
Patterns	of	Software	Development	with	Containers	
KYLE	BROWN,	IBM	Corporation	
CHRISTOPHER	HAY,	IBM	Corporation	

Abstract		This	pattern	language	is	concerned	with	the	problems	inherent	in	building	and	delivering	software	using	containers,	particularly	
those	issues	that	arise	during	the	process	of	mapping	Docker	images	and	containers	into	the	stages	of	a	software	development	lifecycle.	We	
discuss	practical	solutions	to	problems	of	security	and	scaling	brought	on	by	adoption	of	container	platforms.	The	language	assumes	that	
the	reader	will	be	building	applications	following	an	agile	approach	that	is	characterized	by	Continuous	Integration/Continuous	Delivery.		
This	paper	 is	part	of	a	 larger	set	of	patterns	of	cloud	adoption;	 for	 information	on	patterns	of	microservices	adoption	that	may	precede	
these	patterns	see	[Brown	2016].	

Categories	and	Subject	Descriptors:	•	Software	and	its	engineering~Software	design	engineering	

General	Terms:	Software	Architectures	

Additional	Key	Words	and	Phrases:	Docker,	Pattern	Languages,	Containers	
ACM	Reference	Format:		

Brown,	 K..	 and	 Hay,	 C.	 2018.Patterns	 of	 Software	 Development	with	 Containers.	 HILLSIDE	 Proc.	 of	 Conf.	 on	 Pattern	 Lang.	 of	 Prog.	 25	
(October	2018),	14	pages.	

1. INTRODUCTION	

1.1 Overview	
Containers	 are	 one	 of	 the	 most	 rapidly	 adopted	 software	 technologies	 of	 the	 last	 several	 years,	 with	
extraordinary	 growth	 in	 adoption	 [PortworxSurvey].	 This	 rapid	 adoption	 is	 the	 result	 of	 an	 impressive	
increase	 in	 developer	 productivity	 and	 ability	 to	 delivery	 cost	 reduction	 resulting	 from	 container	 adoption	
[Synopsis].	 	Containers	are	a	way	of	packaging	software	 that	provides	a	 lightweight	mechanism	 for	bringing	
application	code	and	configuration	together	with	all	of	the	software	prerequisites	(such	as	a	language	runtime,	
an	 application	 server,	 or	 libraries)	 that	 the	 application	 depends	 on.	 	 Containers	 differ	 from	 traditional	
virtualization	platforms	 in	 that	 the	 container	does	not	 include	 the	 entire	 guest	OS,	 but	 instead	 relies	 on	 the	
services	 of	 the	 container	 platform	 to	 provide	 isolation	 from	 other	 processes	 running	 within	 the	 container	
platform.			
	
The	most	common	container	platform	is	the	open-source	Docker	platform,	 introduced	in	2013	[DockerBlog].	
This	platform	has	come	to	dominate	the	container	industry;	with	one	survey	by	Datanyze	[Datanyze]	showing	
that	 it	 is	 in	use	by	over	75%	of	container	users,	either	directly	 in	conjunction	with	the	Kubernetes	container	
orchestrator.			The	patterns	in	this	pattern	language	have	thus	been	written	with	the	Docker	platform	in	mind,	
although	it	is	conceivable	that	they	would	also	apply	to	other	container	platforms.	
	
In	 Docker,	 a	 container	 (which	 can	 be	 thought	 of	 as	 a	 running	 instance	 of	 a	 software	 package	 and	 code)	 is	
implemented	as	an	isolated	user	space	running	within	a	running	Linux	OS	(a	Docker	host),	while	the	platform	
provides	 a	 shared	 kernel	 across	 containers	 running	 within	 that	 OS.	 	 All	 software	 packages	 and	 data	 in	 a	
container	are	 isolated	at	run	time.	 	Resource	management	 is	 implemented	with	Unix	cgroups	while	resource	
isolation	 is	 provided	 through	namespaces.	 	 Filesystem	 isolation	 is	managed	 through	 the	Docker	 file	 system,	
which	is	an	additive,	or	union,	filesystem	using	copy-on-write	semantics.		

1.2 Terminology	Used	

	
However,	before	we	introduce	our	patterns,	we	need	to	introduce	a	few	terms	used	in	Docker	that	are	central	
to	our	patterns.	 	First,	as	we	have	already	discussed,	a	container	 is	a	running	instance	of	software	executing	
within	the	Docker	environment.	 	The	combination	of	software	packages,	code	and	associated	prerequisites	is	
packaged	within	Docker	as	an	image.			
	

Patterns	of	Software	Development	with	Containers:	Page	-	2	

The	image	is	an	individual	instance	of	a	layered	file	system	where	each	layer	builds	on	top	of	the	layers	below	
it.	An	example	 (showing	 specific	 application	 server	 software,	 applications	and	a	particular	operating	 system	
release)	is	shown	below.	(See	Figure	1.	Layers	in	Docker).			
	

	
	
Fig.	1.	Layers	in	Docker.		This	diagram	shows	how		Layers	in	the	docker	filesystem	are	shared	across	containers.	

	
Build	 files	 called	dockerfiles	define	 images.	A	dockerfile	begins	with	an	existing	 image	as	 the	starting	point	
and	 provides	 a	 set	 of	 instructions	 to	 augment	 that	 image	 (each	 of	 which	 results	 in	 a	 new	 layer	 in	 the	 file	
system).		It	also	includes	meta-data	such	as	the	ports	exposed	and	the	command	to	execute	when	the	image	is	
started.	Consider	the	following	example	of	a	dockerfile	in	order	to	see	how	this	works	(see	Listing	1).	
	
#	Pull	base	image.	
FROM	ibmnode:v6	
MAINTAINER	Chris	Hay	<chris.hay@uk.ibm.com>		
	
#	Install	Java.	
RUN	apt-get	update	&&	\	
apt-get	upgrade	-y	&&	\	
apt-get	install	-y	software-properties-common	&&	\	
add-apt-repository	ppa:webupd8team/java	-y	&&	\	
apt-get	update	&&	\	
echo	 oracle-java8-installer	 shared/accepted-oracle-license-v1-1	 select	 true	 |	 /usr/bin/debconf-set-
selections	&&	\	apt-get	install	-y	oracle-java8-installer	&&	\	
apt-get	clean		
	
#	Define	working	directory.		
WORKDIR	/data		
	
#	Define	commonly	used	JAVA_HOME	variable	ENV	JAVA_HOME	/usr/lib/jvm/java-8-oracle	
	
Listing	1.	Example	Dockerfile	for	Java	

	
The	dockerfile	shown	in	Listing	1	takes	an	existing	Node.JS	base	image	and	creates	a	new	image	that	includes	
the	Java	8	runtime.		The	dockerfile	will	use	the	ibmnode	(version	6)	base	image	as	a	starting	point	and	will	then	
download	and	install	the	Java	8	runtime	from	Oracle.	
	
A	Docker	registry	 is	 a	 service	 for	 storing	 and	 retrieving	Docker	 images.	 	 You	 can	 think	of	 it	 as	 being	 like	 a	
source-code	 control	 system	 (e.g.	 Git)	 for	 docker	 images.	 	 There	 are	 two	 general	 types	 of	 registries;	 a	 public	
registry	 is	 one	 that	 provides	 this	 service	 to	 many	 customers	 where	 the	 images	 are	 publicly	 available	 and	

Patterns	of	Software	Development	with	Containers:	Page	-	3	

searchable.	 	 Examples	 of	 this	 include	 Docker	 Hub,	 the	 Amazon	 Elastic	 Container	 Registry,	 and	 the	 IBM	
Container	Registry	service.		A	private	registry	is	one	that	serves	a	single	customer.	Both	types	of	registry	may	
be	cloud	hosted,	although	private	registries	are	sometimes	also	deployed	on	premises.		For	instance,	in	Docker	
you	 can	 deploy	 your	 own	 registry	 services	 and	 store	 your	 images	 locally	 or	 in	 any	 other	 location	 running	
docker	(such	as	a	hosted	private	cloud).	
	
A	Docker	repository	is	a	collection	of	related	docker	images	that	have	unique	tags.		A	tag	is	an	alphanumeric	
identifier	for	an	image	within	a	repository.		For	instance,	Docker	Hub	allows	you	to	create	new	repositories	via	
the	“Create	Repository”	function.		This	named	repository	then	becomes	a	common	name	that	is	used	as	part	of	
the	identifier	of	images	within	a	docker	push	or	docker	pull,	e.g.	*docker	push	user/repository-name:tag*.		Other	
registries	also	support	similar	approaches	to	creating	repositories.	
	

1.3 Patterns	Introduced	

As	 described	 in	 the	 introduction,	 the	 patterns	 in	 this	 language	 address	 issues	 faced	 by	 development	 teams	
using	 containers,	 specifically	 questions	 around	 building	 and	 deploying	 software	 on	 Docker	 in	 a	 secure	 and	
repeatable	 way.	 	 Our	 pattern	 language	 contains	 nine	 patterns	 that	 describe	 solutions	 to	 the	 problems	
addressed	by	these	teams.	
	

• Docker	 Build	 Pipeline	 is	 the	 root	 pattern	 of	 this	 pattern	 language.	 	 A	 DevOps	 pipeline	 is	 a	 core	
concept	 for	 Continuous	 Integration/Continuous	 Delivery.	 	 An	 issue	 many	 teams	 face	 is	 where	 to	
introduce	 docker	 into	 their	 delivery	 processes.	 	 Starting	 with	 an	 automated	 delivery	 pipeline	 for	
building	and	deploying	your	docker	images	leads	to	the	other	patterns	in	this	section.	

• Pipeline	Vulnerability	Scanner	 enables	you	 to	perform	static	vulnerability	 scans	as	a	 stage	within	
your	Docker	Build	Pipeline	in	order	to	scan	your	container	image(s)	for	any	known	vulnerabilities	and	
stop	the	deployment	and	report	the	issue	if	any	issues	are	found.	

• Multiple	 Vulnerability	 Scanners	 addresses	 the	 issue	 that	 different	 vulnerability	 scanners	 use	
different	 approaches	 and	 pull	 threats	 and	 malware	 definitions	 from	 different	 repositories.	 	 Teams	
should	hedge	their	bets	by	scanning	images	in	multiple	ways.	

• Registry	Vulnerability	Scanner	gives	you	the	ability	to	scan	images	after	they	are	built,	so	that	new	
vulnerabilities	that	are	detected	after	a	build	can	be	detected	and	addressed.	

• Birthing	Pool	 is	 a	way	 to	 avoid	 placing	 an	 untested	 image	 into	 an	 environment	 shared	with	 other	
development	stages,	allowing	malware	present	in	that	image	to	affect	those	other	stages.	

• Public	Image	Registry	is	a	solution	for	making	images	available	to	others	who	may	be	outside	of	your	
development	organization.	

• Private	Image	Registry	 is	a	solution	for	making	images	available	to	those	within	your	organization,	
particularly	useful	in	cases	of	intellectual	property	restriction	or	security	restriction.	

• Approved	 Image	Repository	 is	 the	 location	 for	approved	 images	once	 they	have	been	 through	 the	
scanning	and	vetting	process.	

• HA	 Container	 Registry	 is	 important	 because	 a	 registry	 is	 only	 useful	 when	 it	 can	 be	 accessed.		
Encountering	 a	 single	 point	 of	 failure	 on	 Docker	 host	 startup	 will	 result	 in	 your	 entire	 Docker	
architecture	being	unavailable.		

• Public	Registry	Proxy	is	a	way	of	improving	performance	of	image	pulls	in	some	use	cases	by	locally	
caching	images	nearer	to	the	Docker	hosts.	

	
A	map	of	 all	 of	 the	patterns	 in	 the	pattern	 language	 is	 shown	 in	 the	 following	 figure	 (see	Error!	Reference	
source	not	found.):			

Patterns	of	Software	Development	with	Containers:	Page	-	4	

	
Fig.	2.	Map	of	All	Patterns.		This	diagram	shows	the	relationships	between	all	of	the	patterns	in	our	pattern	language.	

	

2. Patterns described in our pattern language

In the following section we will describe all of the patterns in the language in detail.

2.1 Docker	Build	Pipeline	

When	using	Docker	containers	as	a	tool	for	deployment,	a	development	team	faces	a	series	of	choices.		Docker	
is	often	adopted	by	teams	that	are	in	the	process	of	evolving	their	practices	away	from	more	traditional	
development	approaches	toward	more	agile	approaches.		As	such,	these	teams	often	have	established	build	
processes	that	they	need	to	replace,	or	processes	they	should	retarget	to	take	advantage	of	the	new	capabilities	
that	Docker	containers	offer.		At	the	same	time,	the	opportunity	presented	by	adopting	Docker	containers	also	
means	that	teams	can	modernize	their	development,	deployment	and	testing	processes	to	take	advantage	of	
new	tools	such	as	Jenkins	[Jenkins]	or	Hudson	that	introduce	more	modern	approaches.	

How	can	development	teams	exploit	the	capabilities	provided	by	Docker	containers	and	adapt	their	
build	and	testing	processes	to	take	full	advantage	of	those	capabilities?	

Docker	introduces	several	concepts	that	make	it	challenging	for	teams	to	directly	adapt	existing	practices	
directly	to	functioning	with	Docker.		One	of	the	most	challenging	for	teams	that	are	used	to	traditional	
approaches	is	the	concept	that	Docker	containers,	especially	those	in	production,	should	be	immutable.		
Immutable	production	systems	are	not	a	new	concept	in	software	engineering	-	in	fact,	a	big	part	of	the	
attraction	of	infrastructure-as-code	was	the	idea	that	systems	could	be	made	immutable	if	only	they	could	be	
constructed	entirely	from	the	ground	up	from	a	repeatable	code	base	instead	of	having	to	be	constructed	from	
an	ad-hoc	mixture	of	code	and	far-too-mutable	physical	or	virtual	infrastructure.		

However,	the	infrastructure-as-code	approach	was	often	not	adopted	entirely	throughout	an	entire	software	
development	lifecycle.	In	more	traditional	software	development	approaches,	an	environment	will	be	an	entire	
system,	often	built	as	one	or	more	Virtual	Machines	or	physical	environments,	that	serve	as	a	location	in	which	
one	particular	step	in	a	software	engineering	lifecycle,	such	as	application	build,	integration	testing,	or	

Patterns	of	Software	Development	with	Containers:	Page	-	5	

acceptance	testing	will	take	place.		What	we	have	commonly	seen	is	that	development	teams	will	have	a	
distinction	between	“lower”	environments	in	the	development	lifecycle,	such	as	build	and	unit	test,	which	are	
very	open	and	mutable,	and	“higher”	environments	such	as	an	acceptance	test	environment,	that	become	
progressively	more	locked	down.	

What	this	leads	to	is	a	situation	where	lower	environments	are	often	constantly	“in	flux”	and	that	changes	in	
configuration	are	not	picked	up	in	later	environments,	causing	problems	that	are	fixed	in	earlier	environments	
to	recur	unexpectedly	later.		What’s	more,	the	inconsistency	of	the	mechanisms	for	defining	and	configuring	
environments	results	in	wasted	time	and	needless	repetition	of	work.	

Therefore,	

Build	a	Continuous	Integration	and	Continuous	Delivery	Pipeline,	using	common	tools	such	as	Jenkins,	
in	which	the	output	of	each	pipeline	run	will	be	an	immutable	Docker	image.	

Jenkins	is	an	open	source	tool	that	is	used	throughout	the	software	development	industry	to	define	and	build	
Continuous	Integration	and	Delivery	pipelines.		Jenkins	is	built	on	the	concept	of	a	stage,	which	is	a	
conceptually	distinct	subset	of	a	pipeline.		Each	stage	is	built	of	steps	that	can	execute	within	conditional	logic	
to	automate	common	tasks	such	as	building	a	Java	Jar	file	using	Maven,	or	running	unit	tests	with	an	automated	
tool	like	JUnit.	Thus	each	stage	can	conceptually	map	to	a	physical	or	virtual	environment	of	the	type	described	
above	such	as	“Build”	or	“Unit	Test”.	

The	key	here	is	that	you	can	use	a	tool	like	Jenkins	combined	with	Docker	to	entirely	eliminate	the	need	for	any	
of	these	unique	physical	or	virtual	environments.		Instead	you	will	build	a	Docker	image	from	a	dockerfile	in	
the	initial	setup	of	the	pipeline,	and	then	push	this	image	to	the	image	registry	upon	successful	completion	of	
the	pipeline	stages.		The	image	is	entirely	rebuilt	on	each	new	run	of	the	pipeline.	

This	approach	will	fix	the	problem	of	reintroducing	errors	into	later	environments	by	entirely	removing	
manual	configuration	changes	from	the	process.		In	this	approach	you	can’t	change	the	configuration	of	an	
image	either	intentionally	or	accidently	within	a	single	stage	–	you	have	to	introduce	any	configuration	changes	
into	the	Docker	build	process	at	the	very	beginning	and	then	let	the	changes	propagate	through	the	entire	build	
pipeline.		So	for	instance,	let’s	consider	the	simple	case	of	changing	the	version	of	a	Java	runtime	environment	
(JRE).		In	a	traditional	approach,	with	separate	physical	or	virtual	machines	for	each	development	lifecycle	
stage,	updating	this	configuration	would	require	changing	each	environment	separately,	either	manually	or	
through	a	scripted	infrastructure-as-code	tool	such	as	Chef	or	Puppet.		In	the	Docker	approach,	you	would	
change	the	dockerfile	once	to	include	the	new	definition,	and	then	re-run	the	pipeline	to	repeat	all	the	
automated	steps	from	the	beginning	–	creating	a	new,	immutable	Docker	image	at	the	end.	

This	pattern	is	well	established	as	a	best	practice	within	the	Docker	community.		For	instance,	the	Docker	
documentation	[Development	Pipelines]	describes	a	recommended	development	pipeline	very	much	in	line	
with	the	recommendations	of	this	pattern.		Likewise	[Kubernetes	DevOps]	is	just	one	of	several	examples	of	
such	pipelines	being	built	for	Docker	container	projects.	

At	the	heart	of	this	pipeline	will	be	the	problem	of	dealing	with	images	appropriately.		The	first	issue	to	
consider	with	publicly	hosted	images	is	that	since	they	are	coming	from	a	public	repository	that	they	could,	
potentially,	contain	malware	or	other	issues	that	would	introduce	vulnerability	into	your	system.				Thus	the	
need	for	Pipeline	Vulnerability	Scanning	becomes	absolutely	critical.	This	results	in	the	need	to	introduce	
special	stages.	such	as	a	Birthing	Pool	into	your	Pipeline	in	order	to	make	sure	that	you	are	into	introducing	
new	types	of	vulnerabilities	into	your	systems.	

2.2 Pipeline	Vulnerability	Scanner	
	

	
You	are	building	a	new	cloud	native	application	that	is	hosted	in	a	container.		You	want	to	use	container	images	
that	are	obtained	from	existing	public	registries	in	order	to	take	advantage	of	the	work	of	others	in	the	Docker	

Patterns	of	Software	Development	with	Containers:	Page	-	6	

community.	 	 However,	 you	 also	 want	 to	 ensure	 that	 container	 images	 with	 known	 vulnerabilities	 are	 not	
deployed	to	the	image	registry	from	the	CI/CD	Pipeline.	
	
How	do	you	prevent	Docker	 image	with	known	vulnerabilities	 from	being	uploaded	 into	your	 image	
registry	in	the	first	place?	
	
There	are	several	issues	that	are	brought	up	by	the	use	of	an	image	registry.		First	of	all,	you	don't	want	your	
Public	Image	Registry	or	Private	Image	Registry	to	contain	vulnerable	images;	you	want	issues	to	be	sorted	out	
before	 the	 image	 is	 deployed	 to	 the	 registry.	 	 You	 don't	 want	 to	 place	 the	 responsibility	 entirely	 on	 the	
developer;	you	want	them	on	focusing	on	writing	code.		Likewise,	you	don't	want	developers	to	be	forced	to	go	
through	a	lengthy	and	arduous	security	review.	
	
Therefore,	
	
You	should	ensure	that	your	CI/CD	pipeline	has	a	vulnerability	scanner	included	in	one	or	more	of	the	
stages	in	your	pipeline.	The	scanner	will	scan	your	container	image	for	any	known	vulnerabilities	and	
stop	the	deployment	and	report	the	issue	if	any	issues	are	found.	The	static	vulnerability	scan	should	
check	public	vulnerability	databases	such	as	CVE	at	a	minimum.	
	
The	types	of	scanners	that	we	are	referring	to	are	often	referred	to	as	static	scanners	in	that	what	they	do	is	
examine	 the	 configuration	 of	 a	 Docker	 image	 in	 looking	 for	 known	 vulnerabilities	 to	 operating	 system,	
language	 runtime	or	middleware.	 	This	 is	different	 from	an	active	 scanner,	which	 examines	 the	 activity	of	 a	
running	 docker	 image	 for	 known	malware	 behavior.	 	 An	 example	 of	 the	 overall	 build	 process	 (a	 potential	
model	for	a	Docker	build	pipeline)	including	a	pipeline	vulnerability	scan	is	shown	in	Error!	Reference	source	
not	found..	
	

	
Fig.	3.	Docker	Build	Process	

Let’s	 look	 at	 Error!	 Reference	 source	 not	 found.	 in	 detail.	 	 At	 the	 beginning	 of	 the	 process,	 you	 have	 a	
number	 of	 different	 input	 triggers	 that	 can	 result	 in	 the	 need	 to	 update	 an	 image	 –	 in	 all	 cases,	 what	 this	
amounts	 to	 is	 changing	 the	dockerfile	 to	 introduce	 a	 configuration	 change,	 or	updating	 the	 application	 code	
executing	within	the	dockerfile	that	will	be	built	as	part	of	the	CI/CID	process.		When	you	do	so,	this	acts	as	a	
trigger	to	the	CI/CD	build	pipeline	–	in	which	one	step	in	the	pipeline	will	be	a	vulnerability	scan.	 	That	scan	
must	 complete	 successfully	 before	 the	 image	 can	 be	 published	 to	 a	 temporary	 registry	 in	 preparation	 for	
running	dynamic	scans	(see	Birthing	Pool).	
	
However,	it’s	not	enough	to	simply	include	a	vulnerability	scan	as	part	of	a	DevOps	pipeline,	you	also	need	to	
alert	your	DevOps,	Site	Reliability	Engineering	or	run	teams	of	any	vulnerability	scans	as	and	when	they	occur.		

Patterns	of	Software	Development	with	Containers:	Page	-	7	

Especially	as	vulnerability	databases	are	constantly	updated,	it	may	be	true	that	an	image	that	has	passed	an	
earlier	 scan	 and	 already	 been	 deployed	 to	 production	 may	 fail	 a	 later	 scan	 in	 an	 earlier	 stage	 against	 an	
updated	database.	
	
You	want	 your	 images	 to	 be	 scanned	 regularly;	 not	 just	when	 code	 changes,	 in	 case	 a	 new	 vulnerability	 is	
discovered	 post-release.	 Therefore	 it	 is	 important	 to	 have	 triggers	 such	 as	 notifications	 from	 your	 security	
team	 of	 new	 vulnerabilities	 that	 can	 begin	 a	 new	 pipeline	 run.	 	 Likewise,	 you	 need	 to	 have	 a	 Registry	
Vulnerability	Scanner,	 in	order	to	catch	vulnerabilities	post-build,	but	you	don't	want	to	purely	dependent	on	
the	vulnerability	scanner	of	your	image	registry.	
	
Open-Source	 scanners	 such	 as	 Clair	 [Clair]	 can	 provide	 such	 functionality	 and	 can	 be	 easily	 integrated	with	
CI/CD	pipeline	tools	such	as	Jenkins.		There	are	multiple	other	examples	of	such	tools,	such	as	the	open	source	
Docker	 Bench	 Security	 [Docker	 Bench]	 and	 the	 commercial	 IBM	 Vulnerability	 Advisor	 [Vulnerability	
Advisor].Using	 Vulnerability	 Scanners	 is	 another	 well-established	 practice	 in	 the	 Docker	 development	
community,	cited	specifically	as	a	best	practice	in	[7	Threats]	and	[Sumologic].	
	
Using	a	Pipeline	Vulnerability	Scanner	integrated	into	your	CI/CD	pipeline	increases	the	overall	security	of	your	
solution	by	ensuring	 that	your	 image	 is	 secured	 from	known	vulnerabilities	and	prevents	vulnerable	 images	
being	uploaded	 into	your	Public	 Image	Registry	 or	Private	 Image	Registry	 in	 the	 first	place.	 	You	should	also	
have	a	policy	that	prevents	any	unsecured	images	being	deployed	into	production.		Only	allowing	teams	to	only	
pull	from	an	Approved	Image	Repository	is	one	way	of	doing	this.		

2.3 Birthing	Pool	
	
You	have	a	new	cloud	native	application	that	is	based	on	a	container	technology	(such	as	Docker)	and	you	want	
to	ensure	that	container	images	with	known	vulnerabilities	are	not	deployed	to	your	environment.	However,	
some	vulnerabilities	within	a	container	image	cannot	be	picked	up	by	a	static	vulnerability	scanner	as	they	can	
only	be	found	in	a	running	container.	
	
How	do	you	detect	such	vulnerabilities	without	deploying	a	potentially	vulnerable	image	and	into	a	test	
or	production	environment?		
	
Vulnerabilities	 present	 in	 a	 running	 container	 should	 be	 isolated	 to	 a	micro-segmented	 network	where	 the	
impact	cannot	be	replicated	to	other	machines.	However,	 if	we	place	an	untested	image	into	an	environment	
shared	with	other	development	stages,	then	malware	present	in	that	image	may	affect	those	other	stages.	
	
Therefore,	
	
Create	a	new	environment	as	part	of	your	overall	CI/CD	process	consisting	of	an	isolated	environment	
called	a	birthing	pool.	 	Run	dynamic	vulnerability	scans	within	this	environment	in	order	to	limit	the	
exposure	of	other	Docker	runtime	environments	to	potential	malware.	
	
Up	to	this	point,	we	have	been	considering	that	 the	 isolation	provided	by	Docker	 itself,	 in	 that	each	 image	 is	
functionally	 isolated	 from	 other	 images	 by	 the	 Docker	 execution	 environment	 is	 adequate	 for	 all	 types	 of	
vulnerabilities	that	may	be	found	in	an	image.	 	However,	that	may	not	be	true.	 	There	is	the	possibility	that	a	
side-channel	or	Docker	infrastructure	attack	(such	as	forkbomb,	see	[Baset])	may	interfere	with	the	operation	
of	your	Docker	execution	environment	and	 thus	affect	other	Docker	 images.	Thus	 the	need	exists	 to	have	at	
least	two	separate	Docker	execution	environments,	each	segmented	from	the	other,	in	order	to	eliminate	this	
possibility.	
	
An	 example	 of	 all	 of	 the	 different	 parts	 of	 an	 end-to-end	Docker	 development	 process,	 including	 a	 separate	
environment	for	active	vulnerability	scanning	within	a	birthing	pool,	is	shown	in	Error!	Reference	source	not	
found..	

Patterns	of	Software	Development	with	Containers:	Page	-	8	

	
Fig.	4.	Stages	including	Birthing	Pool	

	
You	should	be	able	to	create	the	new	birthing	pool	environment	from	scratch	using	infrastructure	as	code	
techniques	and	tools,	such	as	Terraform.		The	good	news	about	this	approach	is	that	since	we	are	creating	an	
uncustomized,	“off-the-shelf”	installation	of	a	common	runtime	such	as	Kubernetes	or	Docker	Enterprise,	that	
this	can	be	done	without	introducing	the	kind	of	configuration	drift	caused	by	team-level	specialization	we	
discussed	earlier.	The	birthing	pool	should	contain	no	sensitive	data.	This	allows	you	to	run	your	container	
within	the	birthing	pool	and	allow	you	to	run	a	vulnerability	scan	in	this	isolated	environment	and	detect	any	
vulnerabilities	that	can	only	be	found	through	dynamic	scans.	
	
The	 introduction	 of	 the	 birthing	 pool	means	 that	 a	 dynamic	 scan	 can	 be	 performed	without	 exposing	 other	
aspects	 of	 the	 application	 estate	 to	 the	 vulnerability.	 One	 potential	 implementation	 of	 this,	 using	 separate	
Kubernetes	clusters	for	each	different	environment	in	Figure	5:	Isolation	of	the	Birthing	Pool.	
	

	 	
Fig.	5.	Isolation	of	the	Birthing	Pool	

Images	should	pass	through	a	Birthing	Pool	before	they	are	placed	by	a	Docker	Build	Pipeline	into	an	Approved	
Image	Repository.	
	

2.4 Registry	Vulnerability	Scanner	
	
You	have	a	new	cloud	native	application	that	is	based	on	a	container	technology	(such	as	docker)	and	you	want	
to	 ensure	 that	 your	 image	 is	 clean	 and	 secured	 from	 any	 vulnerability	 such	 as	malware	 or	 known	 security	

Patterns	of	Software	Development	with	Containers:	Page	-	9	

vulnerabilities.	 In	order	 to	prevent	 vulnerabilities	being	deployed	 into	 your	Container	Registry	 you	utilize	 a	
Pipeline	Vulnerability	Scanner	to	check	for	vulnerabilities	on	creation	of	the	image	during	the	CI/CD	pipeline.	
	
What	if	vulnerability	is	created	post	deployment	of	the	image	into	the	Container	Registry?	How	do	you	
ensure	that	vulnerabilities	are	detected?	
	
You	don't	want	to	only	rely	on	the	Pipeline	Vulnerability	Scanner	to	pick	up	all	vulnerabilities	in	case	the	CI/CD	
pipeline	is	bypassed	and	someone	uploads	an	image	directly.	Likewise,	you	don't	want	scans	to	be	performed	
manually	but	want	them	to	be	scanned	periodically.	You	want	an	image	to	be	scanned	not	only	at	a	build	time	
just	in	case	a	new	vulnerability	is	discovered	post-release	
	
Therefore:	
	
Ensure	that	your	 image	registry	has	a	vulnerability	scanner	that	will	both	scan	your	container	 image	
for	 any	 known	 vulnerabilities	 on	 upload	 of	 your	 image	 and	 at	 a	 regular	 intervals.	 The	 vulnerability	
scan	should	check	public	vulnerability	databases	such	as	CVE	at	a	minimum.	
	
Using	 a	 vulnerability	 scanner	 integrated	 with	 your	 image	 repository	 increases	 the	 overall	 security	 of	 your	
solution	by	ensuring	that	your	image	is	secured	from	known	vulnerabilities.	
You	should	set	up	a	policy	that:	

• Prevents	any	unsecured	images	being	deployed	into	production	
• Alerts	your	devops,	SRE	or	run	teams	of	any	vulnerability	scans	as	and	when	they	occur	
• Provides	a	scan	report	at	regular	intervals	that	can	be	reviewed	by	your	devops,	SRE	or	run	teams	

Cloud	 Hosted	 Image	 Registries	 such	 as	 Dockerhub,	 IBM	 Cloud,	 and	 [quay.io]	 all	 contain	 this	 capability	 by	
default.	
	

2.5 Multiple	Pipeline	Vulnerability	Scanners	
	
You	 are	 developing	 a	 new	 application	 that	 is	 hosted	 in	 a	 container	 and	 you	want	 to	 ensure	 that	 container	
images	with	known	vulnerabilities	are	not	deployed	to	your	environment.	
	
Not	all	vulnerability	scanners	use	the	same	vulnerability	databases	and	some	are	more	complete	than	
others.	How	do	we	ensure	we	don’t	rely	on	a	single	source	of	vulnerability	information	for	discovering	
and	reporting	issues?	
	
Vulnerability	 Scanners	 come	 from	 different	 vendors	 and	 open	 source	 teams	 and	 as	 a	 result,	 different	
vulnerability	 scanners	 will	 be	 updated	 at	 different	 rates.	 	 Likewise,	 different	 vulnerability	 scanners	 use	
different	databases	and	a	specific	vulnerability	may	not	be	reported	in	all	databases.		It	is	also	possible	that	any	
particular	vulnerability	scanner	may	fail	to	detect	a	vulnerability,	either	because	of	bugs	or	because	a	malware	
author	can	attack	a	vulnerability	scanner	itself.		
	
Therefore:	
	
Use	Multiple	Pipeline	Vulnerability	Scanners	such	as	Clair	and	the	IBM	Vulnerability	Advisor	at	multiple	
points	in	your	pipeline.	
	
The	best	pattern	in	such	a	scenario	would	be	to	use	an	open-source	scanner	such	as	Clair	as	part	of	your	CI/CD	
pipeline	and	use	a	different	vulnerability	scanner	for	your	image	registry.	
	
Applying	multiple	vulnerability	scanners	to	address	deficiencies	or	blind	spots	in	a	single	scanner	or	database	
is	a	well-known	best	practice	in	the	security	industry	documented	in	[SoftwareSecured]	
Using	multiple	vulnerability	scanners	within	your	Docker	Build	Pipeline	gives	you	an	increased	level	of	security	
as	 there	 is	 a	 reduced	 risk	 of	 vulnerability	 not	 being	 found	 due	 a	 single	 scanner	 not	 being	 aware	 of	 the	
vulnerability.	

Patterns	of	Software	Development	with	Containers:	Page	-	10	

	

2.6 Public	Image	Registry	
	
You	 have	 developed	 a	 new	 container	 image	 that	 you	 wish	 to	 make	 available	 to	 the	 wider	 development	
community.	 	This	may	be	a	new	container	image	you	wish	to	make	available	to	your	customers,	a	new	open-
source	 application	 that	 you	wish	 to	make	 available,	 or	 an	 improved	 installation	 of	 an	 existing	 open-source	
product	that	you	wish	to	contribute	back	to	the	community.	
	
In	each	of	these	cases,	you	should	assume	that	there	is	no	IP	restriction	and	that	you	wish	to	make	the	image	
available	publicly.		Likewise,	there	should	be	no	commercial	or	licensing	implications	to	distributing	the	image.	
	
How	do	you	make	all	supported	versions	of	your	image	available	to	the	general	public	in	a	manner	that	
allows	you	to	easily	fix	bugs	or	vulnerabilities,	distribute	new	versions	and	simplify	installation?	
	
There	are	several	reasons	that	lead	developers	to	want	to	use	Docker	images	in	the	first	place.	 	For	instance,	
many	commercial	development	teams	have	high	support	costs	because	customers	incorrectly	install	software	
installations	due	to	complex	instructions.			
	
Likewise,	 development	 teams	wish	 to	be	 able	 to	quickly	 and	 reactively	provide	 frequent	patches	 to	 existing	
versions	with	minimal	impact.		Critical	to	this	is	the	ability	to	distribute	new	versions	of	your	application	and	
make	them	available	quickly	and	securely.	
	
Therefore:	
	
Publish	all	supported	versions	of	your	image,	correctly	tagged	with	the	right	version,	to	a	Public	Image	
Registry	such	as	Docker	Hub.			By	centralizing	the	image	distribution	you	are	able	to	harden	the	image,	
fix	 images,	 fix	bugs	and	then	provide	an	updated	version	of	 the	 image	 for	your	application	as	you	 fix	
issues.			
	
If	you	need	to	release	a	new	version	of	your	application	then	you	are	able	to	tag	the	new	version	of	your	image	
and	make	 it	 available	 immediately	 allowing	 consumers	 to	 choose	when	 they	 should	 use	 the	 new	version	 of	
your	application.	
	
Consumers	of	 your	 image	will	 be	 able	 to	 just	pull	 the	 version	of	 the	 image	 that	 they	need	 instantly	without	
having	to	perform	any	complex	installations.	
	
Publishing	images	to	a	Public	Image	Registry	allows	you	to	centralize	the	distribution	of	your	application	in	a	
secure	manner	and	allows	you	to	provide	frequent	releases	of	your	application	or	image	in	a	secure	fashion	for	
those	 images	 that	 can	 publicly	 distributed.	 	 However,	 the	 benefits	 of	 a	 Public	 Image	 Registry	 can	 only	 be	
realized	if	it	is	available,	thus	the	need	for	an	HA	Container	Registry.	
	
When	publishing	 images	 to	a	public	 registry	you	 should	ensure	 that	 in	your	published	 image	 that	you	don't	
break	any	licensing	concerns	by	using	unlicensed	software	or	IP,	and	that	you	do	not	include	any	sensitive	data	
such	as	Keys,	Passwords,	Infrastructure	information	such	as	internal	IP's	in	your	images.		Any	requirement	to	
include	 these	 types	 of	 information	 in	 your	 images	will	 instead	 require	 you	 to	 use	 a	Private	 Image	 Registry	
instead.	
	
Likewise,	 you	 will	 want	 to	 use	 a	 Pipeline	 Vulnerability	 Scanner	 to	 ensure	 you	 don't	 pass	 vulnerabilities	 to	
consumers	of	your	images.		
	

2.7 Private	Image	Registry	
	

Patterns	of	Software	Development	with	Containers:	Page	-	11	

You	have	developed	a	new	internal	application	that	will	run	on	containers	and	you	need	to	host	the	image	in	a	
container	image	registry	so	that	the	container	technology	(such	as	Docker)	can	pull	and	run	the	image	on	your	
container	environment.	
	
How	do	you	gain	 the	benefits	of	 a	Public	 Image	Registry	 (such	as	Docker	Hub)	without	making	all	 of	
your	images	available	to	the	general	public?	
	
There	are	several	reasons	why	you	may	not	be	able	to	use	a	Public	Image	Registry.	 	As	noted	in	that	pattern,	
your	 image	may	have	 to	contain	private	 information	such	as	 license	keys	or	 internal	network	structures.	 	 In	
this	case,	making	your	 image	available	 in	the	public	would	expose	your	architecture	and	make	it	more	 likely	
that	your	system	will	be	hacked.		Likewise,	you	may	not	want	to	reveal	IP	or	secrets;	if	it	is	made	available	to	
the	public,	there	is	always	a	risk	your	image	could	be	reverse	engineered.	
	
Therefore:	
	
You	should	host	your	container	images	in	a	Private	Image	Registry	such	as	Nexus,	or	a	private	registry	
of	your	cloud	platform.		The	Private	Image	Registry	supports	all	the	same	protocols	and	behaves	exactly	
like	a	Public	Image	Registry.		This	means	that	you	have	to	configure	your	container	servers	to	pull	from	
the	URI	of	the	Private	Image	Registry	instead	of	the	default	Public	Image	Registry	(e.g.	Docker	Hub).	
	
Using	a	Private	Image	Registry	gives	you	all	the	benefits	of	a	public	registry	but	keeps	your	container	images	
private	and	secured	from	users	or	applications	that	you	should	not	have	access	to	it.			
	
This	 pattern	 has	 been	 described	 as	 a	 best	 practice	 by	 many	 different	 organizations,	 such	 as	 Bob	 Cares	
[BobCares]	Center	Device	[CenterDevice]	and	Macadamian	[Macadamian].	
	

2.8 Approved	Public	Image	Repository	
	
You	have	developed	a	new	internal	application	that	will	run	on	containers.		The	solution	has	dependencies	on	
third	party	images	hosted	in	a	Public	Image	Registry.		In	general,	developers	should	not	have	to	worry	about	the	
use	of	third	party	images.		However,	there	is	a	balance	that	needs	to	be	struck	between	ease	of	use	and	security.	
	
How	do	you	prevent	random	images,	or	multiple	versions	of	existing	images,	from	being	pulled	from	a	
Public	 Image	Registry	making	your	overall	Docker	 installation	estate	more	vulnerable	and	harder	 to	
maintain	and	operate?	
	
In	general,	you	want	to	give	developers	the	freedom	to	use	open-source	images	from	the	Internet.	 	However,	
this	freedom	comes	at	a	cost.		For	instance,	a	complete	lack	of	governance	could	mean	that	you	have	multiple	
versions	of	an	operating	system	across	many	applications	-	all	of	which	would	need	to	be	tracked,	maintained	
and	patched.	
	
Licensing	 is	 also	 a	potential	 issue.	 	An	unapproved	 image	 could	be	used	which	 could	 create	 an	open-source	
licensing	 issue	 for	 your	 application.	 	 Likewise,	 an	 unapproved	 image	 could	 be	 used	 which	 could	 create	 a	
commercial	licensing	issue	for	your	organization.	
	
Maintenance	 of	 unapproved	 images	 can	 also	 cause	 a	 potential	 problem.	 A	 team	may	 inadvertently	 create	 a	
dependency	 on	 an	 ungoverned	 image	 from	 an	 amateur	 programmer	 that	 may	 not	 maintain	 it,	 or	 an	
ungoverned	image	could	disappear	and	then	cause	your	application	to	fail.	
	
Finally,	security	is	an	issue;	an	ungoverned	image	dependency	could	be	modified	and	have	malware	installed	
on	it.	
	
Therefore:	
	

Patterns	of	Software	Development	with	Containers:	Page	-	12	

Create	an	Approved	Public	 Image	Repository	within	your	Private	 Image	Registry	where	you	have	pre-
downloaded	all	images	and	versions	that	are	approved	to	be	used	in	your	estate.		You	should	lock	down	
your	 container	hosts	 so	 that	 they	 cannot	pull	 images	directly	 from	Public	 Image	Registries	 and	must	
come	 through	 your	Private	 Image	 Registry.	 	 Only	 approved	 image	 registry	 administrators	 should	 be	
able	to	add	images	to	the	repository.	
	
It	is	critically	important	that	images	should	be	run	through	a	Pipeline	Vulnerability	Scanner	(in	fact,	they	should	
be	 run	 through	Multiple	 Vulnerability	 Scanners)	 before	 they	would	 be	 added	 to	 the	 Approved	 Public	 Image	
Repository.		That	ensures	that	developers	can	begin	from	a	starting	point	that	is	known	to	be	secure.			
	
The	governance	of	the	Approved	Public	Image	Repository	can	be	configured	at	multiple	levels	including:	
	
*	Organization	
*	Program	
*	Project	
*	Application	
	
Many	Private	 Image	Registry	 solutions	possess	 the	ability	 to	configure	such	patterns	and	rules	as	part	of	 the	
product.	
	
Using	an	Approved	Public	Image	Repository	increases	the	security	and	governance	of	your	solution	while	giving	
developers	the	freedom	to	use	the	best	of	breed	tools	and	open-source	images.			
	

2.9 Highly	Available	Image	Registry	
	
You	 have	 an	 Service	 Level	 Agreement	 (SLA)	 for	 your	 cloud	 application	 (such	 as	 99.99	 availability)	 and	 you	
need	to	ensure	that	you	meet	your	SLA's	and	that	you	have	a	fast	time	to	recovery.	
	
The	issue	is	that	in	the	cold	start	of	a	container	host,	the	local	cache	of	the	host's	image	registry	will	be	empty	
and	will	require	the	host	to	refetch	any	images	from	the	container	registry.		This	situation	is	even	more	likely	
in	a	disaster	recovery	scenario	(as	it's	likely	that	hosts	will	have	been	restarted).	
	
How	do	you	ensure	that	your	container	startup	will	not	fail	at	the	worst	possible	time	by	having	them	
rely	on	an	unreliable	image	registry?	
	
The	 SLA	 on	 the	 overall	 solution	 will	 dictate	 how	much	 effort	 you	 need	 to	 put	 into	 the	 availability	 of	 your	
registry	solution.		A	key	factor	in	that	is	the	pull	time	of	an	image	from	a	container	registry;	for	instance	if	the	
average	pull	 time	of	an	 image	 is	significantly	greater	 than	 the	Return	To	Operations	(RTO)	objective	of	your	
registry,	 then	 you	 will	 not	 notice	 disruptions	 lasting	 less	 than	 the	 RTO.	 	 A	 potential	 complication	 to	
determining	how	well	you	can	meet	your	overall	solution	SLA	is	that	a	Container	Registry	as	a	Service	provider	
may	or	may	not	have	it's	own	SLA	
	
Therefore:	
	
Ensure	that	the	container	registry	has	high	availability	(e.g.	has	been	redundantly	deployed	in	a	multi-
region,	multi-availability	zone	way)	with	a	matching	SLA.			
	
This	 is	 a	 best	 practice	 that	 has	 been	 documented	 for	 Docker	 in	 several	 places	 such	 as	 [Labourdy].	 Many	
companies	advertise	 commercial	 container	 registries	 (such	as	 [Portworx])	 that	 are	highly	available,	but	 it	 is	
rarely	stated	why	you	should	care	that	this	is	so.	 	You	should	also	ensure	that	you	are	using	a	Public	Registry	
Proxy	in	your	container	registry	to	ensure	fast	fetches	of	3rd	Party	Images.		You	should	also	ensure	that	your	
cloud	provider	(or	if	managed	by	your	client	organisation)	is	able	to	meet	the	SLA's	that	you	are	committing	to.		
If	the	container	registry	is	dead	and	your	cache	is	cleared	then	you've	just	lost	that	data	center.	
	

Patterns	of	Software	Development	with	Containers:	Page	-	13	

Ideally	 you	 should	 follow	 practices	 of	 bulk-head	 isolation	 and	 ensure	 that	 you	 have	 isolated	 and	 affinitized	
registries	to	your	regions.	 	 In	that	way,	 if	you	lose	your	registry	then	it's	only	 lost	for	a	single	region,	not	for	
every	region.	 	Of	 course,	 the	affinity	 should	only	extend	 to	 those	cases	where	 it	 is	 required	 for	performance	
reasons;	if	you	can	fetch	an	image	from	a	distant	registry	when	your	local	registry	is	down	and	that	can	still	be	
done	within	your	overall	solution	SLA,	that	is	a	valid	option.	
	
Using	 a	High	 Availability	 Registry	 (with	 matching	 SLA)	 for	 a	 container	 registry	 (including	 a	 Public	 Registry	
Proxy)	 will	 ensure	 that	 the	 Image	 registry	 remains	 available	 even	 in	 a	 disaster	 scenario.	 Likewise	 you	will	
experience	 increased	 availability	 of	 the	 image	 registry,	 as	 there	will	 only	 be	 a	 single	 dependency	 instead	 of	
depending	upon	multiple	providers,	each	with	different	SLA’s.	
	

2.10 Public	Registry	Proxy	
	
You	have	developed	a	new	internal	application	that	will	run	on	containers.		The	solution	has	dependencies	on	
third	party	images	hosted	in	a	Public	Image	Registry.	
	
How	should	you	handle	access	to	images	in	Public	Image	Registries	when	you	are	concerned	about	the	
overall	performance,	availability	and	the	overall	attack	surface	of	your	estate?	
	
Although	you	have	no	issue	with	the	usage	of	the	third	party	 images	so	 long	as	they	are	approved	for	usage,	
pulling	these	images	from	a	Public	Image	Registry	can	have	several	issues.		First,	many	images	are	quite	large	
and	take	significant	time	to	pull.		Second,	there	are	SLA's	on	the	overall	solution	including	the	CI/CD	pipeline.		
Finally,	there	are	SLA's	on	the	time	to	recover	in	a	disaster	recover	scenario	that	must	also	be	met.	
	
In	addition,	in	many	situations,	Security	is	paramount	and	locking	down	external	access	for	container	hosts	is	
important.	 	 In	 these	 situations,	 Auditing	 and	 governance	 of	 which	 container	 images	 (and	 versions)	 are	
commonly	used	across	the	estate	
	
Therefore:	
	
Configure	 your	 Private	 Image	 Registry	 to	 proxy	 all	 images	 from	 the	 public	 repositories	 rather	 than	
allowing	the	container	hosts	to	pull	the	images	directly	from	the	Public	Image	Registry.	
	
Using	a	Public	Registry	Proxy	will	 increase	the	overall	availability	of	your	solution	as	all	container	images	are	
cached	locally	on	your	container	registry	meaning	that	if	you	need	to	pull	your	container	(such	as	a	restart	of	
the	container	host)	then	the	local	server	cache	does	not	need	to	pull	the	image	from	the	Public	Image	Registry.		
In	addition	this	increases	the	security	of	your	environment	as	access	to	the	outside	world	can	be	locked	down	
(i.e.	 each	 server	 will	 not	 require	 a	 connection	 to	 the	 public	 hub).	 	 Finally	 this	 will	 increase	 the	 overall	
availability	of	the	solution,	as	there	are	fewer	dependencies	on	external	clouds.	
	

3. DISCUSSION	

Now	 that	you	understand	 the	base	Docker	build	pipeline	patterns,	 you	can	 see	how	 these	patterns	 could	be	
combined	and	extended	into	an	overall	reference	architecture	for	providing	Image	Management	Services.	This	
is	an	emerging	area	for	pattern	mining	for	us.	
	
 	

Patterns	of	Software	Development	with	Containers:	Page	-	14	

	
	
REFERENCES	
	
[7 Threats] "7 Docker Security Vulnerabilities and Threats." Sysdig. June 25, 2018. Accessed July 09, 2018.

https://sysdig.com/blog/7-docker-security-vulnerabilities/.
[Baset] Baset, Salman. "Unraveling Docker Security: Lessons From a Production Cloud." LinkedIn SlideShare. December 29,

2016. Accessed September 16, 2018. https://www.slideshare.net/SalmanBaset/unraveling-docker-security-lessons-from-a-
production-cloud-70513798.

[BobCares] "Easy Steps to Setup Your Docker Private Repository." Bobcares. June 29, 2018. Accessed July 09, 2018.
https://bobcares.com/blog/docker-private-repository/.

[Brown 2016] “Patterns of Microservices Architectures”, Pattern Languages of Programs Conference 2016 Proceedings, The
Hillside Group, February 17, 2017, Accessed July 21, 2018,
www.hillside.net/plop/2016/papers/proceedings/papers/brown.pdf

[CenterDevice] "Docker Registry or How to Run Your Own Private Docker Image Repository." Codecentric AG Blog. December
21, 2016. Accessed July 09, 2018. https://blog.codecentric.de/en/2014/02/docker-registry-run-private-docker-image-
repository/.

[Clair] Coreos. "Coreos/clair." CoreOS Clair Documentation. May 07, 2018. Accessed July 09, 2018.
https://github.com/coreos/clair.

[Datanyze] Datanyze Containerization Market Share. Accessed July 09, 2018. https://www.datanyze.com/market-
share/containerization.

[Development Pipelines] "Docker Reference Architecture: Development Pipeline Best Practices Using Docker EE." Docker -
RBAC Example Use Case. Accessed July 09, 2018. https://success.docker.com/article/dev-pipeline.

[Docker Bench] Docker. "Docker-bench-security Documentation." GitHub. July 01, 2018. Accessed July 09, 2018.
https://github.com/docker/docker-bench-security.

[DockerBlog] "It's Here: Docker 1.0." Docker Blog. June 09, 2014. Accessed August 05, 2018. https://blog.docker.com/2014/06/its-
here-docker-1-0/.

[Jenkins], “Jenkins User Documentation”, September 16, 2018, Accessed September 16, 2018,. https://jenkins.io/doc/
[Kubernetes Devops] Ibm-cloud-architecture. "IBM Cloud Native Devops Reference Architecture for Kubernetes." GitHub. June

28, 2018. Accessed July 09, 2018. https://github.com/ibm-cloud-architecture/refarch-cloudnative-devops-kubernetes.
[Labourdy] “Highly Available Docker Registry on AWS with Nexus”, Mohamad Labourdy, Personal Blog, Accessed July 21,

2018, http://www.blog.labouardy.com/highly-available-docker-registry-on-aws-with-nexus/
[Macadamian] "Creating a Private Docker Registry." Macadamian. February 07, 2017. Accessed July 09, 2018.

http://www.macadamian.com/2017/02/07/creating-a-private-docker-registry/.
[Portworx Survey] "2017 Annual Container Adoption Survey: Huge Growth in Containers." Portworx. April 14, 2017. Accessed

August 05, 2018. https://portworx.com/2017-container-adoption-survey/
[Portworx] Portworx, “Run the Docker Registry with High Availability”, Portworx documentation, Accessed July 21, 2018,

https://docs.portworx.com/applications/docker-registry.html
[Quay.io], Quay.io, Accessed October 6, 2018, https://quay.io
[Sumologic] Tozzi, Chris. "Docker Security - 6 Ways to Secure Your Docker Containers." Sumo Logic. August 02, 2017. Accessed

July 09, 2018. https://www.sumologic.com/blog/security/securing-docker-containers/.
[SoftwareSecured] "Choosing a Vulnerability Scanner | Software Secured Blog." Software Secured. June 27, 2018. Accessed

July 09, 2018. https://www.softwaresecured.com/choosing-a-vulnerability-scanner/.
[Synopsis] https://www.synopsys.com/blogs/software-security/container-adoption-numbers/
[Vulnerability	 Advisor]	 Isci,	 Canturk.	 "Vulnerability	 Advisor	 Comes	 to	 Your	 Cloud	 with	 IBM	 Cloud	 Private."	 Medium.	 April	 13,	 2018.	

Accessed	 July	 09,	 2018.	 https://medium.com/ibm-cloud/vulnerability-advisor-comes-to-your-cloud-with-ibm-cloud-private-
38a6afeab302.

