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1. INTRODUCTION
Today, over 49% of the world population has access to at least one Internet enabled device [Internetlivestats.com
2016]. Exploiting this scale with cloud applications made the Internet an appealing channel for running businesses.
Such resulted in an explosion in the adoption of public cloud services, with it’s market surpassing US$204 billions
in 2016 [Woods and Meulen 2016].

Motivated by such widespread of the Internet and the explosive growth of software businesses built on top of it,
software engineering became one of the fastest expanding branches of engineering. In fact, the demand for new
engineers grows at an higher rate than the pace at which they are graduating [Taft 2015].

Using the cloud as a foundation for application development introduces new challenges and is essential for any
Internet business. Still, there is a clear lack of research supporting developers design decisions while for cloud
software, namely, identifying what forces drive successful cloud software, and the guidelines to optimize them in
order to craft better cloud software.

With this research, the author proposes a pattern language for building cloud software, helping development
teams make informed architectural decisions that will improve their software operations. The pattern language
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can be used by less experienced teams to bootstrap their design decisions or by experts to validate their own
existing architectures. Finally, it provides a framework for reasoning, given that the concepts introduced by the
pattern language can be used to argue about cloud architectures using the ontology it introduces.

2. A PATTERN LANGUAGE FOR ENGINEERING SOFTWARE FOR THE CLOUD
This research contributes to the field of software engineering with a pattern language that helps in the design
process of cloud software architectures. This section introduces the research questions of this work, presents the
pattern language structure and briefly describing each pattern and, finally, demonstrates how it can be applied
using an example scenario. The patterns that compose the pattern language are described in ??.

2.1 Mining the Patterns
While capturing this pattern language, some considerations where taken in order to ensure the individual quality
of each pattern. Inspired by the evaluation framework proposed by Seidel [Seidel 2017], the following attributes
were considered:

Completness: Is the pattern description complete? [Alexander 1979] A complete pattern provides a level of
detail that enables the reader to identify with the problem and reproduce the solution.
Briefness: Does the pattern contain more information than what’s strictly needed? A brief pattern goes straight
to the point, being easy to read and reproduce.
Validity: Is the stated solution valid and with enough known uses described? A valid pattern documents an
accepted good solution and justifies it with accurate examples.

2.2 How To Read These Patterns
The patterns described in this work have all been documented using the pattern structure described below, strongly
inspired by classical pattern templates [Meszaros 1998; Wellhausen and Fiesser 2011]. Each pattern is composed
by the following sections:

Abstract: A brief description of the pattern and its applications.
Context: The circumstances that result in the manifestation of the problem. By reading this section, the reader
would be able to understand what is the driver for the problem. Experienced users will often relate the context
with their previous experiences.
Example: Describes a concrete scenario aligned with the context, where the problem is observable, highlighting
the intricacies that makes it a complex problem to solve.
Problem: Formalizes the problem, detailing on why it is complex to be solved.
Forces: Identifies the forces that influence the design of the solution. Forces commonly oppose each other,
leaving for the reader to decide how to properly balance them to customize the pattern’s implementation to
his specific needs.
Solution: Describes how the pattern addresses the problem and describes its implementation details, which
often need to be adapted considering how the forces are balanced.
Example Resolved: Describe how the pattern can be instantiated in order to address the scenario described in
the example above.
Resulting Context: Elaborates on the benefits and liabilities introduced by the implementation of this pattern.
Related Patterns: Identifies which patterns can be used with or are incompatible with the implementation of
this pattern.
Known Uses: Pattern should be extracted from recurring solutions to the same problem observed in the wild.
The section identifies implementations that motivated the writing of this pattern.
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Further Considerations: An optional section in the pattern, where additional details are shared or a discussion
is held, elaborating on the intricacies of the pattern.

This structure is a superset of A Pattern Language for Pattern Writing [Meszaros 1998], which suggested the
common structure of context, problem, forces and solution and it is so structures in order to facilitate the reader’s
navigations through the pattern, easily identifying or skipping the information he is looking for or is not interested
in, respectively.

2.3 Pattern Language Overview
This pattern language has been organized into four pattern categories. This subsection describes each of those
categories as well as it briefly describes each pattern’s problem and solution.

2.3.1 Automated Infrastructure Management. The patterns referenced in this section are not introduced by
this pattern language, but a reference to them is essential, as they provide the grounds to much of what this
pattern language builds upon. Automated Infrastructure Management if often associated with DevOps and has
been extensively researched and has such will remain outside the scope of this research [Cycligent ; Loukides 2012;
Reed 2014; XebiaLabs ; Technology 2014; Erich et al. 2014].

Infrastructure as Code is one of the most relevant contributions from the DevOps mindset to software
engineering for the cloud. This pattern handles the management of infrastructure using software [Smeds et al.
2015; Hüttermann 2012; Riley 2015; Amazon 2018]. For that, the creation and changes to the infrastructure are
defined during the development process, following the development practices in place by the team. This will usually
ensure the quality of the software created to manage the infrastructure through practices such has peer review.
Furthermore, Infrastructure as Code, following the DevOps mindset, deprecates the need for knowledge
operation workers that would be dedicated to setup and handle infrastructure. The team owns that responsibility,
managing it as part of the development cycle. This automation will further increase confidence in changes, as it
eliminates the possibility of human introduced error.

Another known pattern required by this pattern language, this time available from cloud providers, is Auto-
mated Scalability. This pattern enables a cloud provider to monitor a set of instances for their resource
allocation, scaling them appropriately to balance performance and costs [Zhang et al. 2010; Cycligent ; Fehling
et al. 2014]. As an example of how this pattern works, an infrastructure with ten instances that is experiencing
increased CPU usage can be automatically scaled, one machine at the time, until the average CPU load in the
infrastructure is below a configured maximum threshold. On the other hand, if the average CPU usage is below a
minimum threshold, the infrastructure size can be reduced, one machine at the time, until the average CPU load
it above a desired average threshold. This will ensure that the infrastructure is maintains an overall CPU usage
within the desired threshold interval.

2.3.2 Orchestration and Supervision. Infrastructure empowering software in the cloud is typically volatile and
dynamically allocated. As such, orchestration plays a key role at dynamically identifying the execution setup and
adapt the software to cope with it. The patterns in this section describe how to setup the necessary hardware and
software to orchestrate services in the cloud and insure they run flawlessly.

Creating development or production environments manually is a time consuming process. The probability of
error is high, given the commonly large number of dependencies and configurations required. Furthermore, these
get scattered in the host making managing the machine and hosting multiple applications troublesome. While
virtualization can be used to create a portable environment of the entire hardware and software stack, it always
virtualizes the whole hardware and software stack, which is very resource demanding. Containerization is
a better alternative, enabling the creation of immutable, reproducible, portable and secure software execution
environments. Containers are considerably more lightweight than full stack virtualization, as there is no need to
virtualize the operative system layer. Containers avoid the need to install dependencies and have configurations

Overview of a Pattern Language for Engineering Software for the Cloud — Page 3



Infrastructure as 
Code

Log 
Aggrega2on

Failure Injec2on

Preemp2ve Logging

Orchestra2on 
Manager

configures

Automated 
Recovery

DISCOVERY AND 
COMMUNICATION

Local Reverse 
Proxy

Containeriza2on

ORCHESTRATION AND SUPERVISION 

MONITORING

feeds

Automated 
Scalability

Messaging 
System

instructs

uses

hosts

adopts

observes

External 
Monitoring

uses

instructsJob Scheduler

disrupts

configures

feeds

extends

uses

configures

AUTOMATED 
INFRASTRUCTURE 

MANAGEMENT

Fig. 1: Pattern map for engineering software for the cloud. Patterns are identified as architecture or process patterns and aggregated
into one of the four categories. Arrows identify the relationships between the patterns. Rounded rectangles correspond to architectural
patterns, while plain rectangles are process patterns.

scattered within the host, making them easier to manage and deploy at scale [Boldt Sousa et al. 2015; Scheepers
2014]. Having at most one service per container ensures that all services are isolated from each-other, preventing
secondary effects in their behaviors. This approach is also essential for individually scaling each microservice.
Adopting containers facilitates the service’s portability. Configurations should not exist inside the container, but
instead services should acquire their configuration from environment variables made available to the container in
each specific execution environments. Environment-based configuration enables not only the service’s configuration
to be injected into the environment, but the host resources’ details to be made available in the same way.

Servers in an infrastructure might differ in hardware. While some might provide more CPU, others might have
higher amounts of RAM available. Likewise, services requirements also are unique. While some might require
a specific amount of memory to be available, other might have the need to be co-located in the same host
for latency purposes. As such, services need to be co-located within hardware fulfills their resource and logical
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requirements. An Orchestration Manager should be responsible for allocating services to the proper hosts,
considering their overall and available resources, as well as any other allocation restrictions that the service might
have [Boldt Sousa et al. 2015; Odewahn 2014; Hausenblas ]. This pattern works best when services are distributed
using the already described Containerization pattern.

Asynchronous tasks, such as database maintenance, sending emails or performing backups, are common in
cloud software. These might run at a given frequency or at a single point in time. Job Scheduler can be used
to orchestrate the execution of these tasks in an infrastructure and evaluate their result, generating error reports
when need [Boldt Sousa et al. 2018b].

Software fails. That assumption is even further relevant while orchestrating software in the cloud, given its
typically large scale. Accepting that it is not possible to prevent software from failing, supervision ensures that
services are running as expected, executing the proper action to recover them in case of failure.

Services running inside containers should be resilient in case of failure, providing Automated Recovery.
Exploiting the immutability of containers, the container shall restart itself automatically to try to recover the
service whenever it detects a malfunction. Advanced strategies might be applied to recover a service, or set of
services, such as restarting a list of services in a specific order. The Orchestration Manager should decide
on the best strategy for each scenario [Boldt Sousa et al. 2018b].

Cloud Software has typically a desired uptime of 100%. Redundancy is often a first step to guarantee availability.
Still, it is a fact that software fails [Charette 2005]. As such, developers need to ensure that their application
is resilient to failures and able to recover to a working status without human intervention, with mechanisms for
improving resilience being built into the cloud application. To increase confidence in these mechanisms they need
to be themselves tested. And since the environment might influence how the system behaves, the production
system’s resilience itself must be tested. To do so a Failure Injection mechanism can periodically inject
unexpected events in the system, evaluating if it continues to behave appropriately [Boldt Sousa et al. 2018a].
Such events can range from sending invalid inputs to the application to shutting down one of the servers hosting
the application. In both scenarios, if there is any unexpected impact into the application, the resilience mechanisms
should be triggered and the application have little to no impact in its availability. Whenever that doesn’t happen,
the developers can work on improving the resilience behavior. Failure Injection is commonly executed under
close supervision and in redundant systems to prevent actual damage to the application.

In summary, the following patterns are introduced in this section:

Orchestration Manager: Deploying and updating software at scale is an error-prone, slow and costly process.
Such can be facilitated by adopting an orchestration manager to coordinate, manage and distribute
multiple cloud services while abstracting the underlying infrastructure, fulfilling the service requirements.

Job Scheduler: Cloud applications require frequent short-running jobs to be scheduled, which must be orches-
trated across a dynamic infrastructure without permanently allocating resources. A scheduler service running
along with the Orchestration Manager can instruct it to allocate one time or periodic jobs, recovering
their resources to the infrastructure when they complete.

Automated Recovery: Services may fail during execution and need to be recovered in a timely and orderly
fashion. Including health checks and recovery configurations in the instructions used for the Orchestration
Manager to orchestrate containers, enables it monitor and recover failing containers.

Failure Injection: Resilience mechanisms are triggered when software is failing. Since systems are designed to
work correctly, the status quo prevents us to from continuously verifying the correctness of those mechanisms.
We need additional strategies to minimize the probability of failure in production due to faulty resilience
strategies. Failure injection software can generate atypical events at both the application and infrastructure
level, exercising the available recovery mechanisms, verifying the application’s resilience.
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Containerization: Deploying a service to a host couples it with the operative system, possibly introducing side
effects with other services in the same host, or the host itself. Containerization proposes the usage of
containers to package the service and its dependencies and enable its isolated and programmatic deployment.

2.3.3 Monitoring. Monitoring continuously evaluates the status of the services composing a cloud application,
reporting back to the team when an issue is identified. It works reactively by detecting issues on data produced
by the services, using log entries or alarms as inputs, or proactively by interacting with the services to verify their
status.

While designing the application, all public endpoints and their expected behavior should be identified, so that
an External Monitoring tool can be configured to monitor them. This enables the unbiased observation of
the application’s state from outside its infrastructure, ensuring that the monitoring tool observes the same as an
user would [Boldt Sousa et al. 2018a].

Debugging an application in production requires as much information as possible in order to trace the actions
that lead to an issue. Services should Log Aggregation, producing verbose execution logs that should be kept
for the longest period of time possible [Boldt Sousa et al. 2017].

Having distributed services producing logs will required developers to leverage multiple log files to trace an
issue. To prevent this, the team should adopt Log Aggregation, by having a centralized view of all the logs
generated by all services in a queryable format [Boldt Sousa et al. 2017].

The following patterns are introduced in this section:

External Monitoring: Monitoring an application from inside the infrastructure that hosts it will result in an
incomplete and biased version of the reality, for example, given the inability to observe issues such as lack of
Internet connectivity or abnormal latency to the application. External Monitoring suggest testing the
application’s public interfaces from an external source, providing an unbiased awareness of the application’s
status.
Preemptive Logging: The information required to debug issues in software is often lost during their first occur-
rence due to insufficient log verbosity. By adjusting logging verbosity preemptively in services and servers within
acceptable resource limits (CPU, storage, others), the team maximizes the probability of capturing relevant
information for addressing future issues right from their first occurrence.
Log Aggregation: Services orchestrated at scale produce disperse logs, resulting in a troublesome process to
acquire and correlate those who come from multiple sources. This pattern suggests the Aggregation and
indexing all service and server logs in a central repository, providing the team with a centralized system to
query and visualize execution logs.

2.3.4 Discovery and Communication. Most cloud applications are composed by multiple services cooperating
towards providing the whole application in what it is typically called a microservice architecture [Lewis and Fowler
2014]. Being deployed in containers hosted in dynamically provisioned hardware, the services must first discover
and create a communication channel before they can start to cooperate.

While using an Orchestration Manager that dynamically allocates containers, the exact network location
at where a service will be running is unknown. Using a Local Reverse Proxy, a service can be abstracted
through a local network port exposed on every machine that is always forwarded to one instance of the service,
possibly balancing traffic between multiple instances [Schumacher et al. 2006; Boldt Sousa et al. 2015]. This is
easily achieve by preemptively creating a table that maps local ports to services. Whenever the port is mapped,
the service is up and the communication can be established.

Some use cases require services to communicate amongst themselves synchronously for RPC and asynchronously
for delegating information to collaborating services. A Messaging System can be used to send both types of
messages between micro-services, eliminating the complexity associated with service discovery [Gawlick 2002;
Boldt Sousa et al. 2017].
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This section introduced the following sections:

Messaging System: As service instances increase, communication between services needs to be abstracted,
enabling proper balancing between instances. This communication strategy is required to be fault-tolerant
and scalable to maintain the application’s resiliency. As a solution, a messaging system, colloquially known
as message queue, can abstract service placement and orchestrate messages with multiple routing strategies
between them.
Local Reverse Proxy: Services might lack the network information required to communicate with other dynamically-
allocated services. Communication can be achieved by abstract service network details by defining a service
port for each service. Use a reverse proxy to expose that port in all servers, forwarding traffic to where the
services are deployed.

3. ADOPTING THE PATTERN LANGUAGE
Resistance to change is by itself a pattern [Dent and Goldberg 1999]. Adopting a pattern language for developing
software for the Cloud requires teams to adapt their mindset regarding their organization, processes and software
architectures. While it is imperative that the team is motivated to change, this pattern language eases its adoption
as it can be partially implemented. The team can identify its most critical problem and implement the pattern or
set of patterns that solve it without addressing the whole pattern language. The next section demonstrates how
a development team could gradually adopt the described patterns in a sequence of iterations.

Amongst the more experienced users, the pattern language can be used as a ontology for reasoning about cloud
architectures, as well as a validation tool for their already existing architectures. Using it as reference will also
facilitate how experts share their ideas with less experienced engineers.

This section was inspired by The Unfolding of a Japanese Tea Garden by Christopher Alexander [Alexander
2006]. It uses a sequence as a way to help the reader understand how the patterns relate and complement each
other. Sequences describe a set of actions that should follow each other in order to achieve a specific goal.

Consider the scenario where a cloud practitioner needs to create and deploy a redundant Web Application,
composed by a client-facing HTTP server and a database.

The practitioner should design his HTTP server and database as two cooperating microservices. By using
Containerization and one service per container, he would create two container images, one of each service.
These containers would be highly portable between multiple environments such as local, staging or production
environments, configured using the available environment variables.

Using Infrastructure as Code the practitioner would describe the initial infrastructure required to setup
the system. By executing this programmatic description, the required infrastructure would become available.
Automated Scalability could be setup to ensure that the hardware where the web server executes would
scale horizontally if needed according to the provided scalability rules.

To deploy his services in an isolated and scalable way, the infrastructure would be abstracted thought an Or-
chestration Manager, which would be responsible for allocating the containers machines in the infrastructure
optimally, taking into consideration the total and available resources in each machine.

Job Scheduler would be responsible for executing the daily database backup process to an external site.
To facilitate discovery in the dynamically allocated hardware, the web server would use the local network port

12345 to connect to the database. Such would be possible given a Local Reverse Proxy configured in all
machines that would expose a static service port for each service instantiated. This scenario would not require
the Messaging System.

To ensure the service is working properly, the practitioner would implement the following monitoring techniques.
An External Monitoring service can monitor all public application endpoints, ensuring that they are both

online and responding appropriately.
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To further increase awareness over the system’s state, Preemptive Logging could be adopted to configure
the developed and adopted services to use an appropriate level of logging to make the required historical infor-
mation available to the team to develop issues after they have happened. Log Aggregation can bring all this
information to a centralized, indexed and queryable location for easier use.

Finally, and in order to validate the resilience in the system, Failure Injection can exercise the resilience
mechanisms by randomly introducing errors in the infrastructure, such as randomly shutting down machines, and
verifying that the system recovers automatically.

4. SUMMARY AND FUTURE WORK
This paper describes a pattern language for engineering software for the cloud. The language is divided into
four categories: Automated Infrastructure Management, which references known DevOps patterns upon which
this work build; Orchestration and Supervision, proving strategies to abstract an infrastructure’s resources and
automate service placement within it; Monitoring, which helps the team be aware of the system’s status and
Discovery and Communication which facilitates inter-service communication within the infrastructure.

This language aims practitioners to make informed decisions while designing their cloud environments, facilitat-
ing the creation of resilient and reliable cloud applications.

Plans for future work are twofold. First, continue increasing the completeness of this pattern language by
increasing the number of patterns the compose it. Second, increase the patterns quality by surveying experts to
gather their input on each individual pattern’s attributes: completeness, briefness and validity.
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