

QA to AQ Part Six

Being Agile at Quality
“Enabling and Infusing Quality”

Joseph W. Yoder, The Refactory, Inc. – USA

Rebecca Wirfs-Brock, Wirfs-Brock Associates, Inc. – USA

Hironori Washizaki, Waseda University – Japan

Abstract. To achieve quality systems and products, it is vital to enable and infuse quality

work throughout the entire process, rather than piling it on at the end. Thus paying attention

to when to this, how to do this, and who is involved can increase quality. This paper presents

three patterns from the collection of patterns on being agile at quality: System Quality

Specialist, Spread the Quality Workload, and Automate As You Go. System Quality

Specialists can define, test, and implement system-quality characteristics that are complex or

require specialized skills and expertise to get right. Spreading the Quality Workload

throughout the development process keeps the team from being overly burdened with quality-

related work at any point in time. Automating First enables teams to streamline their build

and testing processes, eliminate tedious or mundane tasks, and allow more time for team

members to focus on implementing and testing important system qualities.

Categories and Subject Descriptors
• Software and its engineering ~ Agile software development • Social and professional topics ~ Quality assurance

• Software and its engineering ~ Software testing and debugging

General Terms
Agile, Quality Assurance, Patterns, Testing

Additional Keywords and Phrases
Agile Quality, Quality Assurance, Software Quality, System Qualities, Patterns, Agile Software Development, System

Quality Specialist, Spread the Quality Workload, Automate As You Go

ACM Reference Format:

Yoder, J.W., Wirfs-Brock, R., and Washizaki, H. 2016. QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing

Quality”. HILLSIDE Proc. of Conf. on Pattern Lang. of Prog. 23 (October 2016), 14 pages.

Author's email address: joe@refactory.com, rebecca@wirfs-brock.com, washizaki@waseda.jp

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on

the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A

preliminary version of this paper was presented in a writers' workshop at the 23rd Conference on Pattern Languages of Programs

(PLoP). PLoP'16, OCTOBER 24-26, Allerton, Illinois, USA. Copyright 2016 is held by the author(s). HILLSIDE 978-1-941652-04-6.

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 2

Introduction

On agile teams, QA often works closely with the whole team engaging more deeply with

developers and the Product Owner. While incrementally delivering functionality, system

qualities need to be visible and included as part of the prioritized work. It is also important to

not lose focus on Quality Assurance for the “ilities” of a system and to spread quality

expertise among the team.

This paper is a continuation of patterns for shifting from more traditional Quality Assurance

(QA) to Agile Quality (AQ). The complete set of patterns includes ways of incorporating

quality assurance into the agile process as well as techniques for describing, measuring,

adjusting, and validating important system qualities (Agile Quality). Previously we presented

many patterns for becoming more agile at quality [YWA, YW, YWW14, YWW15,

YWW16]. See appendix for a summary of these patterns. Our collection of patterns focuses

on actions for improving system quality and integrating quality assurance concerns, values,

and roles into the whole team. This paper expands on ways for Being Agile at Quality by

presenting three patterns: System Quality Specialist, Spread the Quality Workload, and

Automate As You Go.

In order to specify, test, and implement performance, scalability or reliability of a system,

specific technical expertise and skills are often required. This is where a System Quality

Specialist who knows both technology and has a quality mindset can contribute.

Some quality assurance activities require specific expertise and a unique quality perspective.

However, when quality-related concerns and activities are shared among team members by

Spreading the Quality Workload, a commonly held set of values can take hold. This enables

quality-related practices to become pervasive.

The more you automate time-consuming build, test, and deployment tasks, the more time is

freed up to work on other tasks. In addition to speeding up build-deploy-test cycles,

automation can provide useful feedback and assist in monitoring ongoing quality measures.

Automating tasks later can be difficult to implement and integrate so Automate As You Go

whenever possible.

Our patterns are intended for agile teams wanting to focus on important system qualities for

their systems and better integrating QA into their agile process. These Agile Quality patterns

are also of interest to anyone who wants to instill a quality mindset and introduce quality

practices throughout their process.

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 3

System Quality Specialist

“Asking the right questions takes as much skill as giving the right answers.” — Robert Half

© Canstockphoto/pressmaster

Quality assurance on agile projects primarily focus on validating and verifying user stories

which express requirements in terms of system functionality. QA may be more comfortable

and familiar with functional testing. Nonetheless, production software needs to exhibit

system qualities such as being scalable, usable, secure, and reliable to satisfy its end users.

Individual user stories as well as the overall system qualities must be verified to meet

objectives.

How can agile teams obtain and realize the best experience and practices for specifying,

testing and validating system qualities?

Some system qualities require significant expertise to make sure they are specified, designed,

implemented, and verified appropriately. If the focus is primarily on functionality, qualities

can be deemphasized. Many qualities require various expertise and this expertise is not

always part of the agile team.

It is not common for user stories to contain acceptance criteria for specific system qualities.

There are benefits of focusing on features first, however they may be over-emphasized

because it is “easy” to appreciate the values they offer to end-users. Systems are not

completely finished until requirements including system qualities are adequately addressed.

There are always tradeoffs, and perfection is the enemy of good enough. Good enough needs

to address both business features and system qualities. It requires a certain level of expertise,

specifically in the area of system qualities, to balance these sometimes conflicting

requirements.

It is easier to write tests to verify system functionality than it is to specify and implement

tests which verify performance, security, or reliability requirements. System quality tests can

often affect many user stories and it requires a lot of understanding and skills in order to

properly address how best to verify these requirements.

System design involves making tradeoffs between implementing functionality that is good

enough to meet the important business requirements while adequately addressing system

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 4

quality requirements. When making design tradeoffs, there is a temptation to overdesign or

get into too many details about system qualities. On the other hand, retrofitting a naive

implementation in order to meet important system quality goals can be a major undertaking.

Therefore, when your team is lacking specific skills, include System Quality Specialists at

various times (possibly full time) to assist your team with describing, validating, and

testing system qualities.

A System Quality Specialist is a QA role with deep technical skills related to specific system

qualities. An agile team may need deep skills of architects or system quality specialists. For

example, if a product needs to be secure, it is important that security is designed and built

into the system from the beginning and that it is adequately tested and verified. Security

doesn’t magically emerge. A team might need the expertise of security architects or

developers as well as QA security specialists. The System Quality Specialist can be

temporary until the team acquires the necessary skills, or the specialists could become full-

time team members if the need is ongoing. The specialists work with the team by directly

assisting them with the quality-related tasks. They are hands-on rather than merely advice

givers.

The term specialist sometimes has a bad connotation, implying that knowledge is

unnecessarily held too closely or poorly communicated to others. Some agile teams even go

so far as to avoid hiring specialists. However it is wishful thinking to believe you will only

have “t-shaped”1 people working on a team. Not everyone necessarily is able to easily

acquire the deep skills necessary to perform certain quality-related tasks. Sometimes you

need specialists and the specialists are not necessarily t-shaped.

A System Quality Specialist usually comes from the Quality Assurance group if the

organization has one. If not, it is possible to bring in a quality expert from another part of the

organization or bring in an outside expert to assist with this specialized role. This specialist

may not be familiar with agile practices or processes. Effectively incorporating them into

your team may mean that you need to work with them to understand your agile values and

preferred ways of working. And you may want to adapt your process based on their inputs

and advice. Quality specialists often have different areas of expertise such as usability,

performance or security. You may need the help of several quality specialists.

The System Quality Specialist can raise awareness of system qualities to the entire team.

They can work individually or collaboratively on system quality-related tasks. For example,

they can help Find Essential Qualities or write or review Quality Scenarios and Quality

Stories. They can ensure that quality-related acceptance criteria are adequately specified in

Fold-out Qualities. And they can create useful Quality Radiators and Quality Dashboards.

There are many tasks that a System Quality Specialist can contribute to or lead. It is important

that they don’t become overloaded or are the only source of quality-related expertise. A

System Quality Specialist can help Spread the Quality Workload through the Pairing with a

Quality Advocate and Shadowing the Quality Expert.

1
 T-shaped people have skills and knowledge that are both deep and broad [Brown].

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 5

Spread the Quality Workload

“Individual commitment to a group effort - that is what makes a team work, a company work,

a society work, a civilization work.”— Vince Lombardi

© Canstockphoto/maxxyustas

Agile teams spend most of their time specifying, implementing, and verifying functionality. It

is also necessary to implement and validate system qualities before a system is ready to

release. There are many quality-related tasks that need to be performed. If they aren’t

addressed in a timely fashion QA can become the bottleneck for getting things done.

How can teams balance quality efforts with feature delivery to ensure that all tasks are

addressed at responsible moments?

QA may be reluctant to verify system qualities until all functionality is completed, believing

that testing won’t be useful on partially implemented functionality. Not verifying important

qualities early enough can cause significant problems, delays and rework. Remedying

performance or scalability deficiencies can require significant changes and modifications to

the system’s architecture. Focusing too early on system qualities can lead to overdesign or

premature optimization.

It requires technical skills and effort to specify and configure an environment for testing and

verifying system qualities. If QA lacks experience in the full spectrum of system quality

specification and verification tasks, this might lead them to perform a lot repetitive and

inefficient manual tasks. Although there are benefits to getting quick feedback, as the project

grows, having to perform a growing number of tasks manually to verify system qualities will

slow the team down.

It can be difficult to overcome cultural barriers. For example, many developers want to focus

on writing code and not want to take on QA tasks or the role of tester. They might see

verifying system qualities as just another tedious testing task.

QA is often understaffed, overworked, and underappreciated. This can lead to poor morale.

There may not be enough QA resources or experience to address system qualities when they

would like. This leads to QA being in a reactive rather than a proactive mode, identifying

fires rather than preventing them.

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 6

Product Owners often focus early in a project on functional requirements. While

understanding functionality is important, this can lead to quality-related tasks getting piled on

at the end.

Therefore, rebalance quality efforts by involving more than just those who are in QA to

work on quality-related tasks. Spread the quality workload over time by including

quality-related tasks throughout the project.

The goal is to take a balanced approach to tackling quality work including the definition,

implementation, and validation of system qualities. Developers already have a responsibility

and ownership for code quality and helping make sure it meets the core business

requirements including system capabilities and functionality. However, a developer can also

assist with validating system qualities. For example, a developer can work on writing a test-

fixture to validate a specific system quality with guidance and verification from the QA

expert. Or a developer can pair with QA to build some infrastructure for validating and

monitoring critical system qualities [Sav]. Or if developers get trained on the basics of

exploratory testing, they can provide fresh testing perspectives on new system functionality

and help balance the load.

This all comes down to everyone working together to make the project successful, pitching in

when needed, not only when being told to. All teams members including developers can help

with QA tasks. It is a way to “load balance” quality efforts. Not everyone has the same

expertise but they can still learn to do some quality-related tasks. As the team is growing,

there are times that individuals from the team can move slightly outside of their comfort

zone, which is normal for growth. For example it can become a developer's responsibility to

run system quality tests insuring they all pass before checking in their code. QA is still

responsible for verifying overall system quality, however some of their responsibilities or

tasks can be shared.

It is important to spread the quality workload over time as well as distribute it within the

team. Trying to address complex system qualities at the end of the project can cause many

problems and rework. One way to make sure important items are addressed at appropriate

times is to Qualify the Roadmap and to Qualify the Backlog.

Also, it is productive to write and run system quality tests as soon as there is enough

implementation to be tested, even before the end of a sprint. Test results, while still

preliminary, provide valuable feedback to the development team. This also helps the team to

know when important qualities should be worked on and improved. QA should post feedback

of what they were able to test and their results on an ongoing basis. But this isn’t enough.

Everyone on the team should feel comfortable raising quality issues when they find them.

Quality Checklists and System Quality Dashboards can help ensure quality items are not

being forgotten or overlooked. Experience can be shared by Shadowing the Quality Expert

and by Pairing with a Quality Advocate. When you Spread the Quality Workload, you

definitely Break down the Barriers as you work more as a Whole Team.

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 7

Automate As You Go

“The first rule of any technology used in a business is that automation applied to an efficient

operation will magnify the efficiency. The second is that automation applied to an inefficient

operation will magnify the inefficiency.”— Bill Gates

At the start of agile projects there are many pressures to get something out to the end-user

and to get initial reactions and feedback. It is important to establish a frequent delivery

cadence and tools to make that possible. In creating this environment, quality-related items

need to be considered as well. As a system evolves, it is essential to regularly evaluate the

system to make sure that key qualities are being met.

How can agile teams create tooling and an environment to assist with quick feedback

about important qualities of the system and make their current status accessible and

visible to the team?

Not focusing on important qualities early enough can cause significant problems, delays and

rework. Remedying performance or scalability deficiencies can require significant changes

and modifications to the system’s architecture. However, focusing too early on system

qualities in the development cycle can lead to overdesign and premature optimization

[Knuth].

Agile teams primarily focus early in a project implementing functional requirements. There is

often a priority to doing the minimal necessary to getting something working so as to get

customer’s reaction to the system’s functionality as soon as possible. This can lead to taking

shortcuts or a lot of quick and dirty manual tasks such as testing to quickly get the product

out. Although there are benefits to getting fast feedback, as the project grows, a growing

number of manual tasks slows the team down, making it harder to safely validate and evolve

the system.

There is often a temptation to use the latest and greatest tool that has been recently hyped.

However, you have limited time and resources and there is a lot of pressure to get something

out as soon as possible. Automation takes time and energy to set up and sometimes the payoff

is not immediately apparent. Some tasks, specifically quality testing and validation, can be

hard to automate if the architecture was never designed to be testable.

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 8

There is a risk that focusing too much on automation could cause the team to get caught up in

tooling and spend too much effort and time on automation. Another risk is that by automating

too many tasks you consequently slow down your build and deploy pipeline by testing too

frequently or at the wrong time in the pipeline.

Setting up environments and automating the testing of system qualities can require

specialized skills and expertise. Also, you may not know what to measure about qualities

until you have sufficiently defined the functionality. You want to avoid automating or putting

effort into tasks that may not add value later. Being agile, you want to do things just in time.

Therefore, create an environment and use tools to automate fundamental things that

add value as soon as you can. Do not put off automation tasks until late in development.

Some automations are important to do from the start. Early on the most essential things to

automate are the build, integration and test environment configuration. Then automate

functional tests and system quality tests. But that’s only the start. There are other things you

can automate such as acceptance tests, performance metrics, code smell detection, application

security checks, and architectural conformance. Also if you have repetitive, tedious or error

prone tasks, and if you can automate those as well. As you automate tasks, they become part

of the cadence of your project.

The more you automate repetitive manual tasks, the more time it frees you up to do more. It

also allows time to spend on exploratory testing. Automation also allow you to more safely

evolve the system. Automation lets you do work in smaller batches, making fewer mistakes

and getting quicker feedback. With automated tests, you will know when something goes

wrong with those items you are testing. You can run automated tasks more often making sure

that important qualities are still being satisfied.

If you need to validate performance under load before you release, you might need to spin up

and create a specific environment to test the system performance. This could require setup of

databases and networks, etc. Doing this by hand every time can be error prone and take time.

By creating a virtual environment with scripts that automate this setup, you can make

performing this task much easier. As you see you are having to repeat manual tasks and that

automation can help, it is time to add an automation task to your backlog.

When making a decision to automate, it is helpful to think about how long a particular

automated task takes to execute and how frequently it is performed. You should consider

automating infrequently performed tasks as well, especially if they are error prone or involve

a lot of steps. If a task is expensive to automate and you do it infrequently, a manual checklist

script might be the better alternative. For example, if you have a manual task that you

perform once a year that takes one day but can be automated in five days, your return on time

spent to automate will come only after five years.

The time it takes to perform any automated task figures into your consideration of whether to

install it into your normal build and deploy process or to take it off of that workflow. If you

can get early, quick feedback using less time-consuming automated tasks, those automations

may prove as valuable as more thorough, longer running tests or automations. For example, a

security scan that runs penetration testing against a deployed app can be automated, but might

be too slow to be part of your automated build process. A static code analysis that includes

looking for some security defects might not be as comprehensive as the penetration scan but

can still provide useful feedback.

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 9

There are different testing cycles, especially for system qualities. Some tests, such as unit

tests, will be run frequently, maybe hourly. When you check-in code, there will be some

simple integration tests that will run. But other tests, if run at that time, might slow down the

check-in process too much. So these quality or regression tests might be run nightly or even

less frequently.

Automation considerations will influence your architecture style, your choice of frameworks,

interface design, and many design details. For example if you decide that you will have many

automated tests, you will want to design your system so these can be easily added. And while

you will want to make parts of you system testable in isolation, you also need to consider

how to perform meaningful integration tests.

Knowing what automation is necessary, and when automated tests and tasks should be run, is

important. System Quality Specialists can provide expertise to assist with automation. Some

quality tests are hard to set up and take a lot of time to run. Sometimes you have to be clever

to set these up correctly and decide when good times are to run them. It is important that the

results of the automation is visible to the team. This can be done via System Quality

Dashboards and System Quality Radiators. However, you do not want to be overwhelmed

with too much information that can be overlooked and ignored. The teams needs to decide

what feedback is useful and the frequency that it gets updated.

There are a broader set of activities, beyond simply building and running tests continuously

that need to be part of a continuous integration pipeline, such as deployment and IDE

integration [Duv]. One of these activities that is valuable during continuous integration is

Continuous Inspection. Continuous Inspection includes ways of running automated code

analysis to find common problems before integration. Continuous Inspection also describes

many additional automated tasks that can help insure that certain qualities and architecture

constraints are being met [MYGA].

Automation tools are highly dependent upon the architecture and platform that is being used.

For example if you are developing with Java, you might consider SonarQube, PMD,

Checkstyle, FindBugs, JaCoCo, Jenkins, Maven and Eclipse with various plugins such as

JUnit and code analysis tools.

When selecting tools, it is also useful to evaluate and select one or more tools that can

perform static analysis on your code base. Tool evaluation criteria should include the

programming and scripting languages used in your software projects versus the ones

supported by the tool; whether the tool provides an API for developing customized

verifications; integration with your IDE; integration with your continuous integration server;

and the appropriateness to your project of the built-in verifications provided by the tool.

Specialists can assist with tool selection.

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 10

Summary

This paper is a continuation of patterns for shifting from Quality Assurance (QA) to Agile

Quality (AQ). The complete set of patterns includes ways of incorporating QA into the agile

process as well as agile techniques for describing, measuring, adjusting, and validating

important system qualities. This paper focused on three patterns for improving the flow of

quality-related activities by leveraging System Quality Specialists, Spreading the Quality

Workload, and Automating as You Go. Ultimately it is the authors’ plan to write all of the

patlets listed in the appendix as patterns and weave them into a 3.0 pattern language [Iba] for

evolving from Quality Assurance to an Agile Quality mindset.

Acknowledgements

We thank our shepherd David Kane for his valuable comments and feedback during the PLoP

2016 shepherding process. We also thank our 2016 PLoP Writers Workshop Group, Eri

Shimomukai, Haruka Mori, Lise Hvatum, Miyuki Mizutani, Norihiko Kimura, and Richard

Gabriel for their valuable comments and suggestions.

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 11

References

[Duv] Duval, Paul. Continuous Integration: Patterns and Anti-Patterns. DZone,

2010. http://refcardz.dzone.com/refcardz/continuous-integration.

[Iba] Iba, T. 2011, “Pattern Language 3.0 Methodological Advances in Sharing

Design Knowledge,” International Conference on Collaborative Innovation

Networks 2011 (COINs2011).

[Knuth] Knuth, D., “Structured Programming With Go To Statements,” Computing

Surveys, Vol 6, No 4, December 1974, pp. 261-301.

[MYGA]

Merson P., Yoder J., Guerra E., and Aguilar A., “Continuous Inspection: A

Pattern for Keeping your Code Healthy and Aligned to the Architecture,” 3rd

Asian Conference on Patterns of Programming Languages (AsianPLoP),

Tokyo, Japan, 2014.

[Sav] Savoia S., “Tearing Down the Walls: Embedding QA in a TDD/Pairing and

Agile Environment,” Agile 2014 Conference, Orlando, Florida, USA.

[YWA]

Yoder J., Wirfs-Brock R., and Aguilar A., “QA to AQ: Patterns about

transitioning from Quality Assurance to Agile Quality,” 3rd Asian

Conference on Patterns of Programming Languages (AsianPLoP), Tokyo,

Japan, 2014.

[YW] Yoder J. and Wirfs-Brock R., “QA to AQ Part Two: Shifting from Quality

Assurance to Agile Quality,” 21st Conference on Patterns of Programming

Language (PLoP 2014), Monticello, Illinois, USA, 2014.

[YWW14] Yoder J., Wirfs-Brock R. and Washizaki H., “QA to AQ Part Three: Shifting

from Quality Assurance to Agile Quality: Tearing Down the Walls,” 10th

Latin American Conference on Patterns of Programming Language

(SugarLoafPLoP 2014), Ilha Bela, São Paulo, Brazil, 2014.

[YWW15] Yoder J., Wirfs-Brock R. and Washizaki H., “QA to AQ Part Four: Shifting

from Quality Assurance to Agile Quality: Prioritizing Qualities and Making

them Visible,” 22nd Conference on Patterns of Programming Language

(PLoP 2015), Pittsburgh, Pennsylvania, USA, 2015.

[YWW16] Yoder J., Wirfs-Brock R. and Washizaki H., “QA to AQ Part Five: Being

Agile at Quality: Growing Quality Awareness and Expertise,” 5th Asian

Conference on Patterns of Programming Language (AsianPLoP 2016),

Taipei, Taiwan, 2016.

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 12

Appendix

We have published several papers that outline core patterns for evolving from more

traditional quality assurance to being agile at quality [YWA, YW, YWW14, YWW15,

YWW16]. We briefly describe the entire collection patterns using patlets in the tables below.

A patlet briefly outlines the gist of a pattern, usually in one or two sentences. The patlet

names in bold have been written up as patterns. We organize our software-related Agile

Quality patterns into these areas: identifying system qualities, making qualities visible, fitting

quality into your process, and being agile at quality assurance. Our ultimate goal is to turn all

patlets into full-fledged patterns and make a pattern language for action and change useful to

software teams who want to become more agile about system quality.

Core Patterns

Central to using these QA patterns is breaking down barriers and knowing where quality

concerns fit into your agile process. The following patlets describes these considerations.

Patlet Name Description

Break Down Barriers Tear down the barriers between QA and the rest of the

development team. Work towards engaging everyone in the

quality process.

Integrate Quality Incorporate QA into your process, including a lightweight

means for describing and understanding system qualities.

From here we classified our patterns into these categories: Identifying Qualities, Making

Qualities Visible, and Being Agile at Quality which we outline below.

Identifying Qualities

An important but difficult task for software development teams is to identify the important

qualities (non-functional requirements) for a system. Quite often system qualities are

overlooked or simplified until late in the development process, thus causing time delays due

to extensive refactoring and rework of the software design to correct quality flaws. It is

important that agile teams identify essential qualities and make those qualities visible to the

team. The following patlets support identifying the qualities:

Patlet Name Description

Find Essential

Qualities

Brainstorm the important qualities that need to be considered.

Agile Quality

Scenarios

Create high-level quality scenarios to examine and understand

the important qualities of the system.

Quality Stories Create stories that specifically focus on some measurable

quality of the system that must be achieved.

Measurable

System Qualities

Specify scale, meter, and values for specific system qualities.

Fold-out Qualities Define specific quality criteria and attach it to a user story

when specific, measurable qualities are required for that

specific functionality.

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 13

Agile Landing Zone Define a landing zone that defines acceptance criteria values

for important system qualities. Unlike traditional landing

zones, an agile landing zone is expected to evolve during

product development.

Recalibrate the

Landing Zone

Readjust landing zone values based on ongoing measurements

and benchmarks.

Agree on Quality

Targets

Define landing zone criteria for quality attributes that specify

a range of acceptable values: minimally acceptable, target and

outstanding. This range allows developers to make tradeoffs

to meet overall system quality goals.

Making Qualities Visible

It is important for team members to know important qualities and have them presented so that

the team is aware of them. The following patlets outline ways to make qualities visible:

Patlet Name Description

System Quality

Dashboard

Define a dashboard that visually integrates and organizes

information about the current state of the system’s qualities

that are being monitored.

System Quality

Radiator

Post a display that people can see as they work or walk by

that shows information about system qualities and their

current status without having to ask anyone a question. This

display might show current landing zone values, quality

stories on the current sprint or quality measures that the team

is focused on.

Quality Checklists Create a quality checklist to use to help ensure important

system qualities are being met.

Qualify the Roadmap Examine a product feature roadmap to plan for when system

qualities should be delivered.

Qualify the Backlog Create quality scenarios and architecture items that can be

prioritized on a backlog for possible inclusion during sprints.

Being Agile at Quality

In any complex system, there are many different types of testing and monitoring, specifically

when testing for system quality attributes. QA can play an important role in this effort. The

role of QA in an Agile Quality team includes: 1) championing the product and the

customer/user, 2) specializing in performance, load and other non-functional requirements, 3)

focusing quality efforts (make them visible), and 4) assisting with testing and validation of

quality attributes. The following patlets support being agile at quality:

Patlet Name Description

Whole Team Involve QA early on and make QA part of the whole team.

Quality Focused

Sprints

Focus on your software’s non-functional qualities by

devoting a sprint to measuring and improving one or more of

your system’s qualities.

QA to AQ Part Six: Being Agile at Quality “Enabling and Infusing Quality” - 14

Product Quality

Champion

QA works from the start understanding the customer

requirements. A QA person will collaborate closely with the

Product owner pointing out important Qualities that can be

included in the product backlog and also work to make these

qualities visible and explicit to team members.

System Quality

Specialist

QA provides experience to agile teams by outlining and

creating specific test strategies for validating and monitoring

important system qualities.

Automate As You Go Some tasks specifically tests can be hard to automate later. As

you go along automate any and all tasks (specifically tests)

that you can. Do this as soon as possible.

Spread the

Quality Workload

Rebalance quality efforts by involving more than just those

who are in QA work on quality-related tasks. Another way to

spread the work on quality is to include quality-related tasks

throughout the project and not just at the end of the project.

Shadow the

Quality Expert

Spread expertise about how to think about system qualities or

implement quality-related tests and quality-conscious code by

having another person spend time working with someone

who is highly skilled and knowledgeable about quality

assurance on key tasks.

Pair with a Quality

Advocate

Have developers work directly with quality assurance to

complete a quality related task that involves programming.

Other QA to AQ Patterns:

There are many other QA activities such as code reviews, inspections, architecture

prototyping or experimentation, which occur throughout development. It is important for

iterative processes to include QA and evaluation activities throughout the whole development

cycle. This will lead to other patterns which we have started to outline ideas for below.

● Exploit Your Strengths

● Value Quality

● Everyone has QA responsibilities

● Grow the Team

● Architecture Runway

● Quality Debt related to Technical Debt

● Define Quality Acceptance Criteria

● Making Quality Debt Visible and How to Manage

● Getting the Agile Mindset

● Perform an Experiment to Learn

● Responsible Moments

● Continuous Inspection

● Quality Risk Assessment

● Quality Tests

