
Dynamic Generated Adapters from Adaptive Object Models to
Static APIs
EDUARDO GUERRA, National Institute for Space Research (INPE) - Brazil
JEAN SANTOS, National Institute for Space Research (INPE) - Brazil
ADEMAR AGUIAR, Faculdade de Engenharia da Universidade do Porto (FEUP) - Portugal
LUIZ GUSTAVO VERAS, National Institute for Space Research (INPE) - Brazil

By using Adaptive Object Models (AOM) it is possible to have a more flexible domain structure in an application, allowing its adaptation at
runtime. Patterns for AOMs create a class structure completely different from the static structure that applications and frameworks are used
to handling. As a result, AOM applications cannot be integrated with existing frameworks, even the industry standards, which are meant for
a static class-based domain model. The Adapter pattern could be used to adapt the AOM structure for the one expected by the framework,
however this adapter would need to be manually modified for every change in the AOM structure. This paper proposes a solution to this
problem by creating a dynamically generated adapter for the current AOM structure. To exemplify the use of this approach, an implementation
was created to adapt the AOM structure from the framework Esfinge AOM to the Java Beans API. Additionally, a framework for instance
comparison based on the Java Beans specification was used to compare the adapted AOM entities.

Categories and Subject Descriptors: D.1.5 [Programming Techniques] Object-oriented Programming; D.2.11 [Software Architectures]
Patterns

General Terms: Adaptive Object Models

Additional Key Words and Phrases: Adaptive Object Model, metadata mapping, reflection, framework, adapter

ACM Reference Format:

Guerra, E. , Santos, J. , Aguiar, A. , and Veras, G. 2015. Dynamic Generated Adapters from Adaptive Object Models to Static APIs. HILLSIDE
Proc. of Conf. on Pattern Lang. of Prog. 22 (October 2015), 15 pages.

1. INTRODUCTION

The Adaptive Object Model (AOM) [Yoder et al. 2001] [Yoder and Johnson 2002] is an architectural style, where
types are represented by instances and described by metadata. Based on this model, the types can be changed
at runtime, allowing the application to be adapted quickly to user needs. This kind of architecture is recommended
when the application domain is naturally dynamic, and changing it is part of routine business.

A problem faced in the implementation of AOM applications is that since domain objects are implemented
using an AOM-specific structure, it is not possible to easily integrate these objects with existing components or
frameworks that rely on implementation conventions. For instance, in the Java language, a static domain model
usually follows the Java Bean standard [Microsystems 2010], that defines a standard way for creating such classes,
such as the use of getter and setter methods for accessing properties. A framework that is created to dynamically

This work is supported by CNPq (grant 445562/2014-5) and FAPESP (grant 2015/16487-1)
Author’s emails: E. Guerra, eduardo.guerra@inpe.br; J. Santos, jeansjcsp@gmail.com; A. Aguiar, ademar.aguiar@fe.up.pt ; L. Veras,
jluiizgustavo@gmail.com

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A prelimi-
nary version of this paper was presented in a writers’ workshop at the 22nd Conference on Pattern Languages of Programs (PLoP).
PLoP’15, OCTOBER 24–26, Pittsburgh, Pennsylvania, USA. Copyright 2015 is held by the author(s). HILLSIDE 978-1-941652-03-9

find the properties of a bean class based on this standard will not be able to process an entity for an AOM because
the AOM object has a different implementation structure. Because of that, most of the components for handling an
AOM structure need to be created from scratch, increasing the time needed to implement the application, and
consequently its cost.

The Adapter pattern [Gamma et al. 1995] could be applied in this context to map calls to a class that follows
the JavaBean standard to the AOM entity, allowing it to be handled by a framework. In this case, for each entity
property on the AOM, there would be a respective getter and setter method that would encapsulate the access to
it on the AOM entity, like presented in Fig. 1. However, the code of this adapter would need to change every time
that the entity type changes, which would take away the flexibility that motivates the use of an AOM. This scenario
is illustrated in Fig. 2.

Fig. 1. Example of a Static Java Bean Adapter for an AOM Entity

This paper proposes a solution to this problem, which generates dynamically an adapter class based on
the entity type current structure. Since this adapter is generated at runtime, a new one can be easily created
based on changes to the AOM entity type. An implementation was created to adapt the AOM structure from the
framework Esfinge AOM Role Mapper to classes with getters and setters following the Java Beans standard. This
implementation was validated by using these adapters in a framework based on Java beans that finds differences
between instances from the same class.

2. ADAPTIVE OBJECT MODEL PATTERNS

The AOM architecture style is composed of several patterns, but three patterns can be considered the main ones:
Type Object, Property and Type Square. The next subsections describe each one individually.
Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 2

Fig. 2. New properties needs static addition on the static adapter

2.1 Type Object

There are situations in software development cycle where the number of classes may grow too large. This scenario
typically happens when thereâĂŹs a necessity to represent many classes that only have minor differences
between then. Consider an example of a system where different products need to be registered. One approach for
implementing this system would be as shown in Fig. 3. In this implementation several subclasses would inherit a
main class but with just a few differences between them.

Fig. 3. First Approach to model the products

Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 3

Introducing a new product using this approach would require creating a new subclass, recompiling the code and
updating the system to reflect the addition. The Type Object pattern proposes to represent types as instances that
compose the main class, as shown in Fig 4. This solution allows the addition of new types of products dynamically,
because the representation is made at the instance level.

Fig. 4. ProductâĂŹs System using the Type Object design pattern

2.2 Type Object

The Property Pattern is suitable for scenarios where objects need to have different properties that can be
dynamically added. Considering a system where there is a need to register products with different types of
properties. A large number of properties could be created to describe any type of product, but the problem is that
some properties that are specific to some products. For instance, a book would have different properties than an
electronic device. The property pattern uses a set of objects to represent the instance properties, as shown in Fig
5.

2.3 Type Square Pattern

The core of an AOM application is usually based on the Type Square pattern, which is a particular way of combining
the patterns Type Object and Property. Figure 6 has a representation of this pattern structure using the Product
Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 4

Fig. 5. Representation of a Product class using the Property Pattern

example. In this model the Type Object pattern is used twice, one time for representing property types of properties,
and one more time for representing entities and types of entities.

Fig. 6. Type Square pattern in the Product Example

3. ESFINGE AOM ROLE MAPPER

The framework AOM Role Mapper, one of the components of the Esfinge Project (http://esfinge.sf.net), was
developed with the objective to increase the reuse of AOM systems [Matsumoto and Guerra 2014]. The main role
of the framework is to map domain-specific AOM structures to a general AOM structure, creating adapters that can
be used by generic frameworks. With this solution, common third party frameworks can add functionality to AOM
applications, what would be extremely difficult to achieve with components created for domain-specific AOMs, due
to the coupling that the AOM model usually have with application domain. The mapping can be applied to systems
with AOMs that are only partially implemented [Guerra and Aguiar 2014].

Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 5

To integrate AOM domain-specific applications with generic frameworks the Esfinge AOM Role Mapper frame-
work uses code annotations on the application classes. The following describes some annotations with their
specific meaning:

—@EntityType: (Class) classes that play the Entity Type role in the AOM architecture ; ((Attribute in classes of
Entity Type) Identifies an attribute that references the Entity Type corresponding to an Entity;

—@Entity: (Class) Identifies classes that play the Entity role in the AOM architecture;
—@PropertyType: (Class) Identifies classes that play the Property Type role in the AOM architecture ; (Attribute in

classes of Property Type) Identifies the attribute that refers to a Property Type corresponding to a Property;
—@EntityProperties: (Class) Identifies classes that play the Property role in the AOM architecture; (Attribute in

classes of Entity Type) Identifies the attribute that refers Properties of an Entity;
—@FixedEntityProperty: (Attribute in classes of Entity Type) (Optional) Identifies attributes corresponding to fixed

properties in an Entity class;
—@Name: (Attribute in classes of Entity Type or Property Type) Identifies the attribute containing the name of an

Entity Type or a Property Type;
—@PropertyTypeType: (Attribute in classes of Property Type) Identifies the attribute containing the type of a

Property Type;
—@PropertyValue: (Attribute in classes of Property Type) Identifies the attribute containing the value of a Property;
—@CreateEntityMethod: (Method in classes of Entity Type) Identifies the method of an Entity Type class that

handles with the creation of an Entity with this type. If no method is annotated, the method createNewEntity
from interface IEntityType will throw an exception when invoked from the object.

Figure 7 presents a simple example of using Esfinge AOM Role Mapper annotations. This listing presents a
domain specific implementation that uses the annotations to map to the general solution. Figure 8 presents a
piece of code that creates the instances of the domain specific AOM classes and them create the adapter for the
class Product to the interface IEntity, which is a general AOM structure.

1 @Entity
2 p u b l i c c lass Product {
3

4 @EntityType
5 p r i v a t e ProductType type ;
6

7 @FixedEnt i tyProperty
8 p r i v a t e S t r i n g productName ;
9

10 @Ent i tyProperty
11 p r i v a t e L i s t < In fo rmat ion > in fo rma t i ons = new Ar rayL i s t < >() ;
12

13 / / accessor methods omi t ted
14 }

Fig. 7. Example of AOM Role Mapper annotations in an Entity class.

4. PROPOSED SOLUTION

The solution we propose for adapting an AOM to a static API is to generate dynamically an adapter with a static
structure, which access from its methods the properties of the AOM entity.
Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 6

1 ProductType pt = new ProductType (" Book ") ;
2 In format ionType author = new Informat ionType (" author " , S t r i n g . c lass) ;
3 p t . g e t L i s t () . add (author) ;
4 In format ionType year = new Informat ionType (" year " , I n tege r . c lass) ;
5 p t . g e t L i s t () . add (year) ;
6

7 Product p = new Product () ;
8 p . setType (p t) ;
9 p . setProductName ("Dog Mendonca e Pizzaboy ") ;

10 p . ge t In fo rma t ions () . add (new In fo rma t i on (author , " F i l i p e Melo ")) ;
11 p . ge t In fo rma t ions () . add (new In fo rma t i on (year ,2003)) ;
12

13 I E n t i t y e n t i t y = Adap te rEn t i t y . getAdapter (n u l l , p) ;

Fig. 8. Example of an adapter creation.

4.1 Rationale

An adapter needs to support defined interfaces, however in our case the interface is not an abstraction but based
on a set of code conventions defined in the Java Bean standard [Microsystems 2010]. These standards allow the
access of a classâĂŹ properties by using reflection. The existence of many frameworks that rely upon the Java
Bean standard makes it valuable to create such an adapter.

Other behavioral AOM patterns, such as Strategy and Rule Object, could be adapted as well, however they
would not be useful if they do not conform to a standard that would allow their dynamic identification and invocation.
For instance, consider that an AOM behavior of the entity Product is mapped to a method called calculatePrice().
Since this method does not follow any standard and it is dynamically generated, it does not provide any clue to be
invoked by reflection by other components.

That’s why this work chose to focus on the accessor methods based on the Java Bean standard. Section 8
presents how the behavioral part of the AOM structure could be adapted to an interface based on code annotations,
however this is not part of the present work.

4.2 Solution Description

To adapt an entity type that implements the Type Square pattern to the Java Bean standard, the adapter needs to
have the following methods:

—A constructor that receives the AOM entity to be adapted. This entity should be internally stored to be accessed
by the other methods.

—A getter access method for each entity property that the entity type has. This method should receive no
parameters and return the target property. Its implementation should retrieve the value from the entity property
and return. The return type is the type of the AOM property, unless it is another AOM entity. In this case, the
return type is Object, because the entity is also adapted before it is returned.

—A setter access method for each entity property that the entity type has. This method should have no return
(void) and receive a parameter with the type of the target property. Its implementation should set the parameter
on the entity property. A setter is not generated when the property is another AOM entity.

To create the adapter, our solution proposes the use of an adapter factory. This factory receives the AOM entity
that should be adapted and should return the respective adapter encapsulating the entity received. It reads the
entity metadata present on the entity type and creates at runtime a new class with the desired API. In Java, for
instance, runtime class generation can be done through bytecode manipulation.

Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 7

Fig. 9 presents a class diagram with the main participants in our solution. The class named Application represents
an application that has an instance of an AOM entity and needs to have represented on an API that follows
the JavaBean standard. It invokes the AdapterFactory passing the Entity as a parameter. The AdapterFactory
accesses the Entity metadata by accessing its EntityType and its respective PropertyTypes. Based on that, it
dynamically generates an adapter class and instantiates that class by passing the Entity into the class initialization.
The adapter is returned to the application, which can use it with frameworks based on a static API.

Fig. 9. Representation of the solution with the dynamic adapter

Figure 10 presents a sequence diagram that illustrates the proposed process for adapter creation. The application
invokes a method on the Adapter Factory to create an adapter for a given AOM entity. This factory retrieves the
entity information, such as its type name and its properties, and uses them as parameters to create a class on a
bytecode generation library, represented in the diagram by the class ClassVisitor. After that, the adapter retrieves
the generated bytecode and uses a custom class loader to load into the virtual machine the newly generated class.
This class is used to instantiate the adapter using reflection, which is populated with the AOM entity that it should
wrap and return. The generated classes can be cached and reused for invocations with the same Entity Type.

As usage example of this solution, consider a web framework that has a mechanism that automatically retrieves
data from the HTTP request and set into a Java Bean. If the application has a dynamic AOM model, it is not
possible to make use of this mechanism. By using the adapter generation, the adapter can be set as the target
Java Bean and the framework functionality can be reused.

The solution proposed in our work cannot be considered a pattern because it was used only once on Esfinge
AOM Role Mapper framework. However, it can be considered a more specific implementation of the Adapter
pattern. If this approach is used for other AOM systems in the future, a pattern for it can be written and integrated
in the AOM pattern language.
Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 8

Fig. 10. Sequence diagram for adapter creation

This solution is not language-specific, despite the Esfinge AOM Role Mapper framework is implemented in Java.
There is nothing in the solution that prevents it to be implemented in other languages as well.

5. PROPOSED SOLUTION

This section presents an implementation of the dynamic factory created by our proposed solution. It uses the AOM
structure from the Esfinge AOM Role Mapper framework to adapt and the ASM framework for bytecode generation.
In this initial version, the idea is to provide a minimum proof of concept of how this adapter could be implemented.

The first step was the creation of a static adapter to be used as a model for the bytecode generation process,
which is presented on Figure 11. As presented in the previous section, it has a constructor that receives the entity
instance and examples for the creation of the getter and setter methods, which directly access the IEntity instance.

The code of the class in Figure 11 was submitted to the ASMifier tool that generates the source code using
ASM to generate the target class. This code was parameterized to perform the bytecode generation based on
the information of the entity type. The information needed is the class name, the property name and the property
types.

Figure 12 presents the base code used on the class AdapterFactory to create the adapter. This class uses
a Map called storedClasses to store the class generated based on the entity type name. This class is reused if

Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 9

1 p u b l i c c lass ExampleAOMToBeanAdapter {
2

3 p r i v a t e I E n t i t y e n t i t y ;
4

5 p u b l i c TestClassBeanAdapterV2 (I E n t i t y e n t i t y) {
6 t h i s . e n t i t y = e n t i t y ;
7 }
8 p u b l i c I n tege r getProper ty () {
9 t r y {

10 r e t u r n (I n tege r) e n t i t y . ge tProper ty (" p roper ty ") . getValue () ;
11 } catch (EsfingeAOMException e) {
12 throw new RuntimeException (e) ;
13 }
14 }
15 p u b l i c vo id se tProper ty (I n tege r a) {
16 t r y {
17 e n t i t y . se tProper ty (" p roper ty " , a) ;
18 } catch (EsfingeAOMException e) {
19 throw new RuntimeException (e) ;
20 }
21 }
22 }

Fig. 11. Adapter used as example for bytecode generation.

another adapter for the same entity type is requested from the factory. There is a method, not shown on the listing
that removes the existing adapter from the cache and forces the creation of another one. This method is important
to force a change to the existing adapter if the entity type changes.

If the respective adapter class is not found in the cache, the method creates it. This method delegates to other
helper methods the creation of other parts of the class, such as the attribute and the constructor. It iterates through
the properties of the entity, creating respective getters and setters for their access.

After the adapter class is created by using bytecode manipulation, it is loaded by using a custom classloader.
After that, the adapter is instantiated using reflection, passing the entity as a parameter to the constructor. The
resulting instance is returned by the method generate().

To exemplify the creation by using the adapter factory and the use of the adapter, Figure 13 presents a method
that creates the adapter for an entity and prints the methods, attributes and the respective return values for getter
methods. The code creates an entity type with three properties and an entity of the defined type, defining values
for the three properties. After that, an adapter of this entity is created, and a method to print the class metadata in
the console is invoked.

The method printObjectAndClass() in Figure 13 uses reflection to access object metadata and print it on the
console. It prints all the public methods, accessed by getMethods(), and all the attributes declared in the current
class independent of its visibility, accessed by getDeclaredFields(). For methods starting with âĂIJgetâĂİ, it also
invokes the method on the adapter and prints the returned value.

Figure 14 presents what was printed on the console by the execution of the method presented on Figure 13. It
is possible to see that the class has all the getter and setter methods respective to the entity properties. These
methods also use the type of the entity property type as the parameter and the return of such methods. The values
of the entity encapsulated on the adapter were also printed correctly on the console. In the end, it is possible to
verify that the internal attribute that stores the encapsulated entity was also printed.

The implementation supports complex AOM properties, where the property value is another AOM entity. In
this scenario, the entity is also adapted to a Java Bean when it is returned as a property value. For this kind of
Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 10

1 p u b l i c Object generate (I E n t i t y e n t i t y) throws Except ion {
2

3 Class c lazz = n u l l ;
4

5 i f (s toredClasses . containsKey (e n t i t y . ge tEnt i t yType () . getName ())) {
6 c lazz = storedClasses . get (e n t i t y . ge tEnt i t yType () . getName ()) ;
7 } e lse {
8 C lassWr i te r cw = new ClassWr i te r (C lassWr i te r .COMPUTE_FRAMES) ;
9 S t r i n g name = e n t i t y . ge tEnt i t yType () . getName () + " AOMBeanAdapter " ;

10 c r e a t e P r i v a t e A t t r i b u t e (n u l l , cw) ;
11 createClassAndConstructor (name, cw) ;
12

13 f o r (IP rope r t y p : e n t i t y . ge tP rope r t i es ()) {
14 Class <?> type = Object . c lass ;
15 i f (p . getPropertyType () != n u l l) {
16 type = (Class <?>) p . getPropertyType () . getType () ;
17 }
18 c rea teGet te r (name, cw , p . getName () , type) ;
19 c rea teSe t te r (name, cw , p . getName () , type) ;
20 }
21

22 DynamicClassLoader c l = new DynamicClassLoader () ;
23 c lazz = c l . def ineClass (name, cw . toByteArray ()) ;
24 s toredClasses . put (e n t i t y . ge tEnt i t yType () . getName () , c lazz) ;
25 }
26

27 Object ob j = c lazz . ge tCons t ruc to r (I E n t i t y . c lass) . newInstance (e n t i t y) ;
28 r e t u r n ob j ;
29 }

Fig. 12. - Base method for generating the adapter.

property, a setter method is not provided, since to change its properties it is expected that the application retrieves
its adapter and changes the values directly.

6. USING JAVA BEAN FRAMEWORK

Since the goal to create an adapter to a static API is to enable the use of frameworks based on it, this section
presents a demonstration that used the adapters with a framework. The framework used in our experiment is
Esfinge Comparison [Guerra et al. 2013], which compares each properties of two Java beans of the same class
and return the differences in their properties.

Listing 6 presents the source code that used the adapter to perform the comparison of two entities from the
same entity type. An entity type with three property types was created, followed by the creation of two entities with
values for all the properties. In order to use the comparison framework, the adapter factory was used to create
adapters for the two entities.

After the creation of the adapters, the main class of the framework named ComparisonComponent was invoked
passing both adapters as parameters. A list with differences was received and printed in the console. Based on
the result of the execution, it was possible to verify that the adapters were working as expected.

7. LIMITATIONS

The proposed solution can be considered a first step in the direction of defining an AOM adapter that allows the
usage of AOM entities by frameworks that need to access objects based on the reflective access to a static API

Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 11

1 p u b l i c s t a t i c vo id main (S t r i n g [] args) throws Except ion {
2 IEn t i t yType en t i t yType = new Gener icEnt i tyType (" Person ") ;
3 en t i t yType . addPropertyType (new GenericPropertyType (" number " , I n tege r . c lass)) ;
4 en t i t yType . addPropertyType (new GenericPropertyType (" he igh t " , Double . c lass)) ;
5 en t i t yType . addPropertyType (new GenericPropertyType ("name" , S t r i n g . c lass)) ;
6

7 I E n t i t y e n t i t y = en t i t yType . createNewEnt i ty () ;
8 e n t i t y . se tProper ty (" number " , 27) ;
9 e n t i t y . se tProper ty (" he igh t " , 1 .8) ;

10 e n t i t y . se tProper ty ("name" , " John ") ;
11

12 AOMAdapterFactory adapterFactory = new AOMAdapterFactory () ;
13 Object ob j = gc . generate (e n t i t y) ;
14 pr in tObjectAndClass (ob j) ;
15 }
16

17 p r i v a t e s t a t i c vo id pr in tObjec tAndClass (Object ob j) {
18 f o r (Method m : ob j . getClass () . getMethods ()) {
19 i f (m. getName () . s t a r t s W i t h (" get ")) {
20 System . out . p r i n t (m + " => ") ;
21 t r y {
22 System . out . p r i n t l n (m. invoke (ob j)) ;
23 } catch (Except ion e) {
24 e . p r in tS tackTrace () ;
25 }
26 } e lse {
27 System . out . p r i n t l n (m) ;
28 }
29 }
30 f o r (F i e l d f i e l d : ob j . getClass () . ge tDec laredF ie lds ()) {
31 System . out . p r i n t l n (f i e l d) ;
32 }
33 }

Fig. 13. Example of adapter factory usage.

based on the JavaBeans standard. This section presents some limitations that will be targeted by the next steps of
our research.

Several frameworks based on the Java bean standard are based on metadata [Guerra et al. 2013], using code
annotations to configure constraints on the classes. To use those frameworks full potential, the AOM adapter
factory should be able to create code annotations on the generated class based on entity type properties and on
property type properties. For instance, a property of a property type that defines the significant decimal digits of its
number could be turned into the annotation @Tolerance for the Esfinge Comparison to configure the precision for
each number that is compared.

A limitation of our current solution is that despite the fact that new adapters can be created when there are
changes to an AOM entity type, this will not change any existing AOM adapters that have already been created.
That can be a problem if this adapter is referenced and stored by other classes, and needs to be migrated to a
new version.

Problems related to evolution, versioning and migration of an AOM type is addressed by the patterns documented
by [Ferreira et al. 2008] and [Hen-Tov et al. 2010]. However these patterns consider that the AOM type can be
changed at runtime. However the adapter that represents an AOM entity cannot. Because of this, some of these
proposed solutions for AOM evolution cannot be applied to migrate AOM adapters. Since this is still an open issue,
Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 12

1 p u b l i c java . lang . S t r i n g PersonAOMBeanAdapter . getName () => John
2 p u b l i c vo id PersonAOMBeanAdapter . setName (java . lang . S t r i n g)
3 p u b l i c java . lang . I n tege r PersonAOMBeanAdapter . getNumber () => 27
4 p u b l i c vo id PersonAOMBeanAdapter . setNumber (java . lang . I n tege r)
5 p u b l i c java . lang . Double PersonAOMBeanAdapter . getHeight () => 1.8
6 p u b l i c vo id PersonAOMBeanAdapter . se tHe ight (java . lang . Double)
7 p u b l i c f i n a l vo id java . lang . Object . wa i t () throws java . lang . In te r rup tedExcep t i on
8 p u b l i c f i n a l vo id java . lang . Object . wa i t (long , i n t) throws java . lang . In te r rup tedExcep t i on
9 p u b l i c f i n a l na t i ve vo id java . lang . Object . wa i t (long) throws java . lang . In te r rup tedExcep t i on

10 p u b l i c boolean java . lang . Object . equals (java . lang . Object)
11 p u b l i c java . lang . S t r i n g java . lang . Object . t o S t r i n g ()
12 p u b l i c na t i ve i n t java . lang . Object . hashCode ()
13 p u b l i c f i n a l na t i ve java . lang . Class java . lang . Object . getClass () => c lass PersonAOMBeanAdapter
14 p u b l i c f i n a l na t i ve vo id java . lang . Object . n o t i f y ()
15 p u b l i c f i n a l na t i ve vo id java . lang . Object . n o t i f y A l l ()
16 p r i v a t e org . es f inge .aom. ap i . model . I E n t i t y PersonAOMBeanAdapter . e n t i t y

Fig. 14. Output generated by the example.

1 p u b l i c s t a t i c vo id main (S t r i n g [] args) throws Except ion {
2 IEn t i t yType en t i t yType = new Gener icEnt i tyType (" Car ") ;
3 en t i t yType . addPropertyType (new GenericPropertyType (" plateNumber " , S t r i n g . c lass)) ;
4 en t i t yType . addPropertyType (
5 new GenericPropertyType (" yearOfManufactur ing " , I n tege r . c lass)) ;
6 en t i t yType . addPropertyType (new GenericPropertyType (" co l o r " , S t r i n g . c lass)) ;
7

8 I E n t i t y e n t i t y A = en t i t yType . createNewEnt i ty () ;
9 e n t i t y A . se tProper ty (" plateNumber " , "AKZ�3421") ;

10 e n t i t y A . se tProper ty (" yearOfManufactur ing " , 1980) ;
11 e n t i t y A . se tProper ty (" co l o r " , " ye l low ") ;
12

13 I E n t i t y e n t i t y B = ent i tyTypeB . createNewEnt i ty () ;
14 e n t i t y B . se tProper ty (" plateNumber " , "DZZ�3421") ;
15 e n t i t y B . se tProper ty (" yearOfManufactur ing " , 1982) ;
16 e n t i t y B . se tProper ty (" co l o r " , " ye l low ") ;
17

18 AOMAdapterFactory adapterFactory = new AOMAdapterFactory () ;
19 Object objA = adapterFactory . generate (e n t i t y A) ;
20 Object objB = adapterFactory . generate (e n t i t y B) ;
21

22 ComparisonComponent c = new ComparisonComponent () ;
23 L i s t <Di f fe rence > d i f s = c . compare (objA , objB) ;
24 System . out . p r i n t l n ("⇤⇤⇤ Di f fe rences : ⇤⇤⇤ ") ;
25 f o r (D i f f e rence d : d i f s) {
26 System . out . p r i n t l n (d . t o S t r i n g ()) ;
27 }
28 }

Fig. 15. Example of code that uses the framework for comparing instances.

our solution is not appropriate for systems where the adapters referenced by other classes need to be migrated
due to changes to the AOM entity type.

Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 13

8. NEXT STEPS

This paper presented the proposed solution for the dynamic adapters for AOM entities and the current status for a
minimum proof-of-concept implementation. These results can be considered the first step in a broader study that
is being performed on how to increase reuse opportunities for applications with an AOM architectural style. This
section describes the next steps intended for continuation of our research.

The first step is to add to the Esfinge AOM model the capability to have properties on every element of the AOM
structure. Based on that, the metadata defined for the entity type and property type can be translated to code
annotations on the generated adapter. The Java Beans frameworks to handle a property or a class differently can
annotations defined on the adapter. Since the methods of a dynamically generated class can only be invoked by
reflection, it is important to add more information about them on the AOM adapter to allow it to be fully used by
that framework.

After adding the support for generating annotations on the AOM adapters, the model and the implementation will
focus on expanding the scope to include some behavioral patterns, such as Strategy and Rule Object. The idea is
to map the execution of such objects as methods on the AOM adapter. The metadata added to these methods, as
code annotations, should enable their identification and invocation by frameworks. As an example, this could be
used is to map an AOM behavior as a callback method invoked by a framework as a response to a given event.

9. CONCLUSIONS

This paper presented the proposal of a solution to allow the reuse of regular frameworks for AOM applications.
It suggests using a dynamic generated adapter that creates a static class to adapt a dynamic AOM entity.
The approach that generates and inserts code to adapt at runtime is not new [Reenskaug et al. 1996], but the
contribution of this work is to how to use this approach for AOM architecture. The paper presents the implementation
of a proof-of-concept and shows its use to adapt an entity to a Java Bean to be used by a comparison framework.

10. ACKNOWLEDGEMENTS

We acknowledge the support of CNPq (grant 445562/2014-5) and FAPESP (grant 2015/16487-1). We also thank a
lot our shepherd, Rebecca Wirfs-Brock, for given a valuable and detailed feedback either on the technical ideas
and for the paper text. Finally, we also acknoledge the important feedback received from the Writers Workshop
participants.

REFERENCES

Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Leon Welicki. 2008. Patterns for Data and Metadata Evolution in Adaptive Object-models.
In Proceedings of the 15th Conference on Pattern Languages of Programs (PLoP ’08). ACM, New York, NY, USA, Article 5, 9 pages.
DOI:http://dx.doi.org/10.1145/1753196.1753203

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Eduardo Guerra and Ademar Aguiar. 2014. Computational Science and Its Applications – ICCSA 2014: 14th International Conference,
Guimarães, Portugal, June 30 – July 3, 2014, Proceedings, Part V. Springer International Publishing, Cham, Chapter Support for Refactoring
an Application towards an Adaptive Object Model, 73–89. DOI:http://dx.doi.org/10.1007/978-3-319-09156-3_6

Eduardo Guerra, Jerffeson Souza, and Clovis Fernandes. 2013. Transactions on Pattern Languages of Programming III. Springer
Berlin Heidelberg, Berlin, Heidelberg, Chapter Pattern Language for the Internal Structure of Metadata-Based Frameworks, 55–110.
DOI:http://dx.doi.org/10.1007/978-3-642-38676-3_3

Atzmon Hen-Tov, David H. Lorenz, Lena Nikolaev, Lior Schachter, Rebecca Wirfs-Brock, and Joseph W. Yoder. 2010. Dynamic Model Evolution.
In Proceedings of the 17th Conference on Pattern Languages of Programs (PLOP ’10). ACM, New York, NY, USA, Article 16, 13 pages.
DOI:http://dx.doi.org/10.1145/2493288.2493304

Patricia Matsumoto and Eduardo Guerra. 2014. An Approach for Mapping Domain-Specific AOM Applications to a General Model. Journal of
Universal Computer Science 20, 4 (apr 2014), 534–560. |http://www.jucs.org/jucs204/anapproachformapping|.

sun Microsystems. 2010. JavaBeans(TM) specification 1.01 Final release. http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html.
(2010).

Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 14

http://dx.doi.org/10.1145/1753196.1753203
http://dx.doi.org/10.1007/978-3-319-09156-3_6
http://dx.doi.org/10.1007/978-3-642-38676-3_3
http://dx.doi.org/10.1145/2493288.2493304

Trygve Reenskaug, Per Wold, and Odd Arild Lehne. 1996. Working with objects - the OOram software engineering method. Manning. I–XXI,
1–366 pages.

Joseph W. Yoder, Federico Balaguer, and Ralph Johnson. 2001. Architecture and Design of Adaptive Object-models. SIGPLAN Not. 36, 12 (Dec.
2001), 50–60. DOI:http://dx.doi.org/10.1145/583960.583966

Joseph W. Yoder and Ralph Johnson. 2002. The adaptive object-model architectural style. Kluwer, B.V, 3–27.

Received May 2015; revised September 2015; accepted February 2015

PLoP’15, OCTOBER 24–26, Pittsburgh, Pennsylvania, USA. Copyright 2015 is held by the author(s). HILLSIDE 978-1-941652-03-9

Dynamic Generated Adapters from Adaptive Object Models to Static APIs — Page 15

http://dx.doi.org/10.1145/583960.583966

	Introduction
	Adaptive Object Model Patterns
	Type Object
	Type Object
	Type Square Pattern

	Esfinge AOM Role Mapper
	Proposed Solution
	Rationale
	Solution Description

	Proposed Solution
	Using Java Bean Framework
	Limitations
	Next Steps
	Conclusions
	Acknowledgements

