
Observations on the Observer Pattern
Christian Köppe, Hogeschool Utrecht
Institute for Information & Communication Technology
christian.koppe@hu.nl

A group of students who should have been familiar with basic design principles and MVC all failed to implement the Observer design
pattern correctly while at the same time violating several design principles. This paper discusses what went wrong and why it probably
went wrong. Possible suggestions are given for teaching the Observer pattern and for teaching design patterns in general.

Categories and Subject Descriptors: D.1.5 [Programming Techniques] Object-oriented Programming; D.2.10 [Software Engineering]:
Design—Design Patterns; K.3.2 [Computers and Education]: Computer and Information Science Education —Computer science
education

General Terms: Design, Languages, Education

Additional Key Words and Phrases: Design Patterns

ACM Reference Format:

Köppe, C. 2010. Observations on the Observer Pattern. jn 2, 3, Article 1 (May 2010), 14 pages.

1. INTRODUCTION

Design patterns are recognized as common knowledge in the software engineering field [IEEE Computer Society
2004]. They help to implement basic OO-principles and offer many advantages such as best practices, a common
vocabulary, and approved solutions. From a pedagogical perspective, they help in teaching software design and
modeling [Rasala 1997] and should be integrated in computer science curricula [Astrachan et al. 1998].

While some research and case studies exist which discuss how to teach design patterns (e.g. [Clancy and Linn
1999; Morse and Anderson 2004]), there seems to be no common best approach. We have experience which is not
documented. Furthermore, the integration and consistency of a design and the concrete implementations of this
design seem to be overlooked. In our experiences, these solutions often lack conceptual integrity (as introduced by
[Brooks 1995]) and violate some basic principles while trying to implement others.

This work presents a case study based on a course assignment. The design decisions of the students are shown
and compared with an expected solution and show some unexpected differences. Especially the implementation of
the Observer design pattern led to problems and violations of OO-principles. We will then elaborate why we think
the students failed to understand and implement this pattern and did not adhere to the OO-principles previously
taught to them. Finally, suggestions are discussed how the teaching of this pattern (and design patterns in general)
could be improved to achieve that students better understand the usage of patterns. This should help the students
to deliver more correct solutions which also follow the basic OO-principles.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A
preliminary version of this paper was presented in a writers’ workshop at the 17th Conference on Pattern Languages of Programs (PLoP).
PLoP’10, October 16-18, Reno, Nevada, USA. Copyright 2010 is held by the author(s). ACM 978-1-4503-0107-7

Fig. 1. GUI prototype of solution

2. CONTEXT

A group of students who should have been familiar with OO and MVC were taught design patterns. This was done
by telling them the main purposes of design patterns (such as collection of best practices, common vocabulary
etc.) and showing some examples. These examples included the patterns Factory, Observer, Singleton, and Adapter
in more detail and an overview of other patterns.
The group consisted of undergraduate students of Computer Science with the focus on Software Engineering. The
course ’Patterns and Frameworks’ was taught in the second half of the third year within the specialization module
’Software Architecture and Design’. At this point of study the students were familiar with object-oriented concepts
as encapsulation, loose coupling, separation of concerns, and also basic architectural principles as layering. They
were introduced to Model-View-Controller and used this in different projects.

The students were given an assignment that would require the exploration of common design patterns (from
books like [Gamma et al. 1995] and other sources) and the application of their OO-knowledge. It was explicitly
chosen to not asking for specific patterns, but just issuing some problems so that the students have to discover
for themselves which patterns can be used best to solve the problems. Most of the design patterns were applied
correctly, e.g. command, facade, factory, singleton, and interpreter. They all failed in applying the Observer pattern
correctly. What went wrong and why?

The students were given the source code from an existing simple Java application for the administration of
trains (locomotives) and wagons (rail cars) which they had to improve. The assignment included a screenshot from
a GUI prototype, shown in Figure 1. A couple of improvements and new functionality were described which had
to be implemented by the students. The new requirements included also different representations of the domain
model (the trains and wagons created), formulated as follows:

Observations on the Observer Pattern — Page 2

Fig. 2. Expected solution incl. optional MVC-part for the command line (only relevant parts shown)

They (the end-users) also want the possibility of displaying their trains in different ways.
...
Furthermore these requirements have to be included in the new software:
- The display of the existing trains incl. wagons and wagontypes has to be interchangeable, meaning
that also other displaytypes should be easy to integrate
- ...

Gamma et al. state that the Observer pattern is applicable ”when a change to one object requires changing
others, and you don’t know how many objects need to be changed.” [Gamma et al. 1995]. In this assignment,
changes to the model require changes to the representations and it is not known how many representations need
to be changed. The Observer pattern therefore offers the solution to this problem (among other patterns which are
not further discussed here).

The following grading criteria were communicated to the students:

—Required functionality to be implemented
—Design

—Good structured code (components, layers etc.)
—Principles followed (high cohesion, low coupling)
—Sensitive and reasonable usage of design patterns

—Comprehensible coding, no ’code smells’ (as described in the refactoring lesson)
—Not graded: performance, fancyness

Observations on the Observer Pattern — Page 3

It was expected that the students would implement the domain model as observable and the two representations
(text and graphical) as observers as shown in Figure 2. Actually, MVC (and therefore controllers) is not needed for
this part of the assignment as there is no user interaction between these representations and the model.
MVC can indeed be used for the implementation of the command line interface, as this interacts with the model.
This is also shown in Figure 2.

The students were expected to follow the design principles they had been taught:

—Loose Coupling - designing so that connections among different parts of the program are kept to a minimum
[McConnell 2004]

—The Rules of Layering - Layers should only be aware of the next lower layer and callbacks are used for
bottom-up communication to minimize coupling between different layers [Buschmann et al. 1996]

—Information Hiding - hide design and implementation decisions from the rest of a program in one place [Parnas
1972; McConnell 2004]

—Separation of Concerns - different or unrelated responsibilities should be separated from each other within a
software system [Dijkstra 1982; Buschmann et al. 1996]

Surprisingly, 4 out of the 5 groups tried to implement the Observer pattern, but none of them got it completely
right as was to be expected. Even the 5th group tried to implement it as well but got stuck and they decided to
proceed without using the Observer pattern.

Conventions. In some books the two important abstractions contained in the Observer pattern are observer and
subject. We prefer to use the term observable rather than subject. However, they may be considered as synonyms.

3. ANALYSIS OF THE SOLUTIONS

The source code of the delivered solutions was examined and compared with the expected solution. The class
diagrams in the subsequent sections were made by the author to help analysing the students’ solutions. It was also
taken into account for this analysis if the requirements seemed to be fulfilled when the solutions were presented at
the end of the course in a live demo, as well as the comments the students gave themselves while doing their
presentations.

Group 1

Figure 3 provides an overview of the relevant parts of this group’s solution. They chose to use MVC and introduced
controllers for the different views, even though this is not necessary. Each controller has a connection to either
a textual view or a graphical view (via JTrain). The controller also knows the model. Except for introducing
controllers as observers instead of the graphical representations of the model, this seems all right.
They also include events that occur in the model (the class PoolChangeEvent). These events are also known to
the controller, which is unusual. To determine how they arrived at this particular model we will take a look at
some code fragments.

This group used the Observer pattern implementations provided in the java.util package. Class Train is
implementing java.util.Observable via Rollingstock. In the attachRollingStock and detachRollingStock routines
it calls notifyObservers after setting super.setChanged() as the following code fragment shows.

public class Train extends RollingStock
...
protected void attachRollingStock(RollingStock rs)
{

rollingStockItems.add(rs);

Observations on the Observer Pattern — Page 4

Fig. 3. Implementation group 1 (only relevant parts shown)

setChanged();
notifyObservers(new PoolChangeEvent(Types.add, rs));

}

TrainController – the observer – knows the model, as can be seen in Figure 3. However, it does not use the
model. Instead the event which had taken place is also sent to the observer (using a new PoolChangeEvent with
attribute Types.add, see code), telling it what happened and also sending the rollingStock newly added to the
observer. This increases the coupling between observer and observable. The method notifyObservers(Object

arg) calls update(Observable o, Object arg) on all connected observers. This is also the only method in
the interface java.util.Observer. This implies that one always has to send the observable and propably some
arguments (encapsulated in an object) which can be misleading for students. To decrease the coupling between
observer and observable, a null-object should have been used.

The TrainController implements java.util.Observer, and therefore the update(Observable o, Object

arg)-method, which is shown in the following code fragment.

15: public class TrainController
implements Observer, Controller

...
30: @Override
31: public void update(Observable o, Object arg) {
32:
33: PoolChangeEvent event = (PoolChangeEvent)arg;
34: Train t = (Train)o;
35:
36: switch (event.type) {
37: case add:
38: view.add((JComponent)uiFactory.

Observations on the Observer Pattern — Page 5

buildJTrainComponent(event.rollingStock));
39: break;
40: case removed:
41: view.remove(event.rollingStock.getId());
42: break;
43: }
44: view.invalidate();
45: view.validate();
46: }

There are a few interesting points here:

(1) The observable is sent but not used here (despite the fact that it is cast in line 34). The usual reason to
include an observable is that more than one subject is observed by one observer, which is not the case here.
However, this observer in fact doesn’t do anything with the observable.

(2) The second parameter is used, but this has nothing to do with the observable. It is instead the (encapsulated)
event which occured on the observable. Therefore, nothing of the observable is used here and the observer
does not acquire information from the model.

(3) The (unnecessary) casting of the JTrainComponent into a JComponent in line 38 which is added to another
JComponent (the view) led to the examination of the view-object. This is of type JTrain, an interface. The
concrete implementation of this object is using this interface and extends JComponent. The implementation
of the add-method looks like this:

public class TrainGFX extends JTrain
...
@Override
public void add(JComponent trainSegment) {
jpScrollContent.add(trainSegment);
jpScrollContent.invalidate();
jpScrollContent.validate();

}

This shows that a JComponent-representation of the domain model object is added to a container, which
results in two independent models being created: the real domain model and an additional model in the view
layer of the application. Thus it is possible to change the model in the view layer throwing it out of sync with
the domain model (and there is no way to repair this apart from removing it from the view layer model).

Conclusion group 1. The way the Observer pattern is implemented here leads to a tighter coupling between
view and model than necessary. Sending a message with parameters from the domain layer to the view layer (using
the update-method) clearly violates one of the principles of layering (do not talk to higher layers). This differs
from a simple notification (or a callback).
Furthermore, the introduction of a second, redundant domain model may lead to inconsistencies.
None of the view objects needed to be aware of the event mechanism. This should be hidden in the domain layer.

Group 2

As Figure 4 shows, group 2 preferred to make their own implementation of the pattern, not using the java.util-
classes/interfaces.

First, they did not include the notify()-method as defined in the book of the GoF [Gamma et al. 1995].
Nevertheless, the method is correctly implemented in the observable-class (RoolingStockPool, the facade of the
domain).
Checking for all concrete observers yields only one implementation: the RichRailController. This controller
should not be an observer. However, during the classroom presentation of their running system the refresh of both
textual and graphical representations of the model did indeed work (as required in the assignment criteria), so we
take a look at what happens when the observer gets his update-message:

Observations on the Observer Pattern — Page 6

Fig. 4. Implementation group 2 (only relevant parts shown)

15: public class RichRailController implements
RollingStockPoolObserver
...
44: public void update()
45: {
46: Collection<Train> allTrains =

RollingStockPool.getInstance().getAllTrains();
47: Collection<Wagon> allDecoupledWagons =

RollingStockPool.getInstance().getAllDecoupledWagons();
48:
49: // reset the graphic & text panels
50: frame.getGraphicPanel().clear();
51: frame.getTextPanel().clear();
52:
53: // have the graphic & text panels draw all the trains
54: int track = 0;
55: for (Train train : allTrains)
56: {
57: frame.getGraphicPanel().addTrain(track, train.getId());
58: frame.getTextPanel().addTrain(train.getId());
59: int slot = 0;
60: for (Wagon wagon : train.getWagons())
61: {
62: frame.getGraphicPanel().addWagon(

track, slot++, wagon.getId());
63: frame.getTextPanel().addCoupledWagon(

train.getId(), wagon.getId());
64: }
65: track++;
66: }
67:
68: // have the graphic & text panels draw all

uncoupled wagons
69: for (Wagon wagon : allDecoupledWagons)
70: {
71: frame.getGraphicPanel().addWagon(

track, -1, wagon.getId());
72: frame.getTextPanel().addWagon(

Observations on the Observer Pattern — Page 7

wagon.getId(), wagon.getAmountOfSeats());
73: track++;
74: }
75:
76: frame.getGraphicPanel().draw();
77: frame.getTextPanel().draw();
78: }

In lines 46 and 47 the observer correctly gets the information from the model. But then it starts to clear both the
graphical and the textual representation and fills them with the current information from the model. So effectively
this class is responsible for updating both representations.
This introduces higher coupling between this controller (which functions as observer) and all representations
and therefore introduces a third player in this Observer pattern implementation. It also highly decreases the
interchangeability of the representations, as requested in the requirements. If a new representation has to be added
or an existing one has to be changed, this has to be done not only in the new representation but also in the
controller-class.
On the positive side: this controller was located in the GUI-layer of the application, so at least the rules of layering
were not violated.

Conclusion group 2. It is debatable whether this solution is a good one. As stated by the students, one of
the reasons for choosing this particular solution is the fact that the model only has to be loaded once for both
representations, thereby improving the performance and decreasing code redundancy. But this comes at the cost of
higher coupling of the representations via the controller-class (in the role of the observer). So, one of the goals
of the Observer pattern, low coupling of subject and observer, has been reached, but at the same time higher
coupling has been introduced by adding an extra role here - the controller. In order to follow the separation of
concerns principle for the two views, the view objects should have been responsible for updating themselves, not
the controller.

Group 3

Figure 5 shows the implementation of group 3. Class Train, which is located in the domain-package, implements
the java.util.Observer interface. But this class is actually not used as observer, as shown in following code fragment:

public class Train extends RollingStock
implements Observer

...
public void update(Observable o, Object arg) {

throw new UnsupportedOperationException("Not supported yet.");
}

This probably was one of the (wrong) choices the students made while exploring how to implement the Observer
pattern.
The other three classes from the presentation package (TrainPanel, CommandResponseTextArea, and Executed-
CommandTextArea) implement the observer-interface. But only one of these classes, TrainPanel, is actually the
representation of the model. The other two just display the executed commands and system responses after the
execution of the commands. It is obvious that these two have nothing to do with the model and should therefore
not observe it! But, as we will see in the next section, they are actually not observing the model proper.

The observers do not connect themselves to the observable, this is done by class RichRailFrame which
unnecessarily adds another class as participant in their Observer pattern implementation.

The observable class is extended by class RichRailController. We expected that this would be done by
the domain model, the class RollingStockManager. This is the only class which knows the domain model and
occurring changes, so this class should be observed and this class should notify the observers that they need to

Observations on the Observer Pattern — Page 8

Fig. 5. Implementation group 3 (only relevant parts shown)

update themselves. But instead the controller is the observable. The controller itself does not know the model, so
it does not make any sense to observe it. Furthermore, the notifyObserver-method is called only by the command
class (in the execute-method), as shown in following code fragment:

public class Command extends RollingStock
implements Observer

...
public void execute() {
todo();
Command returnCommand;
if (errorCommand == null) {

returnCommand = this;
} else {
returnCommand = errorCommand;
returnCommand.setCommandString(this.commandStr);

}
RichRailController.getInstance().notifyObservers(

returnCommand);
}

This means that the notification of a change of the observable is not done by the observable itself, which is the
only object which knows for sure that it has changed its state. Instead each time a command is executed, the
observable is also requested to notify its observers. The fact that the subject (in this case the RichRailController)
has changed does not automatically lead to an update of the observers. So any modification to the model without
using the Command-class has no effect on the representations.
Further examination of the code revealed that the returnCommand, which is given as argument in notifyObservers,
is only used by the other two observer classes – CommandResponseTextArea and ExecutedCommandTextArea – to
display the executed commands and their responses. The graphical representation in class TrainPanel gets the
information from the domain model, which is located in RollingStockManager in package domain.

public class TrainPanel extends JPanel implements Observer {

Observations on the Observer Pattern — Page 9

Fig. 6. Implementation group 4 (only relevant parts shown)

public void update(Observable o, Object arg) {
paintComponent(getGraphics());

}

@Override
public void paintComponent(Graphics g) {
super.paintComponent(g);
OldSchoolFactory factory = OldSchoolFactory.getInstance();

RollingStockManager pool =
RollingStockManager.getInstance();

Hashtable<String, Train> trains = pool.getTrains();
Collection<Train> values = trains.values();
Iterator<Train> trainIterator = values.iterator();

...
}

Conclusion group 3. The observable is not the model, but a controller. The model itself is used by only one of
the observers. The notification of the observers is done by another class and not the model itself. This means
that one can only hope the model has indeed changed, which is not always the case (if an incorrect command
is issued, the model is not changed but the observers are notified anyway!). Many classes take part in this
observer-implementation, greatly increasing the coupling between different layers and packages.
Moreover other classes are made part of the pattern implementation, violating the separation of concerns and
information hiding principles.

Group 4

Figure 6 shows the implementation of group 4. The model is implemented in class TrainManagement, which is
also the observable. Class Gui_controller is the only observer, which already hints at the fact that here, again,
as with group 2, the changes of the model and the following refresh of the representations are done by one class.
Again, we expected that the views (located in the MainFrame class) will refresh themselves after being notified.
As we take a look in the update-method of the observer class, we see that the only action is calling another method
(paint()). In this method we see that both representations, graphical and textual, are refreshed in the controller
class (via mf.setData(x) and drawTrain/Wagon(x,y)).

public class Gui_Controller implements Observer {
...
public void paint() throws IOException{
...
mf.setData(model.getData());
split = str.split("-");
drawTrain(split[0],tr);
for(int i=1;i<split.length;i++){

Observations on the Observer Pattern — Page 10

Fig. 7. Implementation group 5 (only relevant parts shown)

wg++;
mf.setData("wg:"+wg);
drawWagon(split[i],wg, tr);

}
...

}

This leads to high coupling between this controller-class and the two representations. Again, this solution
performs better, because the model is only loaded once. But it had been explicitly stated in the assignment that
performance is not a requirement.
After a command in the model was executed (e.g. a new train was added), the model class called notifyOb-
servers(), in this case without an argument. So that part of the Observer pattern was well implemented by this group.

Conclusion group 4. The separation of observable and observer was implemented correctly by this group. But the
separation of both representations (and therefore an increased configurability of the application) was not realized as
expected. To add a new representation to the application (or remove an existing one), not only the representation
has to be implemented, but also the code of the Gui Controller class has to be changed at various places: in the
paint-method code needs to be added or removed and the drawTrain/drawWagon methods have to be expanded
or deleted. This makes maintenance of their system more complicated than necessary and therefore error-prone.

Group 5

This group didn’t implement the observer pattern. According to their own explanation, they got stuck while trying
to use it and decided to use a different approach. But it is nevertheless interesting to take a look at what they did
to implement the requirement of interchangeable and extendable representations.
Their design includes a controller to handle the models and to the connect to the different representations. After
each command both representations are refreshed from within this controller. Actually this is a typical MVC
implementation.
The problem here is that both representations are strongly coupled to the controller as is the domain model. So
again, any changes in the representation or additional representations require code changes in the controller.

Actually, they correctly implemented the mechanism that a class gets information from the model, after the
model has changed, to represent it with the new state. Unfortunately it was in the wrong class, as it should be
implemented in the view and not in the controller.

Observations on the Observer Pattern — Page 11

Conclusion group 5. It seems that this group thought that the usage of MVC does make the usage of the
Observer pattern obsolete without recognizing that they violated some principles this way and did not implement
all requirements.

4. CONCLUSION

This case study proves the statement ”Novices don’t infer patterns naturally” [Clancy and Linn 1999] to be correct.
Actually, we as teachers had expected that they would and were proved wrong. We summarize what went wrong in
this section and then discuss possible consequences for teaching this pattern and propably patterns in general.

Even though performance was not an issue, some groups confused implementation with performance improvement,
thereby violating some of the basic principles they had been taught.

Most groups used a controller, which was responsible for the refresh of the different UI-representations of the
model. In 2 groups this controller also fulfilled the role of the observer, while in 1 group the controller was the
observable. In another group the controller was responsible for connecting observers and observable.
This leads to the assumption that the students had problems integrating MVC and the Observer pattern. The
responsibility of the controller was interpreted in different ways, leading to different implementations. It may
therefore be safe to assume that they had no proper understanding of MVC.

In two groups the controller was responsible for reacting to user interactions and changing the model, but was
also responsible for drawing the graphical representation and the textual representation incorporating a number of
different tasks, which is in violation of the separation of concerns-principle.

Only one group managed to separat the 2 representations (group 1). Though all groups realized that the
requirements asked for the usage of the Observer pattern, but when it came to the implementation stage they lost
sight of what makes the Observer pattern so eminently suitable. As a result they introduced more coupling and
therefore unnecessary complexity.

All groups that used the implementations offered by Java in the java.util package had problems implementing
their solution correctly. So it seems that these implementations do not help.

5. SUGGESTIONS FOR TEACHING THE
OBSERVER PATTERN

Design patterns are part of the design of a software system, so they can’t be taught and applied without focus on
the overall design. The case study shows that if the students focus mainly on the patterns, they seem to forget
to check if the overall design still follows the principles learned. So the design implications of all patterns should
be discussed with the students as well, as suggested by Rasala [Rasala 1997]. He also suggests to ”insist that
students polish the design aspects of their programs before handing in their work” and to ”make the software
project course a quality design experience not just a rite-of-passage”. The techniques as suggested by Joshua
Kerievsky in ”Refactoring to Patterns” [Kerievsky 2004] could be used for this purpose.

It also can be supported by using some of the patterns collected by the pedagogical pattern project and described
in [Bergin et al. 2010; Bergin et al. 2010b; 2010a; Bergin et al. 2010]. In the pattern Prefer Writing they suggest
to let students rewrite their programs. This could also be used for letting them improve their design.
Another useful pattern is Round and Deep, which makes use of the variety of the students’ own experiences to
deepen their own understanding of the concept and to provide alternative perspectives for other students. This
could be applied by letting them implement small solutions to problems as described in some design patterns

Observations on the Observer Pattern — Page 12

(without knowing the patterns yet). The teacher can use this experience to initiate a discussion on the differences,
advantages, and disadvantages of the students’ solutions. This way it is much easier to relate the solutions
suggested by design pattern descriptions to their own experience, which is also described in the pedagogical patterns
Reflection and Linking Old to New [Bergin et al. 2010]. The learning effect would be even greater if some student
groups found the solutions of the patterns themselves or were close to finding them.

Another advantage of this teaching method would be that the focus will be on design first and the patterns
could then be related to this experience. This prevents the students from applying patterns without knowing what
they’re actually doing and helps them to develop the necessary abstract understanding [Clancy and Linn 1999].

Some pedagogical patterns were already succesfully used in the course. The students were given the assignment
and then had two weeks to make a first version of their program design. This was presented by all groups to all
other groups. The presentations included explanations of design decisions and discussions of all groups’ initial
designs. Here the pattern Explore for Yourself [Bergin et al. 2010] was used and the design improvements by
all groups which we observed after this session were noticable in terms of principles followed and the number of
correctly used design patterns.

The objectives and the advantages of the Observer pattern have to be made clearer. It seems that just mentioning
the parts of the pattern and the applicability as described in ’Design Patterns’ [Gamma et al. 1995] is not enough.
All groups recognized that the Observer pattern offers a solution for their problem in the given context, but their
implementations did not yield the solutions the teachers had expected.

To make this more obvious to the students, another assignment could be given in which yet another representation
has to be added to the application already developed. While solving this additional assignment the students should
record the number of changes (and their places) needed. This could be compared with the change amounts and so-
lutions of other groups, which offers insight into the real advantages of correctly implementing the Observer pattern.

In general it has to be made clear that design patterns are best practices used to repeatedly implement solutions
to problems in well defined contexts. They should also fit into the design or help with design, but they should not be
leading. If not implemented correctly and not helping in meeting the requirements, they are of no value. However,
basic OO-principles are still leading, so even if patterns are applied, the implementation should be validated against
these principles. Obviously this is an important part in teaching patterns, as all solutions implemented by the groups
violated basic principles. This is also supported by [Clancy and Linn 1999] with the statement that ”Instruction
can’t focus only on patterns”.

A good pattern for doing this is ’It’s still OO to me’ (originally intended for framework development), published
in [Carey and Carlson 2002]. It is about ”recognizing that working on an object-oriented framework doesn’t suddenly
give you an exemption from good OO practices and that fixing bad OO practices is more difficult and potentially
embarassing with frameworks than with software”. This may also be applied for the usage of patterns, saying that
following the principles is leading. Now it seemed that the students thought that the simple fact that a pattern is
used automatically produces a correct design, which of course isn’t the case.

The connection as well as the differences between MVC and the Observer pattern should be made clearer.
Especially the role of the controller is important here. The fact that the controller has different roles in different
student implementations makes evident that there is need to explain this relation better.
An interactive roleplay of the observer pattern, intergrating the MVC pattern as well, could help to evolve a better

Observations on the Observer Pattern — Page 13

understanding. The pedagogical patterns Physical Analogy and Role Play [Bergin et al. 2010] could be used to do so.

Acknowledgements

The author would like to thank his shepherd Dave West for his valuable comments and feedback provided during
the shepherding of this work. I would also like to thank all participants of the ”Design & Process” workshop at
PLoP’10 for their insightful comments and discussion during the conference: Ognjen Šobajić , Ralph Johnson, Mike
van Hilst, Ali Raza, and André Saúde. Finally, Rob van der Pols helped with his corrections to improve this work.

REFERENCES

Astrachan, O., Mitchener, G., Berry, G., and Cox, L. 1998. Design patterns: an essential component of cs curricula. In SIGCSE ’98:
Proceedings of the twenty-ninth SIGCSE technical symposium on Computer science education. ACM, New York, NY, USA, 153–160.

Bergin, J., Eckstein, J., Manns, M. L., and Sharp, H. 2010a. Feedback patterns. http://www.pedagogicalpatterns.org/.

Bergin, J., Eckstein, J., Manns, M. L., and Sharp, H. 2010b. Patterns for active learning. http://www.pedagogicalpatterns.org/.

Bergin, J., Eckstein, J., Manns, M. L., Sharp, H., and Sipos, M. 2010. Teaching from different perspectives. http://www.

pedagogicalpatterns.org/.

Bergin, J., Eckstein, J., Manns, M. L., and Wallingford, E. 2010. Patterns for gaining different perspectives. http://www.

pedagogicalpatterns.org/.

Brooks, Jr., F. P. 1995. The mythical man-month (anniversary ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 1996. Pattern-oriented Software Architecture - A System of
Patterns. John Wiley & Sons, Chichester.

Carey, J. and Carlson, B. 2002. Framework process patterns: lessons learned developing application frameworks. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Clancy, M. J. and Linn, M. C. 1999. Patterns and pedagogy. In SIGCSE ’99: The proceedings of the thirtieth SIGCSE technical
symposium on Computer science education. ACM, New York, NY, USA, 37–42.

Dijkstra, E. W. 1982. Ewd 447: On the role of scientific thought. Selected Writings on Computing: A Personal Perspective, 60–66.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns. Addison-Wesley, Boston, MA.

IEEE Computer Society. 2004. Software Engineering Body of Knowledge (SWEBOK). Angela Burgess, EUA.

Kerievsky, J. 2004. Refactoring to Patterns. Pearson Higher Education.

McConnell, S. 2004. Code Complete, Second Edition. Microsoft Press, Redmond, WA, USA.

Morse, S. F. and Anderson, C. L. 2004. Introducing application design and software engineering principles in introductory cs courses:
model-view-controller java application framework. In Sciences in Colleges, Volume 20, Issue 2, Pages: 190 - 201.

Parnas, D. L. 1972. On the criteria to be used in decomposing systems into modules. Commun. ACM 15, 12, 1053–1058.

Rasala, R. 1997. Design issues in computer science education. SIGCSE Bull. 29, 4, 4–7.

PLoP’10, October 16-18, Reno, Nevada, USA. Copyright 2010 is held by the author(s). ACM 978-1-4503-0107-7

Observations on the Observer Pattern — Page 14

