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I. Introduction

Fault Injection. Nowadays, the Fault Injection technique has been considered very useful to
evaluate the behavior of computing systems in the presence of faults. This happens because the
technique tries to produce or simulate faults during an execution of the system under test, and then the
behavior of the system is observed.

Problem. Among the various methods to perform Fault Injection, the technique of Software
Fault Injection is getting more popular. In this technique, a special piece of code, associated to the
system under test, tries to simulate faults. Generally, Fault Injection testing can be done by using a
Fault Injection tool, and there is a number of them. However, there are no tools that work under each
and every computing environment. Also, new kinds of systems, that work under different conditions,
are created by developers. Therefore, although there are a number of fault injection programs, there is a
need for more of them.

Proposed solution. Patterns may ease the development of new fault injection programs. By
creating a pattern system for Fault Injection tools, that wil l allow developers to develop tools for
computing environments that currently do not have a Fault Injection tool.

II. Architectural Pattern: Fault Injector

Example

Already many tools that use Software Fault Injection have been developed, and they employ
an architecture in which is possible to inject faults; to monitor the system under test; to activate the
system; control the whole process; and inform the user about the test results, as well to receive his or
her requisitions. The architecture for these tools should allow the realization of all these activities.

Context

A developer is trying to architect a Software Fault Injection tool.

Problem

A program or a tool that performs Software Fault Injection (for now on, it will be just refered
as “tool” ) should do the following activities, in order to perform fault injection reasonably:
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(i) In the beggining, the tool should activate the system under test; if the system is idle,
the ocurrence of a fault wil l have no consequences. Only when it is having to do
some task is that the presence of a fault may cause some unexpected behavior of the
target system.

(ii) After that is done, the tool may inject faults inside the target sytems, as the user has
specified.

(iii) Following the injection, the monitoring of target system should begin, in order to
verify if the system behaves as expected.

(iv) The activities of fault injection, monitoring and activation should be properly
controled and coordinated.

(v) There should be an user interface in which the user of the tool can specify the faults
that he or she intends to inject, and also where he or she can get the results of the
experiment.

Therefore, it is necessary an architecture to the fault injection tool that allows the execution of
all these activities. Also, it is required that the following forces be balanced:

• It should be possible to change the way in which some of the activities above are done,
without by that interfering in the other activities.

• Only the modules that reall y need to communicate with the system under test should be
allowed to do so. It should be avoided that control and user interface activities
communicate with the target system, because those activities do not deal with aspects of
the execution of the system under test.

• There should be a coordinate way to the modules that perform the injection, monitoring
and activation activities to communicate between themselves, in order to avoid that they
change redundant messages.

• The tool shoud be easil y rewritten to work in a different computing environment; it
should not be restricted to just one environment, as many Fault Injection tools are.

• The architecture exposed in this pattern should be designed in a way that the Fault
Injection tool would not be restricted to test just one specific type of application.

Solution

The fault injection tool shoud be structured in the following way. It will be defined five
subsystems:

• Activator: it activates the target system, allowing it to be tested in its normal conditions.
• Injector: it does the injection of the faults inside the system under test.
• Monitor: it monitors the target system, in order to verify if it is operating as expected.
• Controller: it controls the subsystems above, so they do their activities coodinately.
• User interface: it receives the specifications from the user for the execution of the

experiment and it gives back the results.

Of the subsystems above, only injector, monitor and activator communicate with the system
under test. They should exchange messages through the controller subsystem, which makes the
coordination between them. The controller will receive experiment specifications from the user
interface, which it will use to define the parameters that will be passed to the subsystems. These,
afterwards, will send back to the controller the data obtained in the execution of the experiment, data
that wil l be stored and passed back to the user interface.

Beyond those subsystems, there are other two. These latter subsystems help the execution of
the subsystems above, acting as data repositories:

• Fault manager: this data repository stores the faults to be injected.
• Monitored data manager: this repository stores the data orginated from the monitoring of

the system under test.



Each one of the above subsystems communicates in a already specified and high level way, so
they can be replaced, without interfering in the others.

Structure

The following diagram shows the structure of the solution proposed on the previous section.

Fig. 1: “Fault Injector” architectural pattern structure.

The rectangles correspond to the subsystems described in the “Solution” section, and the
circles represent the interfaces for each subsystem.

Dynamics

A possible execution scenario of a system that follows the present pattern could be the
following:

(i) The execution starts at the controller subsystem.
(ii) The controller asks the interface to demand from the user the data about the

experiment. The interface get that data and it gives back the data to the controller,
which by its time stores the data in the fault manager.

(iii) The controller asks the activator to start the system under test. The activator tries to
do so. In case of failure, the experiment ends, and the controller asks the interface to
show an error message.

(iv) In case of success of the activator, the controller asks the fault manager data about a
fault (or faults) to be injected. This data is then passed to the injector, which starts the
fault injection, and it informs the controller about the progress of the injection.

(v) The controller starts the monitor, which begins to monitor the system under test. The
data obtained in that process is passed to the controller, which stores it in the
monitored data manager.

(vi) After all the faults have been injected and gathered all the data from the target
system, the controller finishes the experiment, deactivating the monitor.

(vii) The data gathered may be passed to the interface, through the controller.



Implementation

The following steps indicate a method to implement the “Fault Injector” pattern.

(1) Specify the target system for the tool. The target system for the tool should be cleared
defined.

(2) Determine the form of fault injection. The next step is to establi sh how the faults will be
injected in the system under test. The developer should choose the most suitable
technique to the kind of system that the tool will deal with.

(3) Specifiy the form of the monitoring process. The developer should choose in which way
the tool will monitor the target system.

(4) Design the injector and monitor subsystems. The developer should create these
subsystems, taking into account what has been establi shed in the steps (2) and (3). In this
moment, the developer should not care about how these subsystems will interact. In order
to build these components, the patterns “ Injector” and “Monitor” , also described in this
pattern system, may be used.

(5) Specify how the target system will be activated. It is necessary to design some way to start
the execution of the target system. After that, the activator subsystem may be build.

(6) Build the controller subsystem. After the subsystems of the steps (4) and (5) are defined,
the developer should design the subsystem that wil l make the communication between
them and that wil l coordinate their activities.

(7) Design the data repositories (fault manager and monitored data manager). Once the basic
operation form of the tool is defined, it may be specified how it will store its data. In this
step, a structure to store the specification of the faults wil l be designed (this structure will
be stored in the fault manager). Also, it wil l be developed a structure to store the data
obtained from the monitoring of the target system. (structure which will stay at the
monitored data manager).

(8) Build the user interface subsystem. Accordingly with what has been defined in the step
(6), it wil l be elaborated an user interface, that wil l receive from the user the data needed
by the subsystems of the tool, and that wil l also show the results of the fault injection
experiment.

Consequences

The adoption of the pattern “Fault Injector” brings the following benefits:

• It allows that the way in which the tasks of fault injection, monitoring, activation,
coordination, display and storage of data are done be changed individually without
affecting the other activities. Therefore, if some subsystem needs to be changed, it is
possible to reuse the code for the other subsystems.

• The pattern centralizes the communications between subsystems in the controller, that
will then coordinate the messages that should be exchanged. By doing so, it avoids the
communication of redundant messages.

• Only the subsystems that need to communicate with the target system do so. This is done
so because it causes the lowest level of disturbance as possible.

But, the architectural pattern presents the following problems, too:

• It is not possible to make a quick and simple communication between the injector,
monitor and activator subsystems without passing by the controller. This may slow the
injection process, what increases the level of disturbance of the target system.

• In case that in the midst of injection process the injector or the monitor subsystem needs
some extra piece of information from the user, they have to send the request to the
controller, which by its time wil l send the request to the user interface. This may delay
the execution of the target system, causing an increase in the disturbance of it.



Known Uses

JACA Fault Injection Tool [LMR01]. This tool is being developed at the State University of
Campinas (UNICAMP), Brazil, and implements the architecture just described above. It is written in
Java, and it gives an example of how to implement the pattern. It also proves the validity of the
pattern’s benefits.

FIRE (Fault Injection using a REflective architecture) [Ros98]. This is another tool buil t at
the State University of Campinas (UNICAMP), Brazil. It proved the usefulness of the technique of
Fault Injection through the use of a Meta-Object Protocol (MOP). Also, it was one of the best
structured Fault Injection tools, and contributed a lot in writing this pattern.

FlexFI [BRR99]. A tool developed by the Polytechnic Institute of Torino, Italy, is another
highly structured tool. Here too, the developers of the tool acknowledges the need for building Fault
Injection tools that could be more easil y adapted, and the way to do so is by better structuring the tools.
It also contributed a lot to the creation of this pattern.

FIESTA (Fault Injection for Embedded System Target Application) [KJA98]. One of the
first tools that stated the need for making more adaptable Fault Injection Tools. However, the approach
the developers chose here was unique. They realized that the modules activator, monitor and injector
already exist for many systems, in the form of debuggers. Debuggers, like GNU’s gdb, can change
values inside a system, observe many of its aspects and can start the execution of the system.
Therefore, it was just a matter of writing the other subsystems of the architecture and connecting them
with a debugger. Since there are debuggers for almost any computer system, the tool could be easily
changed to run in different systems.

Related Patterns

The following patterns may help the implementation of a system which is based in the
architectural pattern “Fault Injector” :

• The design patterns “ Injector” and “Monitor” describe, each one of them, how to structure
the injector and monitor subsystems of this pattern.

III. Design Pattern: Injector

Example

In the development of  a Fault Injection tool, the first problem is to find a structure that makes
the fault injection as it is, namely, a structure that wil l simulate the presence of faults inside the system
under test.

Context

Inside an architecture for a Software Fault Injection tool, the developer wants to create a
structure that wil l produce or simulate the presence of faults in the system under test.

Problem

Inside the tool or program that makes fault injection, there should be a module or component
that is the one which effectively simulates the occurence of faults inside the system under test. This



component is in close contact with the target system, therefore it should work in the same environment
and in the same conditions of the system. It should change the behavior of some element inside the
system under test, in such way that it seems to have a fault. It should also manage the fault injection
considering the fact that they may be permanent, transient, or intermitent.

Beyond these activities, the structure that will make the fault injection should allow the
balance of the following forces:

• The structure that makes the fault injection as it is should be easil y adaptable to work
under a different computing environment.

• The disturbance of the target system should be as low as possible. In order to perform the
test in the closest to real conditions, the injection component should interfere the
minimum in the execution of the system under test.

• It should be possible to use the same structure either in multi-thread environments or
single-thread environments.

• The injector component should be easil y extensible, in the meaning that it can work with
new kinds of faults, added after the design of the tool has already been done.

Solution

In this section it is described a structure to inject faults. This structure wil l have three
components, listed below:

• Injection manager: this component wil l control the injection process in itself. It will
instantiate the injectors (described in the following item) accordingly to the kind of fault
to be injected. Also, the manager wil l activate them in accordance with the timing of the
fault. And yet the manager wil l be able to activate the injectors simultaneously, in case it
will be working under a multi-thread environment. Finally, it will verify if the injectors
managed to do their jobs, when it wil l return a message of success.

• Injector: it is instantiated by the injection manager to take care of the injection of some
specific kind of fault. It should be a subclass of an abstract base class for the injectors, in
which each subclass is written to deal with some specific kind of fault. However, the
injector does not communicate directly with the system under test: it does so through a
physical injector (described in the following item). When an injector is instantiated, this
one automatically instantiates an associated physical injector.

• Physical injector: it is the component that communicates directly with the system under
test, and therefore it is the lowest level component. It presents a standart interface, which
contains primitive operations to communicate with the target system, accordingly with the
environment of the latter one. If it is required to make the fault injection in a new
environment, it is expected that only the physical injector has to be rewritten.

Each component should be the most cohesive and weakly linked as possible. By doing so, it
may be possible to change some of these components withoud interfering in the others.

Structure

The following diagram shows the structure discussed in the previous section.



Fig. 2: “ Injector” design pattern structure.

The interface IPrimitives refers to the set of the primitive operations for communication with
the target system.

Dynamics

A scenario for the execution of the structure previously exposed could be the following:

(i) The injection manager receives the specification of a fault (or faults) to be injected in
the system under test.

(ii) It instantiates the injectors that take care of each kind of fault received.
(iii) By its time, each injector instiates a physical injector to communicate with the target

system.
(iv) The injection manager activates each of the injectors, so they make the fault

injection. If it is working under a multi-thread system, the injectors can be activated
simultaneously.

(v) Each injector performs the fault injection through the physical injectors.
(vi) If any of the faults to be injected in the target system presents a repetition pattern,

the injection manager activates its injector again, following steps (iv) e (v).
(vii) Each injector returns the result of its operation.
(viii) The injection manager receives the results of all injectors and returns if it was

successful or not to inject the specified faults.

Implementation

A possible way to implement the “Injector” pattern is indicated below:

(1) Specify if the program that will do the fault injection can be multi-thread or not. The fact
that the tool is multi-thread or not may change the way it works. Namely, if it wil l be able
to inject several faults simultaneously (if it is multi-thread) or not.

(2) Establish a fault model. The developer should elaborate a fault model with which he or
she wil l work. This is, he or she should specify the types of faults that will be injected.



(3) Elaborate a set of primitive operations for communicating with the target system. In this
moment, it should be elaborated a set of primitive operations that allows the
communication with the target system.

(4) Implement the physical injectors. Once step (3) is done, the physical injectors should be
implemented. These wil l have an interface that is the set of primitive operations
established in step (3). In this step the developer will have the closest contact with
caracteristics of the environment.

(5) Implement an abstract base class for injector. It should be created an abstract base class
for the injectors. This class wil l establi sh a common interface for all injector and it will
also have some default methods that the injectors may reuse.

(6) Implement the injectors for each kind of fault. Using the abstract base class defined in step
(5), the injectors for each kind of fault are implemented, accordingly with the fault model
establi shed in step (2). In this process, it should be take into account the set of primitive
operations for communication with the target system defined in step (3).

(7) Implement the injection manager. It should be determined how the injection manager,
based on a fault specification received, wil l instantiate the correct injectors and activate
them in the right time. In this step, it should be taken into account whether the system is
multi-thread or not, what has been defined in step (1).

Consequences

The adoption of the “Injector” design pattern brings the following benefits:

• It makes easier to rewrite the injection component to work in a new environment. All the
code that has to deal with specific caracteristics of the environment is concentrated in the
physical injector. If it is required to change the environment, the changes in the code will
be restricted to the physical injector.

• It is easily extensible. In case it is needed to include new faults in the fault model, the
developer will have only to create a new subclass of the abstract base class for the
injectors. Also, he or she wil l have to modify the injection manager to recognize a fault
specification for this new kind of fault.

• The same object structure can be used for multi- or single-thread environments. In case
the injection manager receives the specification of several faults to be injected, it wil l
instantiate several injectors. If it is a multi-thread environment, they can be activated
simultaneously; if not, they can be activated sequenceally. As an additional advantage,
this means that only the injection manager has to be modified to change from multi-
thread to single-thread, or vice-versa.

• The structure needs a minimum of communication with other modules in the fault
injection program. As it can be seen, the communication with other modules is restricted
to a fault specification, in the beginning, and a operation result in the end.

However, the present pattern causes the following problems:

• The design pattern puts a level of indirection between the injector and the system under
test, in the form of the physical injector. This indirection results in a overhead, which may
cause a disturbance in its execution.

Known Uses

SOFIT (Software Object-oriented Fault Injection Tool). In the paper describing the Fault
Injection tool SOFIT [AvT95], Avresky et al. first recognize the need for some common structures for
performing Fault Injection, in order to avoid that developers would recreate the same structures each
time a new Fault Injection tool was designed. Clearly, Avresky et al. were looking for a pattern, but at
that time, patterns were not as widespread as today. For performing the injection itself, Avresky et al.
suggest a three level structure, just as described in this pattern, and they use it in their tool, named
SOFIT.



FIRE. Aiming at building a highly structured Fault Injection tool, the developers of FIRE did
the same for the injection as it is, making a carefull y designed structure for that task. The level of detail
in the design of FIRE for that structure was very helpful in the creation of this pattern.

JACA Fault Injection Tool. In that tool, one can find the most closely implementation of this
pattern. That way, it may serve as an example of how to use the structure described here for injection as
it is in a real project.

Related Patterns

The following pattern is related to “ Injector” design pattern:

• The “Fault Injector” architectural pattern provides an architecture for a program that
performs fault injection. Therefore, the “Fault Injector” architectural pattern gives an
architecture where the “Injector” design pattern could fix in.

IV. Design Pattern: Monitor

Example

There are many techniques to perform the fault injection as it is. However, the program that
test systems using fault injection has also to monitor the target system in order to observe its behavior.
The developer of a fault injection program or tool must define a structure that allows the program to
inspect several aspects of the behavior of the system under test.

Context

Inside the architecture of a Software Fault Injection tool, the developer wants to create a
structure that allows the monitoring of a system undergoing fault injection testing.

Problem

A fault injection tool or program tries to generate or simulate faults inside the system under
test. But, it is also required to monitor the system so it can be verified how it will react in the presence
of the faults. There should be a structure that contains and controls a number of sensors in contact with
the target system. It is important to remember here that what is being looked after is a structure to
monitor a system undergoing fault injection testing. It is not an objective of this pattern to propose a
general architecture to monitor a system under any circunstances and for different purposes.

Such structure for monitoring should balance the following forces:

• The structure that does the monitoring works in a given computing environment. In the
case that this environment change, the work required to adapt the monitoring structure
should be as small as possible, and it should use the maximum of code already written.

• The monitoring of the system under test should cause as low intrusivity as possible in the
execution of the target system. It is desirable that the monitoring process do not modify
the conditions under which the target system works with.

• It is desirable that the same monitoring structure should work in a multi- or single-thread
environment as well .

• The monitoring structure should allow that new aspects of the target system to be
observed be added even after the structure is already defined and implemented.



Solution

The structure for monitoring a system undergoing Fault Injection testing should be totall y
made of software, and henceforth it would depend of shared resources with the target system. This
approach has been chosen because it is considered cheaper and more versatile. The monitoring
structure would have three components:

• Monitoring manager: this component would control and coordinate the monitoring
process. To each different aspect of the target system, it would instantiate a specific
sensor (see following item). The component would receive the data of each of the sensors
and it would put them in data objects that would be sent to an external component.

• Sensor: this object is in charge of monitoring some specific aspect of the system under
test. It is defined an abstract base class for all sensors. This class would specify a common
interface and some default methods. From this class, all the other sensors would be
derived, each sensor for each different aspect. The sensors communicate with the target
system through physical sensors (see below).

• Physical sensor: the objects of this class makes the communication between sensors and
the system under test. They have as interface a set of primitive operations that allows the
communication with the target system without having to specify detail s relative to the
environment. Therefore, only this component has to deal with those detail s.

The components above, again, should be the most cohesive and most weakly linked as
possible. This way, if it is necessary to change some of them, the others may remain unmodified.

Structure

The components li sted in the previous section should be structured in the following way:

Fig. 3: “Monitor” design pattern structure.

The interface IPrimitives designates the set of primitive operations that communicates with the
target system.

One may realize that the above structure is very much similar to the structure described in the
“Injector” pattern. That happens because of the following fact. By studying monitoring theory, one can



see that a “monitor” is a process that waits for some event, and when that event happens, it may trigger
an action. In fact, an “ injector” is in fact a specialized case of a “monitor” , in which the injector waits
for an event (the start of execution of the system under test, for example) and that will trigger an action,
which is the simulation of the presence of a fault.

Dynamics

The following scenario for a execution of a component based on the pattern can be elaborated:

(i) The monitoring manager receives a requirement for monitoring the system under
test.

(ii) The monitoring manager instantiates sensors to monitor each different aspect of the
system.

(iii) Each sensor instantiates its associated physical sensor.
(iv) The monitoring manager activates the sensors. If it is a multi-thread environment,

they are activated simultaneously. Otherwise, they may be activated sequenceally.
(v) The sensor communicates with the physical sensor, through the primitive operations

for communication, to start to gather data from the target system.
(vi) The physical sensor communicates with the system under test and get the required

data. It passes it to the sensor.
(vii) The sensor gives the data back to the monitoring manager.
(viii) The monitoring manager packs the data in a data object and it sends the object to the

external component which has required the monitored data.
(ix) The process is repeated from step (v), while it is necessary to gather data from the

target system.

Implementation

Below it is displayed the steps for the implementation process of the monitoring structure:

(1) Specify if the system will work in a multi- or single-thread environment. One of the key
points in monitoring is to know whether the monitor wil l work in a multi- or single-thread
environment.

(2) Describe what data from the target system is required. It should be determined what
aspects of the target system will be monitored, and what data will be gathered from them.

(3) Formulate a set of primitive operations to communicate with the target system. A set of
primitive operations that allows the communication with the target system should be
created. These operations should have not to specify caracteristics of the environment.

(4) Implement the physical sensors. Based on the operations created in step (3), the physical
sensors should be designed, with that set of operations as their interface. Only in this step
is that the developer has to take care of the given caracteristics of the environment.

(5) Implement the sensors. An abstract base class for the sensors should be elaborated, in
order to specify a common interface and also some default methods that they may reuse.
After that, taking care of the aspects defined in step (2), the sensors are buil t.

(6) Implement the monitoring manager. The monitoring manager should be implemented. A
way for instantiating and activating the sensors should be specified, taking into account
what was defined in step (1). Also in the present step, it wil l be defined how the
monitoring manager wil l pack the data in objects.

Consequences

The adoption of the “Monitor” design pattern brings the following benefits:



• It makes easier to adapt the monitoring structure to work in a new environment. If it is
required to work in a new environment, it is expected that only the physical sensor has to
be rewritten.

• It can be easil y extended. In the case that new aspects of the target system have to be
monitored, what is required is the creation of a new subclass of the abstract base classe
for the sensors, that will monitor the new aspect, and a modification of the monitoring
manager so it can instantiate this new class of sensors.

• The same structure works in multi- or single-thread environments. The multi-thread
environment is preferable. But, if this is not possible, a scheme such as polling could be
used, and the structure would be the same.

• The monitoring structure requires a minimum of external communication. In the
beginning it receives a soli citation for monitoring the target system from some external
component. While it is monitoring, the structure sends back data objects. This helps
keeping the level of intrusiviness to a minimum.

However, the “Monitor” pattern causes the following problems:

• The design pattern puts a level of indirection between the sensor and the system under
test, which is the physical sensor. This may increase the level of intrusiviness.

• It may also increase the intrusiviness because it shares computing resources with the
target system, which inevitably brings an overhead to the system.

Known Uses

SOFIT (Software Object-oriented Fault Injection Tool). For monitoring, SOFIT uses the
same three layer structure that it uses for injection, and the paper describing the tool [AvT95] describes
as a general structure for Fault Injection tools, just as in this pattern.

FIRE (Fault Injection using a REflective architecture) [Ros98]. The Fault Injection tool,
FIRE, as in the whole system, uses also for monitoring a carefull y designed structure, which is
described in detail. Again, it was very helpful in designing this pattern.

JACA Fault Injection tool. For monitoring, too, the JACA Fault Injection tool gives the most
closely implementation of this pattern, illustrating the similarities between the structures for fault
injection, as it is, and monitoring.

Related Patterns

The following pattern may be related to the “Monitor” design pattern:

• The “Fault Injector” architectural pattern intends to solve the problem of how to architect
a program that does fault injection. The design pattern “Monitor” fixes in the architecture
proposed by that pattern.

V. Conclusion

The pattern system shown here consolidates the knowledge about how to do software fault
injection. It gives a base on knowledge from which other researchers may extend fault injection,
creating new ways of performing this technique. The pattern system also gives to the developers many
resources in order to design a fault injection program. By doing so, it allows the development of more
fault injection programs. This may make the software fault injection technique even more popular.
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