
 Page 1 of 24

Several Patterns for eBusiness Applications����

Dragos A. Manolescu1 and Adrian E. Kunzle2

Abstract: The Software development industry has seen a shift from the development of
desktop applications to the development of highly scalable, distributed, server-based
eBusiness applications. Most developers have come up through the PC world and few know
how to deal with the issues of distributed applications, servers, concurrency, scalability,
high-availability, and fail-over. Patterns for eBusiness application development will make
developers aware of the hard problems that they need to deal with, and will show them ways
to solve them. Our set of patterns for building eBusiness applications provides a first step in
that direction.

Building software is hard. Building eBusiness applications is even harder. Current
eBusiness represents a hybrid of distributed, client-server, concurrent, and networked
systems. All these systems require the solving hard problems. Since eBusiness lays on the
front line of modern business, it also requires dealing with scalability, high-availability,
and fail-over.

To the uninitiated, building eBusiness applications looks similar to building “traditional”
applications. Unfortunately the characteristics of eBusiness make the former a much
more challenging task than the latter. Astley et al [Astley+2001] observe that “software
executing on distributed systems represents a unique synthesis of application code and
code for managing requirements such as heterogeneity, scalability, security, and
availability.” Developers involved in building eBusiness applications should be aware of
the obstacles they will encounter. Patterns for eBusiness applications would help
developers understand some of these problems beforehand, as well as show how to solve
them.

Based on our experience with building eBusiness applications we have harvested several
patterns for eBusiness applications. They are not new. In fact, many of them represent
techniques widely used in other types of systems (e.g., distributed systems). However,
eBusiness gives them an interesting twist.

The majority of patterns in this paper fall in the class of architectural patterns. They
answer questions about the high-level organization of eBusiness applications. We begin
with APPLICATION SERVER, which answers the question “Where do eBusiness
applications reside?” SERVER-SIDE SESSION marries the statefulness of eBusiness

� Copyright 2001, Dragos A. Manolescu and Adrian E. Kunzle. Permission granted to copy for the PLoP
2001 conference. All other rights reserved.
1 Author’s address: Applied Reasoning Systems Corporation, 10955 Lowell Avenue, Suite 300, Overland
Park, KS 66210, Phone (913) 319-0900, Email dmanolescu@appliedreasoning.com.
2 Author’s address: Skillgames, 233 Broadway, 19th floor, New York, NY 10279, Phone (212) 471-3514,
Email adrian.kunzle@skillgames.com.

mailto:dmanolescu@appliedreasoning.com
mailto:adrian.kunzle@skillgames.com

 Page 2 of 24

applications with the server-centric model of current Web applications. VERTICAL SLICE
describes how to organize an application when some of its layers are shared among
concurrent sessions. FAIL-OVER THROUGH SERVER CLUSTERING and JOB DRAINING show
two ways to improve the availability of eBusiness applications. HEARTBEAT presents a
technique for tracking the state of individual machines within a cluster. WEB INSPECTOR
shows how to leverage Web technology for viewing and managing eBusiness
applications. BUSINESS CONTEXT-AWARE OBJECT RETRIEVAL describes a way of
accessing objects, optimized for the interactions typical of using Web browsers. Finally,
PREFABRICATED BUSINESS OBJECTS shows how to assemble business objects from
reusable components.

1 Application Server

Context
You are building an eBusiness application. The architecture involves Web browsers, Web
servers, and the Internet. The Web browsers play the role of thin clients. They display
application data to the user, and gather user data from HTML pages. The Web servers
feed HTML content to the browsers, and receive user data from them. The Internet
connects the clients to the server through HTTP.

Problem
Where do you put your application?

Forces
• Users interact with the application only through Web browsers
• Web browsers are limited to rendering HTML, running usually JavaScript and

Java byte codes
• All application data going to the user passes through the Web server
• All user data going to the application passes through the Web server
• Server-side objects share resources
• Deploying software is time-consuming and expensive

Therefore,
Make the Web server a Single Point of Access [Yoder and Barcalow 1997] for user-
application interaction. The Web server provides the content delivery technology.
Combined with the application—see the UML collaboration diagram from Figure 1—it
represents an APPLICATION SERVER.

 Page 3 of 24

Web Server Application

1: SubmitForm()
5: ReturnWebPage()

2: SendRequest()
4: ReturnWebContent()

Web Browser

3: ProcessRequest()

Figure 1: The APPLICATION SERVER consists of a Web server and an application.

The application doesn’t handle directly the visual aspect of the presentation. Instead, it
uses a presentation technology (e.g., JSP, ASP, PHP, etc.) that the Web server can turn
into HTML and ship to browsers. The presentation technology limits the choice of
widgets and types of user interaction. Both must be expressed as HTML constructs.

The browser uses HTTP to send user data to the Web server. In turn, this decodes the
data and passes it to the application.

The Web server needs to obtain a handle on the application to communicate with it. Make
the handle a well-known object. Start simple with a SINGLETON [GoF 1995]. Once you
need features like load balancing, consider using a naming service (e.g., JNDI).

Typically the Web server controls the application’s lifecycle. Upon start up, the Web
server fires off the application. Likewise, when the Web server shuts down, it also closes
the application. But the life cycles can be independent. The requirements may specify
that the application and the Web server run separately. In that case, they must handle
connection and disconnection.

APPLICATION SERVERS let developers release new versions of their software as soon as
they complete testing. They have zero-deployment cost.

Running eBusiness applications on an APPLICATION SERVER poses security risks.
Malicious users compromise security once they obtain access to the server. Additionally,
the server represents a single point of failure, and can become a bottleneck. This will
indiscriminately affect all customers using your application.

Known Uses
The registration system used for the PLoP conferences from 1998 through 2000 runs as a
servlet within the Apache Web server [Manolescu 1998]. The Web server decodes the
requests entered through Web forms and passes them to the servlet. The servlet lets
attendees enter, view, and modify their registration information. It also lets an
administrator see a summary of registered attendees, remove users, and export the
registration information.

 Page 4 of 24

eBusiness applications built with the Applied Reasoning Enterprise Object Framework
revolve around a coordinator acting as the application-part of an Application Server.
When using BEA’s WebLogic server, developers specify the coordinator class as a
property in the weblogic.properties configuration file. At start up WebLogic fires
off a SINGLETON [GoF 1995] instance of the coordinator. Likewise, the Web server closes
the coordinator when it shuts down.

The Application Server represents a central component of Sun’s J2EE architecture.

BEA calls an application server any application that offers server-side support for
developing and deploying business logic [BEA].

Related Patterns
The APPLICATION SERVER acts as a MANAGER [Sommerland 1997] for the services used by
the application. For example, Skillgames.com has services like persistence, credit card
processing, security, etc.

From the customer’s side the Web server represents the SINGLE POINT OF ACCESS
[Yoder & Barcalow 1997] to the APPLICATION SERVER, as well as a special case of the
CLIENT-DISPATCHER-SERVER [POSA2 2000] pattern.

This and other patterns in this paper rely on the proper management of threading. The
POSA 2 book [POSA2 2000] contains some excellent patterns regarding this area of
server systems implementation.

Resulting Context
You now have a multi-user application that uses the Web as the delivery mechanism.

2 Server-side Session

Context
The Web started as a means for sharing documents among scientists. Its designers have
built the underlying technology (e.g., HTTP, the transport protocol, and HTML, the
markup language) with these goals in mind. Since then, people have realized the Web’s
potential and have started to exploit it. With the growth of eBusiness applications, the
Web is rapidly being transformed into an activity- or transaction-intensive environment.

Unfortunately, the underlying technology is not quite appropriate for these requirements.
Specifically, the HTTP protocol is stateless.

Consider a customer that registers on an on-line shopping site. Typically registration
begins with a form requesting the name and the contact information. Next, the user
provides a credit card number and expiration date. Then they shop. The current

 Page 5 of 24

technology requires the application to track the state of the registration process, since the
delivery vehicle (the Web) doesn’t.

Problem
How do you hold on to the state information related to a user’s interaction with an
eBusiness application?

Forces
• You need to keep state for the time that the customer is on the site
• HTTP is stateless
• Heterogeneous clients are the norm
• You don’t want to keep the state information around if the user has abandoned the

process
• You don’t want to compromise the security of your system by giving your clients

access to the state information
• You would like to minimize network traffic
• You want to hide server crashes from the users

Therefore,
Use a session object on the server. The session holds on to all state information required
by the application.

But can’t the session object reside on the client?

The server-centric architecture of current eBusiness applications makes a server-side
session the natural choice. However, a server-side session has several liabilities. First, the
server becomes a single point of failure. This makes fail-over hard. Second, the server
represents a single point of access. Once in, a cracker can compromise all users’
accounts. Finally, the server can become a bottleneck. It must be able to handle
concurrent access by a large number of users.

As long as eBusiness applications do little processing on the client (like current
technology requires), a client-side session is cumbersome. Having the session on the
client brings in different problems. First, the client-server communication becomes a
bottleneck. Accessing state information requires going over the network. Second, this
solution exposes details about the server application to clients. This is a security problem;
for example Schneier discusses a Web attack that changes the price of items in an on-line
shopping cart [Schneier 2000]. Finally, clients can be very different. While it’s feasible to
store several megabytes of session information on a desktop computer, it’s definitely not
going to work on small-memory systems like Web-enabled PDAs. For example, the PDA
shown in Figure 2 provides Web-browsing capabilities with only 512Kbytes of RAM.

 Page 6 of 24

Figure 2: Browsing the Web on a wireless PDA with 512 KBytes of SRAM.

If not used for a pre-specified time interval, the session should time out. The time out
releases the resources held on by the session. Something has to watch the user-server
interaction, and trigger the time out after a period of inactivity. A client-side session
should also be able to signal the server when the user closes the window, or moves to a
different URL.

A solution that takes into account the above limitations keeps different state information
on the server as well as on the client. The bulk of the session state resides on the server to
reduce network traffic. The client stores additional information that facilitates fail-over
(e.g., an ID for the server-side session) and improves security (e.g., an encryption key).
For example, BEA’s WebLogic Server achieves fail-over by replicating the session
between a primary and a secondary server. A client-side cookie stores a key to the
location of the two copies of the APPLICATION SERVER. Should the primary server fail,
the client has all the information required to find and switch to the secondary.

Known Uses
Web-based applications use a session object to keep state on the Web server. Many Web
servers provide support for keeping a server-side session. Some mechanisms address
identifying the session and include cookies (on the client) and URL rewriting. Others
address replicating the session on other servers for improved availability.

The Applied Reasoning Enterprise Object Framework provides a server-side
SessionContext object. The framework lets developers build stateful, server-based
eBusiness applications regardless of whether the underlying technology provides a
session or not.

Related Patterns
Typically the SERVER-SIDE SESSION acts like a keyed dictionary. Developers store
session-related information in named slots. In effect, the session uses the PROPERTY
pattern [Foote and Yoder 1998].

Martin Fowler discusses several options for storing session information in his collection
of patterns for information systems architecture [Fowler]. Martin’s STATEFUL SESSION
stores the session information on the server.

 Page 7 of 24

3 Vertical Slice

Context
You have an APPLICATION SERVER that runs your eBusiness application. Customers use
the application through Web browsers, over the Internet. They do this concurrently,
independently, in an asynchronous manner. You can’t control what they’re doing and
when they do it.

The last 20 years have brought computers onto everybody’s desks. People install
software and run separate, identical copies of the same application. This characteristic has
shaped the way we design software. But eBusiness applications running on APPLICATION
SERVERS change the equation. You no longer have separate applications. Instead, you
have separate views. The style of the good ol’ 3270 terminals is groovy again (this time
around without the green CRTs).

Problem
How do you structure your application to support multiple users concurrently whilst
preserving the consistency of your domain objects?

Forces
• Memory limitations make it impractical to give each user their own complete

copy of the application on the APPLICATION SERVER, especially when the
business info is large

• Sharing common subsystems among concurrent users is a hard problem
• Multiple users interacting with the single logical service layer run into scalability

problems without careful and strict access controls
• The application and business logic must know about both the user and the

business model
• The business model should be unaware of how customers interact with the system
• Objects shared among multiple threads should be thread safe and idempotent3

Therefore,
Build your application such that each user sees a vertical slice, spanning from the user
interface (top tier) to the application services (bottom tier).

Each user requires her own objects on session-scoped tiers. For example, users will get
unique customer profile objects when they log on to the application. In contrast, the
objects on application-scoped tiers are shared. We call these objects service providers.
The UML object diagram from Figure 3 shows two sessions sharing three services. For
example, all customers using your eBusiness application share the same persistence
mechanism provided by an object-relational mapper.

3 A function DDf →: is idempotent if Dxxfxff ∈∀=)())((. In the world of objects, an object
is idempotent if repeated message sends have the same effect as a single message send.

 Page 8 of 24

aServiceManager

aService aService aService

Session-
scoped

Applicati
on-

scoped

aView1 aPresenter1

aModel1

aSessionContext1

aView2 aPresenter2

aModel2

aSessionContext2

Figure 3: An application slice consists of session- and application-scoped objects. The session-scoped

tiers shown here use the Model-View-Presenter pattern [MVP], but that is not a requirement.

Session-scoped objects can be designed in the more traditional style of desktop
applications, assuming that there is only one user/thread running through them at a time,
even though they end up running on the server. You get application/business logic reuse
at the class level, i.e., you create multiple instances of business objects, one for each
session. They all come from the same Class template, though.

Application-scoped objects are harder, and must deal with concurrency. All entry points
must be thread-safe. These objects can’t assume that successive message sends have the
same sender. This means that you will have to spend longer designing/building them, but
your reward is reuse at the object level (many sessions accessing the same instances), and
a greater efficiency in your use of system resources.

The session-scoped part of each Vertical Slice will need a mechanism to access objects in
the application-scoped part. Use a Service Manager following the Manager pattern
[Sommerland 1997]. The Service Manager controls the lifecycle of the service providers
and provides access to them.

Known Uses
eBusiness applications built with the Applied Reasoning Enterprise Object Framework
give each user a VERTICAL SLICE of the complete application. From a logical
perspective, the presentation, session, and application tiers reside in session-scoped part
of the slice. Likewise, the service tier resides in application-scoped part of the slice.

 Page 9 of 24

Sun’s J2EE architecture uses this pattern. The session-scoped part of the vertical slices
consists of HTTP session and session beans. The application-scoped part consists of
entity beans.

WebLogic T3Services let developers share services among Web-based applications. In
effect, applications can share services within the session-scoped part of the Vertical Slice.

Xterminals talking to an Xserver share libraries and other system services. (Also applies
to Citrix in the Windows environment).

Related Patterns
The Vertical Slice slices through layers spanning from user interface to application
services. This corresponds to a layered architecture as described in the LAYERS [POSA
1996] pattern.

The service manager represents an instance of the MANAGER pattern [Sommerland 1997].
Objects within the session-scoped part of the vertical slice access service objects by name
through the manager—an instance of the PROPERTY [Foote and Yoder 1998].

Doug Lea provides an extensive coverage of design principles and patterns for concurrent
programming in Java [Lea 1999].

4 Fail-over through Server Clustering

Context
Your eBusiness application is running on an APPLICATION SERVER. When a user
connects to the site, the Web server retrieves from the database the corresponding
business objects and initializes a Server-side Session. For example, a CustomerProfile
object holds on to the information supplied by the user at registration time, e.g., name,
address, credit card number and expiration date, etc. The Web server also runs code that
generates dynamic content. Several technologies (JSP, Servlets, ASP, PHP, etc.) support
server-side generation of Web pages.

High traffic Web sites improve scalability and availability by distributing the load among
a cluster of Web servers—Figure 4. Products like WebLogic Server provide support for
clustering.

 Page 10 of 24

Data

Client 1

Client 2

Client 3

Figure 4: Clustering increases the availability of the Application Server.

Once the cluster is up and running various problems can require individual servers to be
taken down. For example, hardware failures like a bad disk or an overheating CPU
require halting a server for maintenance. Software upgrades or crashes also require a
shutdown. You want to be able to remove the server from the cluster, perform the
maintenance/upgrade, and then bring it back in the cluster. One of the other servers needs
to take over the processing carried out by the one that has to be shut down.

Problem
How should you build your eBusiness application to support fail-over?

Forces
• Typically eBusiness applications deal with large numbers of concurrent customers
• Application failures are big turn-offs in the eBusiness world; you want high-

availability
• Saving the state of your application each time it changes is expensive
• Many Web servers provide support for clustering
• The cluster provides support for replication among clustered servers
• Replicating all objects across the cluster doesn’t scale
• You can’t completely hide server failures since current Web browsers render

HTML progressively

Therefore,
Build your eBusiness application to be compatible with clustering support. This support
should come from a commercial product; you don’t want to build it yourself!

In most scenarios, users interact solely with a primary server, which replicates the objects
to one or more secondary servers. Should the primary server become unavailable, the

 Page 11 of 24

secondary servers have all the state information required to replace the primary server.
One of them takes over and the application continues to execute, albeit at a different
location within the cluster. But the failure of the primary and the shift to a secondary
remains invisible from the outside.

For example, WebLogic supports in-memory replication of HTTP session, EJBs, and
RMI objects. The server copies the contents of the HTTP session and EJB/RMI objects
from a primary host to a single secondary server.

It is very important to understand how your commercial product supports clustering.
Replication of objects can get expensive very quickly, both in terms of network traffic
and memory footprint. For example WebLogic uses Java Serialization, which is not
optimal when you have large object graphs, and few state changes. Understand what you
must replicate, and what you can get away with reconstituting from other sources, such as
a persistence layer.

In summary, this pattern provides a means for masking server failures through
redundancy. This is a key principle of distributed design [Pradhan 1995].

Known Uses
BEA’s WebLogic server supports Web clustering and component/object clustering. Web
clustering replicates objects within the session-scoped part of the VERTICAL SLICE.
Likewise, component/object clustering replicates EJB and RMI objects residing in the
application-scoped part of the VERTICAL SLICE.

Although mainly stateless, server farms such as those used for financial instrument
pricing are generally clustered. Because of their lack of state, there is nothing to replicate,
which simplifies the problem considerably. However machines can be taken in and out of
the cluster at will, with no effect on the user.

Variants
Geographic fail-over allows system administrators to select primary and secondary
servers at different locations. Should the site hosting the primary servers become
unavailable (e.g., due to a California power outage), the secondary servers are not
affected and can take over. ATG Dynamo [Dynamo] provides this feature.

Related Patterns
Many distributed systems use a backup to improve availability. For example,
RECOVERABLE DISTRIBUTOR [Islam and Devarakonda 1996] provides several protocols
for fault-tolerance. One of these protocols is primary-backup; recovering from a failure
amounts to switching to the backup. RECOVERY DISTRIBUTOR can also reconstruct the
state of the primary on a backup system, which takes longer but doesn’t require the
resources needed to maintain an up-to-date copy.

APPLICATION SERVER uses this pattern to increase the number of SERVER-SIDE
SESSIONS it can support concurrently, and hide server failures through fail-over.

 Page 12 of 24

JOB DRAINING provides a work around that lets system administrators to turn individual
machines down when server clustering is not possible (i.e., flipping the switch is not
feasible).

HEARTBEAT describes a mechanism to check the availability of individual servers in the
cluster.

5 Job Draining

Context
You have deployed your eBusiness application on a cluster of Web servers. Each server
runs a different application instance. You need to take down a server for scheduled
maintenance. You must do it in a way that is transparent for your users.

If you could use server state replication, such as EJB server clustering, you would be able
to unplug the server and your users wouldn’t notice. One of the replicas would take over
whenever the primary goes down. However, if the server provides replication in a manner
that is incompatible with your application, or your server runs long-lived transactions,
you’re on your own, and can’t simply unplug the server.

Problem
How can you gracefully handle scheduled maintenance on an APPLICATION SERVER
when it doesn’t support clustering?

Forces
• Users who have SERVER-SIDE SESSIONS on the machine scheduled to go down

should not be affected
• You can’t leverage the clustering capabilities provided by your chosen

infrastructure
• Replication of application state is expensive
• Transactions can run for a long time

Therefore,
Prevent the server scheduled to go down from accepting new requests. This involves
intercepting any incoming requests and checking whether they correspond to new jobs, or
existing jobs. Leave the requests corresponding to existing jobs pass through. Reroute
requests corresponding to new jobs to other servers.

Rerouting requests will let the server complete the jobs that are currently running on it.
Once they have all finished, you can safely shut down the server.

Who reroutes the requests? Clustered servers typically use a load balancer that distributes
incoming requests among cluster members. Since all requests pass through the balancer,

 Page 13 of 24

the rerouting can take place there. This involves adding a dispatcher on the load balancer,
which in turn must be able to execute code—see Figure 5 and Figure 6. The balancer +
dispatcher ensemble has to be designed such that more than one of them can exist in the
system, so that they don’t become a single point of failure. The dispatcher must cope with
the traffic passing through the entire site. Additionally, it must be aware of the jobs
running on each server. This may not scale when the number of jobs is large.

Web
Server

Load
Balancer

Web
Server

Web
Server

Rerouting
dispatcher

Figure 5: Job draining with a Rerouting Dispatcher

Hardware
boundary

aBalancer

request

findDestination

sendRequestTo

aDispatcher

isExistingRequest

findAlternateDestination

aServer

forwardRequest

Figure 6: Rerouting Dispatcher, UML sequence diagram. The sequence shows the flow of messages

when isExistingRequest() returns false, and findAlternateDestination() returns an alternate
destination.

An alternative involves using rerouting proxies on each server—see Figure 7 and Figure
8. When a server is scheduled to go down, its proxy starts rerouting requests to other
servers. This solution has the advantage that each proxy tracks only the local jobs. You
can also use a “dumb” load balancer that merely dispatches requests in a round-robin

 Page 14 of 24

manner. However, the rerouting proxies need to communicate whenever the status of a
server changes.

Web
Server

Rerouting
Proxy

Load
Balancer

Web
Server

Rerouting
Proxy

Web
Server

Rerouting
Proxy

Figure 7: Job draining with Rerouting Proxies

Hardware
boundary

aBalancer

request

findDestination

sendRequestTo

aProxy

isExistingRequest

findAlternateDestination

aServer

updateAvailableServers

aNamingService

request

Figure 8: Rerouting Proxies, UML sequence diagram. The sequence shows the flow of messages when

isExistingRequest() returns false, and findAlternateDestination() returns an alternate destination.

Known Uses
Skillgames.com uses Rerouting Proxies that route the incoming requests to the Web
servers that are available. The proxies use the Java Messaging Service to communicate
with each other.

 Page 15 of 24

The NCSA Load Share Facility system lets administrators drain jobs from their
supercomputers for scheduled maintenance. LSF uses a job scheduler that resembles the
rerouting dispatcher.

Related Patterns
JOB DRAINING helps you achieve a limited level of fail-over when you have an
APPLICATION SERVER and can’t rely on the underlying infrastructure to replicate the
SERVER-SIDE SESSION.

The Rerouting Proxy represents an instance of the PROXY pattern [GoF 1995, Rohnert
1995].

Resulting Context
You will need a way to detect when an APPLICATION SERVER becomes unavailable.

6 Heartbeat

Context
You have deployed your APPLICATION SERVER on a cluster. Each member of the cluster
runs instances of your application.

Problem
How do you know when one Web server becomes unavailable?

Forces
• Knowing the availability of your servers lets you take proactive measures to alert

the local system
• You would like to centralize the disconnect and reconnect mechanisms
• Waiting for timeouts degrades performance and consumes system resources
• Constantly checking the availability of the Web servers consumes system and

network resources
• You have to decide who has the responsibility of taking action when something

goes wrong
• Failures within the cluster should be transparent to the user

Solution
Make each live server broadcast periodic “I’m alive” messages. A cluster monitor listens
for these broadcasts and resets time out counters corresponding to each server. The
monitor considers any servers whose counter doesn’t reset within a given time interval as
unavailable. Consequently, the monitor notifies the cluster, which takes proactive action
for compensating for the unavailable server.

 Page 16 of 24

The frequency of the periodic broadcasts depends on the application. On the one hand, a
low frequency translates into observable delays at the front end, and has the risk of
annoying your customers. On the other hand, frequent broadcast will flood the network
with control messages, as well as consume system resources.

Known Uses
The Linux kernel supports several forms of watchdogs. The system reboots if the
watchdog device hasn’t been written for a certain amount of time.

BEA’s WebLogic server uses IP multicast to broadcast heartbeat messages that advertise
server availability within the cluster.

Ethernet uses a heartbeat/pulse signal to alert whenever devices connected to the network
become unavailable—e.g., the power is turned off.

Tibco, a commercial messaging middleware product sends heartbeats between all its
distribution brokers, indicating that they are alive.

According to Bruce Schneier [Schneier 2000] security systems use this pattern to prevent
burglars from disconnecting them from the phone system.

Classic Blend and DCOM use HEARTBEAT in the context of distributed components.

Variants
RECOVERABLE DISTRIBUTOR [Islam and Devarakonda 1996] checks the availability of
Local Failure Handlers (LFH) through polling rather than broadcast. Therefore, instead of
broadcasting the “I’m alive message,” the Global Failure Handler (GFH) iterates through
all LFHs and sends them a message. If it doesn’t receive an acknowledgement after
several attempts the GFH decides that the LFH has failed.

Related Patterns
JOB DRAINING requires a means of checking the state of the servers in the clusters.
HEARBEAT provides a means of doing so in a centralized manner.

7 Web Inspector

Context
In mature software departments, developers have access to rich tools that enable them to
write correct, efficient code, and to debug problems effectively. These tools include step
debuggers (most IDEs have these), profilers (jProbe) and object inspectors (VisualAge’s
Scrapbook and other features). For 2-tier applications that get deployed as desktop
executables, these tools are often sufficient. In a 3 or greater tier application, such as an
Application Server, many of these tools are not yet available. It is also hard to completely

 Page 17 of 24

replicate the n-tiered deployment environment on each desktop. The result is code that
often runs fine on the developer’s desktop, but breaks in the deployment environment.
Distributed debuggers are available, but are often IDE or deployment platform specific,
and hard to configure or attach while the system is running. Remote profiling is available,
and is good way of getting timing and object allocation information. It would be a great
help to developers to also be able to inspect running objects in the deployment
environment, to check on values of variables, and possibly even execute messages against
them.

Problem
You have enabled your application in a remote APPLICATION SERVER. How can you
quickly and easily examine what’s going on, reconfigure on the fly, etc.?

Forces
• Building distributed applications is hard; debugging distributed programs is really

hard
• Typically deployed applications don’t contain debugging information
• Your server is not physically accessible; rather, it is relocated to a hosting service

with a fat pipe to the Internet
• Access restrictions can prohibit the use of a remote debugger
• The solution should be vendor-independent
• You’d like zero-deployment effort
• Most monitoring tools are application unaware
• Providing access under the hood poses a massive security hole
• Requires scaffolding on the server that otherwise you wouldn’t need

Solution
Build support within the system for examining the state of your application through a
web browser. This can take many forms:

1. Interrogating known objects, with pre-defined messages.
2. Allowing for the inspection of any object, so long as you can navigate to it.

(Requires reflection)
3. Allowing for the sending of messages to any object, potentially allowing for state

changes on the fly. (Requires reflection and “compilation”)

To build this support, you will have to add this functionality on the APPLICATION
SERVER. This must be done in a controlled fashion, and involves strong security,
authentication and auditing.

Known Uses
The JProbe Java profiler lets developers look at the information it has collected through a
Web browser, from a remote location.

 Page 18 of 24

Several Cable/DSL routers run an internal Web server and let their users configure them
through a Web browser. Figure 9 shows an example.

Figure 9: Web configuration panel for a Linksys cable/DSL router.

Web servers like Apache and WebLogic provide an “administrative console” through
which systems administrators configure them.

Related Patterns
WEB INSPECTOR comes in handy when you build an APPLICATION SERVER and want to be
able to see what’s going on.

REFLECTION [POSA 1996] describes the mechanisms required for reflection in pattern
form.

 Page 19 of 24

8 Business Context-Aware Object Retrieval

Context
During its lifetime, a SERVER-SIDE SESSION interacts with many objects. Often, many of
these will be part of complex object graphs, and will be brought in from different sources
(database, flat file, remote system, etc.)

For example, when logging in to an on-line trading service, you want to first see a
summary of your portfolio, stock prices of shares you are watching, and significant
market news. This requires the system to access a lot of different pieces of information,
but not in much detail. Next you want to see the details of the holdings in your portfolio,
and their current valuations. This requires access to the details of each holding.

Problem
How do you bring object graphs into the Application Server in a manner that is both
efficient and matches the information paths that the user navigates?

Forces
• Users don’t surf sites in a depth-first manner
• APPLICATION SERVERS have to support a large number of concurrent users
• Transitive closures of rich business object models are often large
• Object retrieval is expensive
• Web-based eBusiness applications have different usage patterns compared with

traditional desktop applications

Therefore,
Use smart proxies to stub out objects that may not be needed. When the user tries to
access a stubbed out object, the APPLICATION SERVER asks the proxy to fault in the object
that it represents.

For example, a Portfolio object that stores its most recent value doesn’t need to access
each holding to present that value to the user. Therefore, when building the user’s
summary page, you only need to access the Portfolio object, and can stub out all its
components.

Likewise, a CustomerProfile object might hold onto the customer’s address. The
application doesn’t use the address except when the customer wants to edit her profile.
When the customer logs on to the APPLICATION SERVER, retrieve only the
CustomerProfile instance, and stub out the Address.

You need a mechanism to specify what instance variables on a parent should get stubbed
out rather than retrieved along with the parent. The GemStone/S object persistent store
and the OpenTalk distributed application framework provide this sort of mechanism, via
a class side/instance side descriptor.

 Page 20 of 24

Known uses

When a customer first logs on to Skillgames.com, only the basic part of a
CustomerProfile object, along with some preferences is loaded from the database.
Other child objects such as addresses, phone numbers etc. are stubbed out. This is done to
reduce the time it takes to “log on”. 70% of the time, the user will end the session and
never go to My Account (the area of the site that requires the child objects). For the 30%
that do, the penalty is only a slight increase in time to get to the My Account page,
created by the need to fault in the child objects.

Many portfolios, especially Mutual Funds, are officially priced daily. This means that
yesterday’s total value is usually stored on the Portfolio itself. Consequently a summary
value of the portfolio can be displayed without ever retrieving the holdings that make up
the portfolio. Only when a real-time price is needed, and each holding has to be re-valued
and summed, does the system have to fault in the holdings.

Related Patterns
This pattern is in fact a variant of PROXY [GoF 1995, Rohnert 1995]. Faulting in business
objects in a manner tuned for the typical way people surf the Web (which is one of the
forces) makes it different.

9 Prefabricated Business Objects

Context
If you look at eBusiness applications, they all require a similar set of core objects. What
differs between each application is which parts you assemble together. The difference is
in the whole, not in the parts.

For example, you are building a system that contains a representation of your customer.
You start by creating one object called CustomerProfile which contains all the state
and behavior of your customer on itself. However, as the system evolves, you discover
the need for a representation of an internal user. At first glance, they appear to be similar,
containing names, addresses, SSN etc., so you start to refactor.

This results in two container objects, a CustomerProfile and an InternalUser,
and sub-components such as Address, PhoneNumber, etc. You get commonality at
the component level, but significant differences in the way that they are put together at
the container level. For example, the CustomerProfile holds a home address, but the
InternalUser doesn’t.

As this evolution continues and the objects have additional requirements imposed on
them, the container object ends up having less and less direct state, and more and more
contained objects. It essentially becomes a façade, delegating a lot of its required

 Page 21 of 24

behavior to its children. In extreme cases, the CustomerProfile can end up with
only a single piece of state, a unique identifier such as user ID.

Problem
How do you compose a set of small objects that don’t make sense on their own in the
business domain, into an object that is meaningful to the business domain?

Forces
• How do you balance encapsulation of composite objects with the sum of their

interfaces getting promoted to the Container’s interface. In other words, at what point
does the interface on the container get too broad, and you should start exposing
contained objects directly.

• Making the container object too customized for your specific needs reduces reuse and
extensibility

• If one of the components of your container has features that you don’t need, what do
you do with that functionality? You could mask it by leaving it out of the container’s
interface, but then you violate the Liskov Substitution Principle.

• Specifically for Customer objects, extensibility is very important since they are the
focus for many eBusiness applications, and the business expectation is that base
functionality should be available through third-party component libraries by now.
However, the business will almost always demand some level of customization.

Solution
Start with a minimal core object, and create a rich facade that provides all the additional
behavior and data. Also use the strategy pattern to provide flexibility in operation where
necessary.

For example, we want to create a CustomerProfile object that is to be part of a
eCommerce framework, and therefore comes with a rich set of capabilities “out of the
box.” We need to allow the customer the choice in what subset of capabilities they want
to include in their deployed application, as well as the ability for them to add their own
specific functionality. We also need to make sure that the framework is
internationalizable.

The core object here is called CustomerCore. It contains a unique identifier, a user ID,
and a name. This is then wrapped by a FAÇADE, BasicCustomerProfile, that adds a
homeAddress, workAddress, homePhone, workPhone. We now have a usable
CustomerProfile object.

The people buying the framework then have two ways to extend what we have already
supplied. The first is to create their own façade, replacing BasicCustomerProfile,
that holds on to the discrete components directly (such as Address and Phone objects).
The second is to create their own FAÇADE that holds onto a BasicCustomerProfile.
Neither approach is limited by inheritance, and therefore provides maximum flexibility.

 Page 22 of 24

Known Uses
Trade objects in financial systems. Trade objects are usually composed of many pieces of
information such as Counterparty, settlement details, pricing data, basic trade info etc.
The container (Trade) is almost always very thin (usually with just a trade ID), with all
the behavior living in the reusable components.

Related Patterns
The object made of existing objects acts as a FAÇADE [GoF 1995]; it could also be
considered a special case of the WHOLE-PART [POSA 1996] pattern.

You could use FLYWEIGHT [GoF 1995] to save space by sharing components among
facades. For example, if the Employee object is a Prefabricated Business Object, several
employees can share the same business address.

10 Putting it Together
Your company has decided that the new application that you are building should be “Web
enabled.” You have also determined that combination of simple CGI scripts, database
access, and HTML won’t meet your needs. So, what do you do?

First you make your business logic presentation-independent. Then you can select the
best presentation technology for your needs (JSPs, Servlets, DHTML, PHP, etc.) and
hook it up to your business logic. These two together form your application. Finally you
add a Web server to the mix, and voilà, you now have an APPLICATION SERVER.

Next you need to decide what session information should be maintained while the
customer interacts with the site. You encapsulate this body of information into a SERVER-
SIDE SESSION.

You have already partitioned your application into a business logic and presentation tier.
You now need to break up the business logic into parts that can be shared among
sessions, and parts that are unique to individual sessions. In effect, you are building your
VERTICAL SLICE. BUSINESS CONTEXT-AWARE OBJECT RETRIEVAL brings in objects in a
way that is compatible with customers navigating Web pages. Following PREFABRICATED
BUSINESS OBJECTS you will compose your domain objects out of existing, already tested
business objects.

If you can tap into the support provided by your chosen infrastructure, you will use the
FAIL-OVER THROUGH SERVER CLUSTERING. Otherwise you can use JOB DRAINING with
either a rerouting dispatcher, or rerouting proxies. HEARTBEAT will tell you which server
has failed.

 Page 23 of 24

Once deployed, WEB INSPECTOR lets you look under the hood of your application with a
Web browser.

11 Acknowledgments
We would like to thank the following colleagues and friends from Applied Reasoning
who have reviewed a draft of this paper: Bill Burdick, Mike Diamond, Rich MacDonald,
Fritz Passow, and Max Ross. Our shepherd Eduardo Fernandez has also provided
insightful comments during the shepherding process.

12 References
[Astley+2001] Mark Astley, Daniel C. Sturman, and Gul A. Agha, Customizable Middleware for
Modular Distributed Software, CACM May 2001, Volume 44, Number 5, pp. 99—107.

[BEA] What is a Java Application Server?, BEA Inc. white paper, available on the Web at
http://www.bea.com/products/weblogic/server/paper_Java.shtml.

[Foote & Yoder 1998] Brian Foote and Joseph W. Yoder, Metadata and Active Object-Model,
Fifth Conference on Patterns Languages of Programs (PLoP '98) Monticello, Illinois, August
1998. Available as Technical Report #WUCS-98-25, Dept. of Computer Science, Washington
University, September 1998.

[Fowler] Martin Fowler, Information Systems Architecture (work in progress). Available on the
Web at http://www.martinfowler.com/isa/.

[GoF 1995] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns, AWL
1995.

[Islam and Devarakonda 1996] Nayeem Islam and Murthy Devarakonda, An Essential Design
Pattern for Fault-Tolerant Distributed State Sharing, CACM October 1996, Volume 39, Number
10, pp. 65—74.

[Lea 1999] Doug Lea, Concurrent Programming in Java: Design Principles and Patterns, 2nd
edition, AWL 1999.

[Manolescu 1998] Dragos A. Manolescu, An Object-Oriented Framework for On-Line
Registrations. Available on the Web at http://micro-workflow.com/CAT/.

[MVP] The Model-View-Presenter pattern. Available on the Web from http://www.object-
arts.com/EducationCentre/Patterns/MVP.htm.

[POSA 1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland, and
Michael Stal, Pattern-Oriented Software Architecture, Volume 1, Wiley 1996.

[POSA2 2000] Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann, Pattern-
Oriented Software Architecture, Volume 2: Patterns for Concurrent and Networked Objects,
Wiley 2000.

http://www.bea.com/products/weblogic/server/paper_Java.shtml
http://www.martinfowler.com/isa/
http://micro-workflow.com/CAT/
http://www.object-arts.com/EducationCentre/Patterns/MVP.htm
http://www.object-arts.com/EducationCentre/Patterns/MVP.htm

 Page 24 of 24

[PLoPD1] James O. Coplien and Douglas C. Schmidt, editors, Pattern Languages of Program
Design, Addison-Wesley 1995.

[PLoPD3] Robert C. Martin, Dirk Riehle, and Frank Buschmann, editors, Pattern Languages of
Program Design, Volume 3, Addison-Wesley 1997.

[PLoPD4] Neil Harrison, Brian Foote, and Hans Rohnert, editors, Pattern Languages of Program
Design, Volume 4, Addison-Wesley 1999.

[Pradhan 1995] Dhiraj K. Pradhan, Fault-Tolerant Computer System Design, Prentice Hall, 1995.

[Rohnert 1995] Hans Rohnert, The Proxy Design Pattern Revisited. In [PLoPD1].

[Schneier 2000] Bruce Schneier, Secrets & Lies—Digital Security in a Networked World, John
Wiley and Sons, 2000.

[Sommerland 1997] Peter Sommerland, Manager. In PLoPD3 [PLoPD3].

[Yoder & Barcalow 1997] Joseph W. Yoder and Jeffrey Barcalow, Architectural Patterns for
Enabling Application Security. In PLoPD4 [PLoPD4].

	Application Server
	Context
	Problem
	Forces
	Therefore,
	Known Uses
	Related Patterns
	Resulting Context

	Server-side Session
	Context
	Problem
	Forces
	Therefore,
	Known Uses
	Related Patterns

	Vertical Slice
	Context
	Problem
	Forces
	Therefore,
	Known Uses
	Related Patterns

	Fail-over through Server Clustering
	Context
	Problem
	Forces
	Therefore,
	Known Uses
	Variants
	Related Patterns

	Job Draining
	Context
	Problem
	Forces
	Therefore,
	Known Uses
	Related Patterns
	Resulting Context

	Heartbeat
	Context
	Problem
	Forces
	Solution
	Known Uses
	Variants
	Related Patterns

	Web Inspector
	Context
	Problem
	Forces
	Solution
	Known Uses
	Related Patterns

	Business Context-Aware Object Retrieval
	Context
	Problem
	Forces
	Therefore,
	Known uses
	Related Patterns

	Prefabricated Business Objects
	Context
	Problem
	Forces
	Solution
	Known Uses
	Related Patterns

	Putting it Together
	Acknowledgments
	References

