVersion entities and the associated upgrade scripts are available to the 

UpgradeManager. The UpgradeManager determines which upgraders are necessary according to the 

EntityType and the fromVersion and toVersion that each upgrader handles. Each EntityType may 
have several upgraders, some of which were supplied with the new core product version and some that were 
added by the AOM engineer.  

The UpgradeManager is also responsible for providing getters and setters (using the PROXY pattern) for 
manipulating raw data format of entities. This lets the script programmer concentrate on the transformation 
from the old version to the new one, rather than dealing directly with the raw data format of an Entity. 

Fig. 2. AOM Builder with upgrade support (class diagram). 
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Fig.3. A Builder upgrade step (sequence diagram). 

7. EXAMPLE 

As an example, consider an AOM implementation of an online marketing system designed for running 
Telephony campaigns targeted at different subscriber segments (Hen-tov et al. 2009). Fig. 4 displays some of 
the classes in this AOM with their inheritance relationships, and several instantiated entities. 

The core software product in this example comprises general-purpose AOM core classes (Entity and 

EntityType), and domain-specific AOM classes (Benefit, BenefitType, Event, and EventType). 

A Benefit describes specific campaigns. An Event describes the trigger for activating a Benefit. Each 

BenefitType is associated with an EventType to define which type of Event can trigger that Benefit 

type and grant the benefit. BenefitType and EventType are part of the AOM TYPE OBJECT pattern.  

These domain specific classes can be specialized for a particular customer by creating new user defined 
metadata classes. In our example, the customer defined two new Benefit kinds: FreeSms and 

FreeAstrologicalPrediction; and three new Event kinds: SmsEvent, TopupEvent, and 

VoiceCallEvent. The FreeSms benefit is activated by an SmsEvent and grants the user with free units of 

SMS sends. The number of units is defined in the Benefit class. FreeAstrologicalPrediction is 

activated by a TopUpEvent and grants the user with free units of daily predictions. For simplicity, we omit 
details such as the conditioning for granting benefits, e.g., “send 200 text messages this week and get 100 more 
sends for free.”  

In addition, the customer took advantage of the AOM architecture and added a CAP property in 

FreeAstrologicalPrediction. This property was then used by the customer to set a special cap on the 
number of free units. Setting a cap limits the overall cost of the benefit to the service provider and thus helps in 
keeping within the marketing budget for the campaign. 

At runtime, instantiations of specific benefits represent specific products. For example, 100FreeSms sets 

the benefit to 100 units of free SMS's; WeekFreeAstrologicalPrediction sets the benefit to 7 days of 
free predictions with a maximum cap of 1904 days total for all users collectively to keep within a $10K budget.   
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Fig.4. The original AOM model and instances. 

8. UPGRADE SCENARIO 

In our example scenario, the next version of the AOM system incorporates two improvements (Fig. 5). First, the 
cardinality of the association between BenefitType and EventType changed from 1:1 to 1:*. That is, in the 
new version several event types may trigger each benefit. Second, to improve budget control, a new monetary 
CAP was introduced in the core framework Benefit class, along with a costPerUnit property in 

BenefitType. When granting benefits to end users, the improved system checks that the CAP is not 

exceeded; otherwise it fails the benefit request.  The new functionality is implemented in the Benefit class. 

8.1 Core Upgraders 

The cardinality change is a change to the type of benefits (BenefitType.triggerType), affecting 

FreeSMS and FreeAstrologicalPrediction. This is resolved by providing an upgrader that converts a 
benefit from the old structure to the new structure by adding the triggering event type from the old instance to 
the list of triggering event types in the new instance. The core upgrader is implemented in Java (Script 1): 

Script 1.Core upgrade  
if (oldInstance.getTriggerType() != null) { 

newInstance.getTriggerTypes().add(oldInstance.getTriggerType()); 

} 
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Fig.5. The revised AOM model and instances. 

8.2 Conflicts and Custom Upgraders 

Next we consider conflicts that may occur during upgrade and their resolution (“Fix conflicts and write upgrade 
scripts,” Fig 1). Not all upgrade scenarios can be resolved automatically. In some cases, specific business logic 
needs to be applied in order to resolve the conflict. For example, the addition of the CAP property in Benefit 

clashes with the existing CAP property in FreeAstrologicalPrediction. The former was introduced by 
the new product version; the latter was introduced by the customer as part of the customization process. To 
resolve this conflict, the customer needs to rename the original CAP as old_CAP and provide an upgrade 

script that calculates the CAP value when loading existing model instances. The script essentially multiplies the 

old_CAP by the costPerUnit and the number of units (Script 2): 

Script 2.Customized upgrade 
newInstance.setOldCAP(oldInstance.getCAP()); 

newInstance.setCAP(oldInstance.getCAP()  

*newInstance.getType().getCostPerUnit() 

   *oldInstance.getUnits()); 
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When upgrading the FreeSMS class the customer needs to assign a default value for the CAP property and 

supply a value to the new costPerUnit property. These modifications cannot be resolved in the core product 

and the customer needs to manually supply values on a case-by-case basis (e.g., costPerUnit = 0.5). 

Although this example presents an application domain change, the pattern applies just as well to core AOM 
architecture changes, such as changing the serialization format of AOM objects. 

9. RESULTING CONTEXT 

We list the pros and cons. 
 
Pros: 
 High Availability: changes to the AOM architecture can be made without having to stop a running system. 

Evolution of metadata and data can be done on the fly. 
 Amortized Cost: the overhead of converting data to the new AOM architecture occurs incrementally. 
 Automatic Migration: default migration can be provided for the changes to the core AOM metadata and 

architecture using upgraders. An AOM system may be upgraded from a much earlier version to the latest 
version without going through the intermediate versions 

 Reuse: generic configurable upgraders can be provided by the upgrade framework (e.g., for rename 
property). 

 Usability: the problem view assists the AOM engineer in resolving version conflicts. 

 
Cons: 
 Higher Complexity: the AOM BUILDER code is more complex, since hook methods and evolution code become 

part of the BUILDER. The addition of hook points introduces another level of indirection that makes the code 
more complex and harder to debug and maintain. 

 Performance Degradation: the AOM BUILDER runs slower at first, because the upgrade to the metadata is 
invoked. Running version checks every time an entity is created may further degrade load performance. 
This overhead can be somewhat reduced by applying the versions check only when a system wide flag 
indicates that the system is in upgrade mode (and avoiding version checks when in normal operation 
mode). 

 Fragility: cached AOM data may need to be flushed or invalidated to force data evolution of existing in-
memory AOM instances. 

 Incompleteness: semantic changes of the core model that require changes in customization are not covered 
by the upgrade process and need to be addressed separately (e.g., by inspecting the actual changes done). 

10. ALTERNATIVE SOLUTION 

The core solution presented in this pattern is based on a lazy modification of the metadata as the system 
evolves. The pattern is designed primarily for modifying the metadata in AOM systems that need to be running 
24x7. When such execution constraints do not exist, there is a very common alternative (a different pattern) 
that can be used to modify the metadata safely: to suspend the AOM system and completely migrate all of the 
metadata before resuming the system. 

This alternative requires a complete shutdown of the running AOM system.  While the system is off-line, an 
upgrade script can completely evolve all of the metadata and data before bringing the AOM system back online.  
The benefit of the alternative solution is in avoiding the performance overhead at runtime since the system will 
not need to invoke checks and hooks in order to possibly evolve the metadata as it is loaded and instantiated.  

There are several tradeoffs to consider for either solution, but the solution described in this pattern 
requires enhancements to the core of the AOM architecture, while the alternative solution does not affect the 
architecture of the AOM. 

11. RELATED PATTERNS 

 HISTORY OF OPERATIONS (Ferreira et al. 2008) can be used to transfer AOM metadata changes between the 
development, staging and production systems. This helps in managing the overall process. 

 AOM BUILDER (Welicki et al. 2009) is an evolution of the BUILDER (Gamma et al. 1995) pattern. 
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 EVOLUTION RESISTANT SCRIPTS is used to invoke the UPGRADE SCRIPTS (Hen-tov et al. 2010). 
 HOOKS (Fontura et al. 2001) are invoked in the AOM loader to enable customers to provide default values for 

AOM attributes when migrating to a new version. 

12. KNOWN USES 

The pattern presented in this paper is used intensively in online marketing systems developed at Pontis Ltd. 
(www.pontis.com), a provider of online marketing solutions for communication service providers. Pontis’ 
Marketing Delivery Platform is implemented in ModelTalk (Hen-tov et al. 2009) and supports on-site 
customization and model evolution by non-programmers. Pontis’ system is deployed in over 20 customer sites 
including Tier I Telco providers. A typical customer system handles tens of millions of transactions a day 
exhibiting Telco-Grade performance and robustness. 

There is a mutation technique developed for migrating objects in Smalltalk-80 (Caudill and Wirfs-Brock, 
1986) that is a known use of the core of this pattern. These authors made an enhancement to Smalltalk that 
changed how class redefinitions worked. The original Smalltak-80 system mutated all existing instances to use 
the new representation whenever a class was redefined. To eliminate the overhead of this bulk object 
mutation, the new approach used lazy mutation. Lazy mutation defers object mutation until it is actually used 
in a computation. Lazy mutation is accomplished by replacing the method dictionary of the old class definition 
with a dictionary which defines only the message doesNotUnderstand:. In addition, the superclass of the 

old class definition is set to nil and a reference to the new class definition is stored within the old definition. 
When a message is sent to such an instance of the old class, a response to the message will not be found and the 
doesNotUnderstand: method will be activated. This method contains the code to mutate the instance into 
an instance of the new class. The difference between this approach and the pattern described in this paper is 
that lazy mutation only applies a single evolution to an object, not a chain of replacements. 

An AOM system developed for the Illinois Department of Public Health used the alternative solution 
mentioned above.  There are also many other well-known uses of the alternative solution done by some of the 
authors. 

13. SUMMARY 

When evolving a production AOM, new functionality requires modifications to definitions of existing domain 
entities. An AOM production system can have considerable pre-existing metadata and domain objects that will 
need to be updated in order to adapt to the new version of the AOM architecture.  Quite often it is the case that 
you will want to incorporate model changes into an AOM production system without taking the system off-line. 
The DYNAMIC MODEL EVOLUTION pattern describes a way to lazily update the metadata and the domain objects as 
a part of loading the domain objects.  This allows for 24x7 systems to dynamically update the model to new 
features provided as the AOM evolves. 
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Appendix to: 

Dynamic Model Evolution 
 

IMPORTANT NOTICE: THIS SECTION IS A SUMMARY EXTRACTED FROM (YODER AND JOHNSON 2002, YODER ET AL. 2001) AND HAS BEEN 
INCLUDED TO HELP READERS UNFAMILIAR WITH THE AOM ARCHITECTURAL STYLE TO GET A MORE COMPLETE VIEW. WE STRONGLY 
RECOMMEND THE READER READS THE ORIGINAL PAPERS FOUND AT WWW.ADAPTIVEOBJECTMODEL.COM. 

A. Summary of the Architectural Style of Adaptive Object-Models 

A.1. Design 

The design of Adaptive Object-Models (AOMs) differs from most object-oriented designs. Normally, object-
oriented designs have classes that model the different types of business entities and associate attributes and 
methods with them. The classes model the business, so a change in the business causes a change to the code, 
which leads to a new version of the application. An AOM does not model these business entities as classes. 
Rather, they are modeled by descriptions (metadata) that are interpreted at runtime. Thus, whenever a 
business change is needed, these descriptions are changed, and can be immediately reflected in a running 
application. 

AOM architectures are usually made up of several smaller patterns. TYPE OBJECT (Johnson and Wolf 1998) 
provides a way to dynamically define new business entities for the system. TYPE OBJECT is used to separate an 
ENTITY from an ENTITYTYPE. Entities have attributes, which are implemented using the PROPERTY pattern (Foote 
and Yoder 1998). 

A.2. Type Object 

In most AOMs, TYPE OBJECT is used twice: once before using the PROPERTY pattern, and once after it. TYPE OBJECT 
divides the system into entities and entity types. Entities have attributes that can be defined using properties. 
Each PROPERTY has a type, called PROPERTYTYPE, and each ENTITYTYPE can then specify the types of the 
properties for its entities (Fig 6). 

 

 

Fig.6. Type Square 
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A.3. Results 

TYPE SQUARE often keeps track of the name of the property and whether the value of the property is a number, a 
date, a string, etc. Sometimes objects differ only in having different properties. Fig. 6 represents the resulting 
architecture after applying these two patterns, which we call TYPE SQUARE (Yoder et al. 2001). 

As is common in Entity-Relationship (ER) modeling, an AOM usually separates attributes from 
relationships. In these cases the TYPE OBJECT pattern is applied again to define the legal relationships between 
types of entities. 

A.4. Strategy 

The STRATEGY pattern (Gamma et al. 1995) can be used to define the behavior of entity types. These strategies 
can evolve, if needed into a rule-based language that gets interpreted at runtime. Finally, there is usually an 
interface for non-programmers, which allows them to define the new types of objects, attributes and behaviors 
needed for the specified domain. Therefore, we can say that the core patterns that may help to describe the 
AOM architectural style are: TYPE OBJECT, PROPERTY, ENTITY-RELATIONSHIP, ACCOUNTABILITY, STRATEGY, and RULE 

OBJECT. AOMs are usually built from applying one or more of these patterns in conjunction with other design 
patterns such as COMPOSITE, INTERPRETER, and BUILDER (Gamma et al. 1995) (Fig 7). 

A.5. Composite 

COMPOSITE is used for building dynamic tree structure types or rules. For example, if the entities need to be 
composed in a dynamic tree like structure, the COMPOSITE pattern is applied. Builders and interpreters are 
commonly used for building the structures from the meta-model or interpreting the results. 

A.6. AOM Core Architecture 

But, these are just patterns; they are not a framework for building AOMs. Every AOM is a framework of a sort 
but there is currently no generic framework for building them. A generic framework for building the type 
objects, properties, and their respective relationships could probably be built, but these are fairly easy to 
define and the hard work is generally associated with rules described by the business language. These are 
usually very domain-specific and varied from application to application. 
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Fig.7. Core AOM Architecture. 


