

QA to AQ Part Two

Shifting from Quality Assurance to Agile Quality
“Measuring and Monitoring Quality”

Joseph W. Yoder 1 and Rebecca Wirfs-Brock2

1 The Refactory, Inc.,

2Wirfs-Brock Associates, Inc.

joe@refactory.com, rebecca@wirfs-brock.com

Abstract. As organizations transition to agile processes, Quality Assurance (QA)

activities and roles need to evolve. Traditionally, QA activities occur late in the

process, after the software is fully functioning. As a consequence, QA departments

have been “quality gatekeepers” rather than actively engaged in the ongoing

development and delivery of quality software. Agile teams incrementally deliver

working software. Incremental delivery provides an opportunity to engage in QA

activities much earlier, ensuring that both functionality and important system

qualities are addressed just in time, rather than too late. Agile teams embrace a

“whole team” approach. Even though special skills may be required to perform

certain development and Quality Assurance tasks, everyone on the team is focused

on the delivery of quality software. This paper is part two of a series of patterns

about Agile QA practices and activities. The patterns in this paper are focused

primarily on measuring and monitoring system qualities.

Categories and Subject Descriptors
• Software and its engineering~Agile software development • Social and professional topics~Quality assurance

• Software and its engineering~Acceptance testing • Software and its engineering~Software testing and debugging

General Terms
Agile, Quality Assurance, Patterns, Testing

Keywords
Agile Quality, Quality Assurance, Software Quality, System Qualities, Testing, Patterns, Agile Software Development,

Scrum, Quality Related Acceptance Criteria, Agile Quality Scenario, Whole Team

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on

the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Preliminary versions of these papers were presented in a writers' workshop at the 21st Conference on Pattern Languages of

Programs (PLoP). PLoP’2014, September 14-17, Allerton, Illinois USA. Copyright 2014 is held by the author(s). HILLSIDE 978-1-

941652-01-5.

PLoP 2014: QA to AQ Part Two - 2

Introduction

An important but difficult task for any software development team is identifying the

important qualities (e.g. non-functional requirements) for a system. Quite often these system

qualities, such as reliability, scalability, or performance, are overlooked or simplified until

late in the development process, thus causing time delays due to extensive refactoring and

rework of the software design required to correct quality flaws.

Quality Control generally refers to inspection activities that occur at the end of a process.

Quality Assurance or Total Quality Control is an alternative to Quality Control which

recognizes that inspection at the end is ineffective and that you can be more effective if you

take a more holistic approach that builds quality into your process from the start, engaging

the whole team. Given its original intent, it is ironic, or perhaps tragic, that Quality Assurance

has come to be associated with late-in-process activities performed only by QA personnel.

Too many so-called Quality Assurance departments don’t seem to have learned what Quality

Assurance means1. As organizations move to being more agile, it is important that this

transition also includes Quality Assurance (QA).

Typically, QA groups have worked independently from the software team. However, in agile

teams, QA works more closely with the whole team, including business, management, and

developers on an ongoing and daily basis, helping to ensure quality in all facets of

development. Because QA is more engaged throughout, Agile QA requires additional skills.

For example, Agile QA needs to understand both requirements and the code and know how to

write their own automated suite of test cases.

Previously in [YWA] we introduced 24 patterns to address issues about being agile at quality

and wrote patterns for 6 of them and patlets for the rest. A list of all the patlets is included in

the appendix. We organize our software-related Agile Quality patterns into these categories:

fitting quality into your process, identifying system qualities, making qualities visible, and

being agile at quality assurance. The patterns written in our previous paper were Integrate

Quality into your Agile Process, Agile Quality Scenarios, Quality Acceptance Stories, Fold-

Out Qualities, Whole Team, and Quality Focused Sprint.

This paper extends our original work with additional patterns for identifying system qualities

and making them visible: Find Essential Qualities, Agile Landing Zones, Measurable System

Qualities, Agree on Quality Targets, Recalibrate the Landing Zone, and System Quality

Dashboards. It is useful for team members to be aware of important system qualities and

have them readily available.

These patterns are intended for agile teams who want to integrate QA activities into their

agile processes or who are concerned that system qualities are adequately addressed

throughout their project. These patterns are applicable whether or not you have separate QA

teams and roles or extensive agile experience.

Our patterns are written in the spirit of Edward Deming’s fourteen principles for business

transformation and improvement [De]. Consequently, our patterns focus on actions for

improving software quality and integrating QA concerns and roles into the whole team. Our

patterns are written according to Takashi Iba’s Patterns 3.0 pattern languages [IBA] for

guiding human action.

1
 Inspired by an email dialog with one of our reviewers, Jason Yip.

PLoP 2014: QA to AQ Part Two - 3

Find Essential Qualities

“The ability to simplify means to eliminate the unnecessary so that the necessary may

speak.” —Hans Hofmann

Quite often essential system qualities are overlooked or simplified until late in the

development process. This can cause delays due to extensive refactoring and rework of the

software design in order to correct quality flaws. To avoid extensive rework it is important

that agile teams identify these fundamental qualities and make those qualities visible to the

team in a timely manner.

How can agile teams understand essential qualities for an evolving system?

Not focusing on fundamental qualities early enough can cause significant problems, delays

and rework. Correcting functional flaws can be time-consuming. Remedying performance or

scalability deficiencies can require significant changes and modifications to the system’s

architecture.

If essential system qualities were identified and addressed during earlier sprints, significant

architectural verification could be performed earlier, preventing significant disruptions or

delays caused by architectural flaws.

Focusing on system qualities sometimes distracts from important functional requirements.

The hard part is trying to appropriately divide your attention between functionality and

system quality concerns.

On one hand it would be good if you could develop and automate tests for all system

qualities. It would be great to test system qualities daily. However, for example, testing

something like usability could be expensive and not practical to test so frequently. Trying to

find a reasonable balance between how often the tests are ran versus the costs of performing

the tests can sometimes be difficult.

Therefore, have team meetings at opportune times with important stakeholders to

brainstorm the most important qualities that need to be considered for the system. At

the start of a project it is important to identify essential qualities critical to the success of the

project. This can be done via an agile quality attribute workshop where you agree on essential

qualities, and make sure they are visible to team. These workshops should include key

members such as the product owner, developers, architects, quality assurance, and the

PLoP 2014: QA to AQ Part Two - 4

customer. Agile quality attribute workshops need not be not long, drawn out affairs.

Whenever there are major changes to the roadmap or new system qualities become apparent,

the team can choose to hold another quality workshop.

During a quality workshop, which might last an hour or two, simple collaborative techniques

can be used to identify and characterize system qualities. A Quality Chart can be put on a

whiteboard that team members use to note specific quality concerns. People can identify a

concern and write it on a sticky note that is associated with a specific system quality (such as

performance or reliability). The team can vote on what they consider most important and

urgent and then write Agile Quality Scenarios for those. Teams can use quality sheets or

templates to record the quality scenarios.

After formulating a product or project roadmap, which outlines the major features and the

order that they could be delivered, potential architectural risks can be identified. Based on

these risks, quality-specific concerns can be identified and tied to roadmap features. A rough

timeline of when specific qualities and architectural capabilities need to be delivered that

enable specific features can also be sketched out and included on the backlog.

Also, during sprint or release planning is another good time to revisit and address any new

system quality concerns. Team members can identify specific system qualities that need to be

delivered in the release and write Quality Stories, and identify activities needed to achieve

them.

Essential system qualities can be monitored throughout the project with System Quality

Dashboards.

PLoP 2014: QA to AQ Part Two - 5

Agile Landing Zones

“Skate where the puck’s going, not where it’s been” —Wayne Gretzsky

On a complex project or product, you need to be aware of those system qualities that

contribute to your project’s success. You don’t want these essential success criteria to get lost

in with the myriad of other requirements.

You also need to make design tradeoffs as you implement your system. Almost always these

tradeoffs have architectural implications, so your definition of success needs to be somewhat

flexible—you may have to compromise on one design goal in order to achieve another. How

can you understand and monitor those system qualities that need to be addressed in a

way that allows you to make thoughtful design tradeoffs?

It is important to identify essential qualities early so that they can be prioritized and

contribute to your definition of done. You also need some flexibility in defining what’s “good

enough.” So, you don’t want hard and fast (inflexible) acceptance criteria values for all

system qualities.

For some system qualities, there isn’t one specific number you are aiming for, but you know

what is minimally acceptable. For other qualities, you may have specific targets, but you are

willing to compromise on them in order to achieve other system quality objectives. You want

flexibility in achieving some quality requirements and overall accountability.

Therefore, define and use an agile landing zone. A landing zone [Gilb] is a set of criteria

used to monitor and characterize the “releasability” of a product. An agile landing zone

[W2011a] is one where all the criteria and acceptable values are not fixed or known at the

beginning. The criteria and values of an agile landing zone take shape over the lifetime of a

project. Landing zone criteria are similar to release criteria, except they provide for tolerances

in acceptable values. There isn’t one number you are aiming for; you have a range of values

for each system quality attribute you are targeting. This gives you some flexibility in defining

what’s “good enough,” allowing you to make tradeoffs as long as you Agree on Quality

Targets.

There are three possible values for any landing zone criteria: minimum, target, and

outstanding. A minimum value is something you are willing to live with, although you may

PLoP 2014: QA to AQ Part Two - 6

aspire for a higher value. A target value is what you think you can achieve with reasonable

cost and effort. An outstanding value is something that you believe might be achievable but

not without significant effort. Sometimes minimum and target values may be identical; that

just indicates that you have limited flexibility in achieving acceptable qualities.

Alternatively, where you have the least flexibility in your requirements, you might simply

want to define acceptance criteria with specific values that must be met. Only use landing

zones for those quality attributes that have some degree of flexibility in their outcome.

Table 1 is an example of a landing zone for a loan processing system (all the values have

been concocted, for simplicity’s sake; any relation to landing zones for real projects is

coincidental). Each row represents a task that needs to be performed using the loan

processing system.

The values represent the actual time it takes to complete a business task using the system.

Tasks may or may not be initiated by users. Some are triggered by incoming data or by a

change in the state of a loan (adjusting a loan’s interest rate or assigning a loan processor).

Others involve adding configuration data, writing additional code and deploying changes to

production.

For example, a minimally acceptable time for the quality attribute “Adding a new loan

agreement” is two weeks; the target is to enable the user enter all the information for a new

loan agreement and have it configured into the system within 24 hours. “Adding a new loan

product” is targeted for two weeks because several activities and actions that need to be

completed in order to support processing a new kind of loan.

Quality Attribute Minimum Target Outstanding

Adding new loan agreement 2 weeks 24 hours 12 hours

Add new loan product 3 weeks 2 weeks 1 week

Adjust loan 4 days 2 days 1 day

Access loan risk 1 day 6 hours 10 minutes

Assign loan processor 1 month 1 week 1 day

Table 1: Loan Processing System Landing Zone

Each row in the landing zone represents a measurable requirement (see Measurable System

Qualities) which has a range of acceptable values labeled Minimum, Target, and

Outstanding. The goal is to have each requirement within this range at the end of

development. Inside the range is the desired value, labeled Target. Minimum, Target, and

Outstanding are relative to your budget and timeframe.

If you have more than a few attributes, it can be helpful to organize your landing zone

according to system quality category: e.g. performance, data quality, reliability, usability,

etc.) and their priority. Table 2 illustrates a portion of a landing zone which has been

organized according to the system quality category being measured.

PLoP 2014: QA to AQ Part Two - 7

Category Quality Attribute Minimum Target Outstanding

Performance Throughput

(transactions per day)
50,000 70,000 90,000

Average transaction

time
2 seconds 1 second <1 second

 …

Data Quality Inter system data

consistency (percent

critical data attributes

consistent)

95% 97% 98%

Data Accuracy 97% 99% >99%

 …

Table 2: Landing Zone organized by Quality Category

A landing zone helps you focus on a few critical things to monitor (instead of hundreds).

Your goal should be to only include those criteria that are critical to your project’s success. If

you do, it will be easier to see a bigger picture and make sense of it: when one attribute is

edging below its minimum, what is happening with the others? Are they trending below

minimum, too? If so, you have a big problem with achieving your overall product goals. No,

and you have a landing zone which allows you to achieve a successful product/system launch

even if every requirement isn’t exactly on target.

Expect the criteria in an agile landing zone to shift and be adjusted over time. Initially, you

may define those parts of your landing zone that you expect to achieve over the next few

months, leaving the rest of the landing zone purposefully sketchy. What initially appeared to

be achievable or reasonable targets may change in light of new facts or market changes. No

one wants to deliver yesterday’s product to today’s market. Landing zones, like release

criteria can and do change.

For example, you may have worked hard to meet some early achieved landing zone targets,

only to find out that your early decisions had negative consequences on future work. You

may have created some technical debt that either needs to be paid off in order to achieve your

next targets. Given time or budget constraints, you may decide to Recalibrate the Landing

Zone (and set expectations lower).

If you Qualify the Roadmap and include these system quality attributes in your Agile Landing

Zone you can get a sense of when they should be considered. Agile Landing Zone targets can

be made more visible to the team through various means such as putting them on Quality

Charts or on the System Quality Radiator.

PLoP 2014: QA to AQ Part Two - 8

Measurable System Qualities

“Every line is the perfect length if you don’t measure it.” ―Marty Rubin

To know whether a desired quality has been achieved it has to be measured. The description

of the quality and the specific aspect you are trying to measure can’t be vague or fuzzy. How

can you decide on what values you expect for a quality and how to measure them?

For system qualities, like performance or throughput, this may be relatively easy:

performance can be measured by profiling system performance for a particular scenario,

perhaps repeatedly to obtain an overall average.

Other qualities, like reliability, may require a complicated set of measures made over a period

of time.

Some qualities, like usability, at first glance may appear entirely subjective and as a

consequence impossibly difficult to measure. High-level quality attributes may need to be

decomposed into smaller ones that are measured and aggregated.

Some qualities are difficult or costly to measure. Complex qualities can take quite a bit of

effort to measure.

You want to make frequent measurements as you are designing and building your system so

that you can react to changes in quality.

Balancing the time and effort required to make a measurement with the information it yields

can be difficult.

Therefore, define an appropriate way to measure a quality and to describe it with only

as much accuracy and precision as you need. This involves defining or finding an

appropriate way to measure (the meter) and describing accurately the values you expect (the

scale) [Gilb].

There are three types of scales of measure: natural, constructed, or proxy. A natural scale is

one that is obviously associated with a specific quality and is usually the easiest to agree

upon. Examples are elapsed time to perform a system operation in milliseconds or the

number of page hits in 24 hours. A constructed scale is one that is built specifically to

measure a quality, for example, a 7-point user satisfaction scale.

Sometimes it is difficult to know how to directly measure system qualities. In this case you

can use a proxy scale to measure parts of the system to give a feel for a certain system quality

and then extrapolate expected values. A proxy scale is an indirect measure of quality, for

example, projecting system throughput by using sample data and running transaction scripts.

PLoP 2014: QA to AQ Part Two - 9

Select a proxy scale if it would be too costly or time-consuming to measure a quality directly.

It may also be that you need to construct a proxy scale when parts of the system are not yet

completed or integrated. You may want to start by measuring using a proxy, then transition to

a natural scale if you want to continue monitoring the quality in production.

Since adding necessary precision and accuracy can be difficult, especially for usability

qualities, let’s illustrate how to improve upon the extremely vague statement, “the system

must be easy to use”

A first attempt adds more precision by identifying a specific task and what “easy” means for

that task:

Eighty percent of novice users should successfully place an order for a single item in

under 3 minutes without assistance.

We can add more details; we’re not only want to qualify the speed of placing on order but

also whether online help is an aid or a hindrance:

Eighty percent of novice users should successfully place an order for a single item in

under 3 minutes only using online help for assistance.

There are two key ideas about measuring “easy to use.” First, there is a scale which

constrains the possible values of what we are measuring: Time required for a novice to

complete a 1-item order using only online help for assistance. Second, there is a meter, which

defines how we are going to make our measurement. Since we don’t want to only measure

one user and extrapolate to all users, we may decide on average the times obtained for 100

users during testing.

It’s best to find a natural scale. People usually won’t to argue about it being “good.” If you

can’t find a natural scale, look next for a proxy. You may need to decompose what you are

trying to measure into smaller parts and try again. For example, “Adding a New Loan

Agreement” involves several sub-steps, each requiring time to perform. And you may need

several different scenarios to specify expected values under different circumstances.

Finally, you may need to incorporate qualifiers to make things specific when you need the

precision. For example, it isn’t just any old user’s response we’re trying to measure, it is:

 Time required for a novice to complete a 1-item order using only online help for assistance.

A meter can be an agreed upon way to provide a measurement. To find a meter, look at the

scale. If no obvious meter comes to mind, ask others for their experiences or look for “off-

the-shelf” tools that come with reasonable meters.

Once you’ve found a meter, check that:

● Stakeholders agree it is adequate,

● There isn’t a more cost effective meter, and

● You can test it on the system, ideally, before it is deployed.

It is important to Agree on Quality Targets for whatever you measure. These Measureable

System Qualities can ultimately be included in the System Quality Dashboards that might be

used to monitor the production system.

PLoP 2014: QA to AQ Part Two - 10

Agree on Quality Targets

“An agreement cannot be the result of an imposition.” ―Nestor Kirchner

There are several areas where you need to define specific quality-related targets. You may

have targets for performance, usability, internationalization, reliability or other non-

functional qualities that broadly apply to several user stories or across a number features. Or,

you may have a specific system quality that you want to focus on and improve. How much

improvement to strive for may be open to debate.

However, if you’ve done something similar in the past, the quality criteria to choose and their

acceptable values may be obvious. At other times it can more of a challenge to reach

agreement. How can you reach consensus when defining quality acceptance criteria?

Diverse stakeholders have different interests, backgrounds and expectations. Not everyone

may be equally informed. Some may hold contradictory opinions. Yet, in order to work

towards a specific quality-related objective, everyone needs to buy in and work towards

common measurable targets.

Technology constraints can limit what you can deliver at what cost. Sometimes technology

choices are made due to business concerns or marketing trends. Technology decision have

cost and quality ramifications that need to be considered.

Quality requirements priorities are often influenced by the effort to implement them and the

effort needed to perform the benchmark.

Therefore, work towards informed consensus on quality-related targets. Ideally a small

group of informed individuals should agree upon target values. If you have diverse

stakeholders with varying opinions, you may decide to give each stakeholder group a voice in

identifying several qualities that are particularly relevant to them. These can be added to

landing zone criteria that you’ve already established.

For first time landing zone builders, you might want to choose someone who knows about the

product to take a first cut at establishing landing zone criteria [W2011b]. A business

architect, product owner, or lead engineer might prepare a “proposed landing zone”

containing reasonable values for quality criteria and values that are questioned, challenged,

and then reviewed by a small group. For a landing zone, minimum, target and outstanding

values should be agreed upon by the group. It is important to recognize how technical

PLoP 2014: QA to AQ Part Two - 11

considerations impact quality targets. Any assumptions about how these values can be

achieved should be noted.

When you are coming up with specific values for quality scenarios, you might also use a

similar approach. Some informed individual might make a rough cut at “proposed” values

that are to be achieved. But a group of informed experts might refine initial values.

Discussions should be to the point, collaborative, and non-confrontational. Someone might

propose a set of values based on historical trends and extrapolation. Or a software architect

might propose values based on prototyping results or benchmark data. Or the team might

declare a design spike to investigate reasonable and possible values. The group might end up

agreeing to adjust numbers because the prototyping or design spike evidence was compelling.

To effectively set quality value targets, the group should have mutual respect, trust and

transparency, and no hidden agendas.

For example, on one program, the chief business architect made the initial cut of quality

criteria and their initial values in the landing zone. He was a former techno geek who knew

his technical limits. He had deep business knowledge, product vision and a sense about where

to be precise and where there should be a lot of flexibility in the landing zone values.

Consequently some criteria were very precise. Since they were in the business of processing a

lot of transactions, they knew where they needed to improve based on projected increases in

transaction volumes. The transaction throughput target for one business process was based on

extrapolations from the existing implementation, taking into account the new architecture and

system deployment capabilities. The minimum acceptable value was better than the current

implementation (because why else would they be building a new system), but target and

outstanding values were based on extrapolations of current capabilities. Other landing zone

criteria related to maintainability were only generally categorized as requiring either a patch,

a new system release, or online update support. The definitions for what was a patch, a

release or an online update were nailed down so that there was no ambiguity in what was

meant.

Possible ways of coming up with values include averaging informed individuals’ estimates,

using an existing system as a baseline, extrapolating values from similar scenarios, or

benchmarking working code. Sometimes it may be necessary to create a spike solution to

obtain estimates.

To reach consensus on specific quality scenario targets, you may need someone to play the

role of facilitator. The facilitator should know enough about the program or product to be

constructive, but they need not be the “authority” or “expert.” That person should be good at

gaining consensus and get the best from individuals who may have strongly held opinions

and disagreements. Ideally, a facilitator knows enough about the product to offer constructive

observations and has the ability to lead a small group forward in defining acceptable criteria

and values. It can be more effective to have an informed facilitator to guide quality target

definitions, than a dispassionate, uniformed one.

There are several times that an agile team needs to Agree on Quality Targets. For example,

when an agile team is Finding Essential Qualities initial values for Quality Scenarios or Agile

Landing Zone criteria need to be established. When Recalibrating the Landing Zone,

attributes are modified and agreement should be made by an informed consent by a small

group of people on changes to values.

PLoP 2014: QA to AQ Part Two - 12

Recalibrate the Landing Zone

 “Test fast, fail fast, adjust fast.”— Tom Peters

Initially, you defined a set of landing zone criteria that you expected to achieve over a few

iterations. You left the rest of your landing zone purposefully sketchy. As you’ve

implemented new functionality, you have continued to add new landing zone criteria while

monitoring the values of existing ones. How can you continue to evolve your landing zone

and keep it up to date?

As you continue with development, it can become harder to keep criteria within their landing

zone target values. Solutions that achieve newly identified landing zone criteria may impact

your ability to maintain other values.

What initially appeared to be achievable targets may change in light of new information and

your current implementation.

It is important to not be constantly shifting back and forth on the targets. However, in the

spirit of agile, as you learn new information the target values can be reconsidered and

prioritized as needed.

Although the product owner or client will see these targets as important, they maybe see these

as a lower priority over other things that need to be done and may not understand the

implication to the overall system.

Budget and time constraints can limit the effort you are able to devote to achieving important

quality constraints.

Therefore, rather than simply throw up your hands in defeat, revisit your landing zone

criteria and reset expectations. Some values may not be appropriate, given what you know

now.

Because you are implementing your system incrementally and learning more about your

system’s capabilities and limitations, it is natural for the criteria in an Agile Landing Zone and

their values to shift and be adjusted over time. What initially appeared to be reasonable

targets will change in light of new facts or market changes. No one wants to deliver

yesterday’s product to today’s market. Previous implementation decisions can affect or limit

your ability to achieve newly identified criteria. For example, deciding to focus on meeting

specific performance targets may have impacted usability or flexibility criteria.

PLoP 2014: QA to AQ Part Two - 13

Landing zones, like release criteria can and do change. In fact changing acceptable values for

your landing criteria is not always a bad thing to do, especially if you are reacting to the

current situation and making thoughtful design tradeoffs. This is part of your ongoing

development cycle. It is important to prioritize work on quality targets and to maintain a

balance between delivery of qualities and features.

For example, you may have created some technical debt that needs to be paid off in order to

achieve some landing zone performance targets. Given time and budget constraints, you

decide not to invest in design rework for the current release. It is more important to deliver

working functionality on time than to make it fast. So, you opt to recalibrate your landing

zone (setting acceptable performance criteria lower). You’ve made a conscious decision to

redefine what is acceptable.

You might also recalibrate/readjust landing zone criteria upwards based on new

information/system capabilities/technologies. For example, with experimentation you find

that by tweaking cache and buffer sizes, you can increase throughput for an important data

translation (ETL) process. Rather than simply move into the “outstanding” range, you also

adjust the minimum acceptable value upwards and note that cache and buffer tuning should

be considered for any time critical ETL process. When a team is recalibrating the landing

zone it is often the case that the team will need to Agree on Quality Targets.

PLoP 2014: QA to AQ Part Two - 14

System Quality Dashboards

“The dashboard needs to deliver data in a timely fashion, and that timeliness is dictated by

which process is being represented in the dashboard” —Keith Gile

Typically, agile software development focuses on features and functionality first before

paying attention to other important system aspects such as architecture and critical qualities.

On agile projects you hear statements like, “Make it work, make it right, then optimize it.”

Most agile practices push to develop important functional requirements as outlined by the

product owner, which are prioritized on the work backlog. As the system evolves the team

begins to better understand what system qualities are important and how to better measure

them. As the system evolves, keeping track of these qualities becomes increasingly

important.

How can agile teams provide a means to make this information accessible and visible to

the team?

Creating tools and dashboards takes time and often there are limited resources and people

dedicated to building QA tools. Tools and dashboards can seem like a pointless luxury

compared to making sure the system is meeting the requirements well enough to ship.

It can be difficult to know what qualities are important to monitor. As more and more

qualities are built into the system, some are important to keep a watch on while others, once

validated and made testable, are good enough.

If certain qualities such as security, performance and reliability are not regularly tracked, they

can be difficult to improve late in the development process. Although originally the system

might meet quality constraints, as the system evolves, qualities can degrade if they aren’t

monitored and maintained.

Some qualities can be hard to accurately measure until the system functionality is complete.

However, you want to know as the system evolves, whether you can achieve system quality

goals.

Therefore, create dashboards to test and validate important qualities. As important

system qualities are outlined and included in the backlog, note which ones should be

monitored and where tools can be created to measure the system as it evolves.

The first step is to outline the critical items that need to be measured and monitored on an

ongoing basis. Some of these can start off with simple measures, exercising and measuring

only partially implemented functionality. Initially, these can be incorporated into your

existing test framework. Although initially you might be making simple measures, unless you

incorporate them into a dashboard, they won’t be readily visible. So you might want to

PLoP 2014: QA to AQ Part Two - 15

incorporate these measurements into a dashboard that provides ongoing feedback on

important qualities as the system evolves. This is a form of “Continuous Inspection”

[MYGA].

When should you build a dashboard or when should you buy one? When selecting a tool, it is

important to know how easy it is to set up; i.e. does it “Work Out of the Box”[FY98]. If a tool

provides all that is needed and is relatively easy to use, use the tool. However, some tools that

provide powerful means of measurement can be costly or hard to use. So you need to decide

between purchasing a powerful tool or using an open source dashboard that may not be as

powerful. Another consideration is how well the dashboard integrates with your development

environment.

Whether you buy or build a tool, consider what quality aspects should be shown and what

frequency that they are measured. Does the dashboard perform quality-related tests when

initiated by a user, showing results of tests executed during build or integration, or is it

monitoring the production system? How frequently should contents of a dashboard be

updated in order to be useful and what happens when measured values fall below minimally

acceptable criteria? Some dashboard tools allow you to configure alerts and notifications

when measured values cross a threshold. Figure 1 is an example of some third party open

source tools for monitoring systems such as SonarCube.

Figure 1: Quality Dashboards

PLoP 2014: QA to AQ Part Two - 16

Dashboards can show real-time results, for example, performance of running processes, or

display quality values measured during check-in or system build quality tests. These

dashboards can overlap with operational dashboards for production systems.

As the team Recalibrates the Landing Zone it is important to refine dashboards to include the

newly updated values.

Summary

This paper extends a set of initial patterns about “Becoming More Agile at Quality.” The

complete set of patterns includes both ways of incorporating QA into an agile process and

agile techniques for describing, measuring, adjusting, and validating important system

qualities. The patterns in this paper are related to measuring and monitoring qualities.

Ultimately the authors intend to write all of the patlets in the appendix as patterns and weave

them into a 3.0 pattern language for evolving and embedding Quality Assurance into an Agile

Quality mindset.

Acknowledgements

We thank our shepherd Eduardo Guerra for his valuable comments and feedback during the

PLoP 2014 shepherding process. We also thank our 2014 PLoP Writers Workshop Group,

Yasunobu Kawaguchi, Michael John, Yu Chin Cheng, Hironori Washizaki, Marvin Toll, and

Eduardo Guerra for their valuable comments.

PLoP 2014: QA to AQ Part Two - 17

References

[GILB] Gilb, Tom. 2005. Competitive Engineering: A Handbook For Systems

Engineering, Requirements Engineering, and Software Engineering Using

Planguage. Butterworth-Heinemann.

[FY98] Foote B., and Yoder, J. 1998. The Selfish Class. Proceedings of the 3rd

Conference on Pattern Languages of Programs (Monticello, Illinois). PLoP '96,

Technical Report #WUCS-97-07, September 1996, Department of Computer

Science, Washington University. Pattern Languages of Program Design 3 edited

by Robert Martin, Dirk Riehle, and Frank Buschmann, Addison-Wesley, 1998

[IBA] Iba, T. 2011. "Pattern Language 3.0 Methodological Advances in Sharing Design

Knowledge," International Conference on Collaborative Innovation Networks

2011 (COINs2011).

[MYGA]

Merson, P, Yoder J., Guerra E., and Aguilar A., “Continuous Inspection: A

Pattern for Keeping your Code Healthy and Aligned to the Architecture,” 3rd

Asian Conference on Patterns of Programming Languages (AsianPLoP 2014),

Tokyo, Japan, 2014.

[YWA]

Yoder J., Wirfs-Brock R., and Aguilar A., “QA to AQ: Patterns about

transitioning from Quality Assurance to Agile Quality,” 3rd Asian Conference on

Patterns of Programming Languages (AsianPLoP 2014), Tokyo, Japan, 2014.

[W2011a] Wirfs-Brock R., (July 28, 2011). Agile Landing Zones, http://wirfs-

brock.com/blog/2011/07/28/agile-landing-zones/

[W2011b] Wirfs-Brock R., (August 16, 2011). Who Defines (or Redefines) Landing Zone

Criteria, http://wirfs-brock.com/blog/2011/08/16/who-defines-or-redefines-

landing-zone-criteria/

PLoP 2014: QA to AQ Part Two - 18

Appendix

A previous paper on this topic outlines some core patterns when evolving from traditional

quality assurance to being agile at quality [YWA]. We outlined the patterns using patlets. A

patlet is a brief description of a pattern, usually one or two sentences. Following is an excerpt

from that paper outlining the patlets.

We break our software-related Agile Quality patterns into these categories:

fitting quality into your process, identifying system qualities, making qualities

visible, and being agile at quality assurance. This paper will outline twenty-

four patlets organized into four categories: knowing where quality concerns fit

into your process, identifying system qualities, making quality visible, and

being agile at quality assurance. We expect to evolve and extend these

categories and patterns over time.

Our ultimate goal is to turn all patlets into full-fledged patterns and make a pattern language

for action and change useful to software teams who want to become more agile about system

quality.

Core Patterns

Central to using these QA patterns is breaking down barriers and knowing where quality

concerns fit into your agile process. The following patlets describes these considerations.

Patlet Name Description

Break Down

Barriers

Tear down the barriers between QA and the rest of the

development team. Work towards engaging everyone in the

quality process.

Integrate Quality Incorporate QA into your process including a lightweight

means for describing and understanding system qualities.

Identifying Qualities

An important but difficult task for software development teams is to identify the important

qualities (non-functional requirements) for a system. Quite often system qualities are

overlooked or simplified until late in the development process, thus causing time delays due

to extensive refactoring and rework of the software design required to correct quality flaws. It

is important in agile teams to identify essential qualities and make those qualities visible to

the team. The following patlets support identifying the qualities:

Patlet Name Description

Find Essential Qualities Brainstorm the important qualities that need to be

considered and list them for inclusion on the product

roadmap.

Agile Quality

Scenarios

Create high-level quality scenarios to examine and

understand the important qualities of the system.

Quality Stories Create stories that specifically focus on some measurable

quality of the system that must be achieved.

PLoP 2014: QA to AQ Part Two - 19

Measurable

System Qualities

Specify scale, meter, and values for specific system

qualities.

Fold-out Qualities Define specific quality criteria and attach it to a user story

when specific, measurable qualities are required for that

specific functionality.

Agile Landing Zone Define a “landing zone” that defines acceptance criteria

values for important system qualities. Unlike traditional

“landing zones,” an agile landing zone is expected to

evolve during product development.

Recalibrate the

Landing Zone

Readjust landing zone values based on ongoing

measurements and benchmarks.

Agree on Quality

Targets

Define landing zone criteria for quality attributes that

specify a range of acceptable values: minimally acceptable,

target and outstanding. This range allows developers to

make tradeoffs to meet overall system quality goals.

Making Qualities Visible

It is important for team members to know important qualities and have them presented so that

the team is aware of them. The following patlets outline ways to make qualities visible:

Patlet Name Description

System Quality

Dashboard

Define a dashboard that visually integrates and organizes

information about the current state of the system’s qualities

that are being monitored.

System Quality Radiator Post a display that people can see as they work or walk by

that shows information about system qualities and their

current status without having to ask anyone a question. This

display might show current landing zone values, quality

stories on the current sprint or quality measures that the team

is focused on.

Qualify the Roadmap Examine a product feature roadmap to plan for when system

qualities should be delivered.

Qualify the Backlog Create quality scenarios that can be prioritized on a backlog

for possible inclusion during sprints.

Quality Chart Create a chart or listing of the important qualities of the

system and make them visible to the team; possibly on the

agile board.

PLoP 2014: QA to AQ Part Two - 20

Being Agile at Quality

In any complex system, there are many different types of testing and monitoring, specifically

when testing for system quality attributes. QA can play an important role in this effort. The

role of QA in an Agile Quality team includes: 1) championing the product and the

customer/user, 2) specializing in performance, load and other non-functional requirements, 3)

focusing quality efforts (make them visible), and 4) assisting with testing and validation of

quality attributes. The following patlets support “Becoming Agile at Quality”:

Patlet Name Description

Whole Team Involve QA early on and make QA part of the whole team.

Quality Focused Sprints Focus on your software’s non-functional qualities by

devoting a sprint to measuring and improving one or more of

your system’s qualities.

QA Product Champion QA works from the start understanding the customer

requirements. A QA person will collaborate closely with the

Product owner pointing out important Qualities that can be

included in the product backlog and also work to make these

qualities visible and explicit to team members.

Agile Quality Specialist QA provides experience to agile teams by outlining and

creating specific test strategies for validating and monitoring

important system qualities.

Monitor Qualities QA specifies ways to monitor and validate system qualities.

Agile QA Tester QA works closely with developers to define acceptance

criteria and tests that validate these, including defining

quality scenarios and tests for validating these scenarios.

Spread the Quality

Workload

Rebalance quality efforts by involving more than just those

who are in QA work on quality-related tasks. Another way to

spread the work on quality is to include quality-related tasks

throughout the project and not just at the end of the project.

Shadow the Quality

Expert

Spread expertise about how to think about system qualities

or implement quality-related tests and quality-conscious

code by having another person spend time working with

someone who is highly skilled and knowledgeable about

quality assurance on key tasks.

Pair with a Quality

Advocate

Have a developer work directly with quality assurance to

complete a quality related task that involves programming.

