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1. Abstract
A design pattern provides a generic solution for recurring problems. Thus a design solution that has worked well in a

particular situation can be used again in similar situations. This paper will present several design patterns for

communicating extended finite state machines that are useful to model the behavior of telecommunications systems. We

will describe each state machine in a state transition diagram and implement the diagram in the Specification and

Description Language (SDL), a formal description language for communicating systems.

The patterns presented in this paper are focused on the behavioral aspects of the telecommunications systems. We will

begin with a basic pattern of a communicating extended finite state machine and its extension that supports condition and

timing constraints in finite state machine. Then we will show the composition of the basic patterns.  After that, we will

present a pattern that handles repeated events with timing constraints. Finally, we will present a pattern that is used for the

creation of dynamic entities in client-server environments.

2. Introduction
When programmers develop software systems, they often find many similar situations that happened in previous

developments. A design pattern provides a generic solution for the recurring problems [Gamma+95][Buschmann+96]. This

is one of the motivations for using design patterns in software development. In other words, a design solution that has

worked well in a particular situation can be used again in similar situations in the future. Design patterns, therefore, can

improve software quality and reduce development time through experience, reusability, and modularity of patterns.

In the early development phases of reactive systems such as telecommunications systems, designers model the desired

behavior of a system at an abstract level, and then implement the model in an implementation language.  Complex behavior

can be obtained by combining simpler building blocks: receiving an event from outside, performing a computation in

response to the event, and generating output events.

In this paper, we present patterns that we hope will be helpful to a telecommunications systems designer in the early

design phases.  The patterns describe behavioral patterns both informally and using a formal description technique,

communicating extended finite state machines (CEFSMs). CEFSMs consist of a finite set of states and transitions between

the states.  They communicate with each other and the environment via telecommunications paths through which signals

flow.  A CEFSM moves from one state into another by an input event while performing actions during the transition.  As



described in our first pattern, it may have predicates to select a transition for an event, and timers to handle timing

constraints.

The patterns also show the translation of the CEFSMs into SDL [ITU-T96]. SDL is an international standard language

to specify telecommunications systems, and is also used in complex, event-driven, real-time, and interactive systems where

many concurrent processes communicate each other by using signals. SDL is able to describe the structure, behavior, and

data of target system with a mathematical rigor that eliminates ambiguities and guarantees system integrity [Ellsberger+97].

In the following sections, we will present four patterns for telecommunications systems. They are based on the

CEFSMs, and each pattern models common behavior of CEFSM in a state transition diagram. In Section 3, we will show a

basic CEFSM that describes telecommunications systems formally. We will extend the pattern with predicates in order to

control the behavior of a CEFSM. The predicates help to reduce the number of states of CEFSM. We will also present a

pattern with timers to handle the timing constraints. In Section 4, we will propose three ways to expand the basic patterns

by merging the states of the basic CEFSMs. After that, we will present a pattern that handles repeated events with timing

constraints. The pattern is a combination of predicates and timers. The last one will present the dynamic creation of entities

in telecommunications systems. We will conclude by representing related work and further research.



3. Communicating Extended Finite State Machine

Context
Many telecommunications systems react to the events coming from the outside environment. The systems can be

modeled by distinct states and transitions. When a system receives an event, it moves from its current state to a new

state while performing some actions and providing output signals.

Problem
How can we formally model the telecommunications systems?

Forces
Understandability: We need to be able to describe the events, actions, and states in a standard notation to be

easy for communication with others. If the pattern is written using a standardized formal description, a tool support

such as analysis, simulation, verification, and code-generation might be easy to apply.

State Explosion: In representing the configuration of a telecommunications system, the number of states of the

system can increase rapidly such that it is difficult to model the system, which is known as state explosion. For

example, if a system implements a function of an eight bit counter, it needs at least 256 (=28) states to represent each

value of the counter. It is necessary to represent the configuration in a contracted form.

Timing Constraints: A reactive system such as a telecommunications system is an event-driven system, which

means an event initiates actions for the event. Sometimes the event may occur later than it is expected, or not happen

at all because of transmission delay, heavy traffic, wrong specifications, and so on. We must impose timing constraints

in modeling to handle the delayed event or the infinite waiting.

Easy Implementation: The system that is modeled by the formalism should represent the system's behavior

clearly and precisely. After that, developers implement or translate the model into a specific target language for the

execution of the behavior. It is necessary for the formalism to provide a simple path from model to implementation.

Solution
The behavior of a telecommunications system can be described in a communicating extended finite state

machine (CEFSM) that is composed of states and transitions among them [Ellsberger+97][Rozenblat01]. For a

transition, the system must receive an event from environment, and then it performs corresponding actions for the

event. After the actions, the system emits output signals if it has something to notify to the environment. In this paper,

we consider deterministic behavior, which means that the system has only one next state for an event. It is unusual to

design a system in one CEFSM. A system is generally composed of several entities, and each entity is designed in a

CEFSM. In this paper, we use entry and CEFSM interchangeably.

A CEFSM is 6-tuple: CEFSM = (S, s0, E, f, O, V), where S is a set of states, s0 is an initial state, E is a set of

events, f is a state transition function, O is a set of output signals, and V is a set of variables. The function f returns a

next state, a set of output signals, and action list for each combination of a current state and an input event. For

example, f (S1, e1) à  (S2, {o1, o2}, (encoding)) describes that upon an event e1 of an entity in a state S1, it performs an



action encoding and outputs o1 and o2 while moving to the next state S2. Although a general CEFSM doesn’t have a

field for the action descriptions, we add the field to briefly describe the main activities of a transition. The actions will

be refined in later develop phases. The variables are used to keep the values that are also used in predicates, which will

be described later.

A CEFSM can be represented by a state transition diagram, a directed graph whose vertices correspond to states

and whose edges correspond to transitions. Figure 1 shows a basic CEFSM and its state transition diagram in which

there are two states, S1 and S2, and two transitions. The arrow without a source state points to the initial state S1, and

the arrow indicates the initial transition describing the actions and output signals during initialization. Transitions that

do not alter the state are indicated by an arc that points to itself. The transition is labeled with an event, action list, and

output signals. It is denoted by event (parameters)/actions/outputs. The event may have parameters passing

information from other entities. Note that all events except the event of initial transition are mandatory while actions

and outputs of transitions are option. The ‘-’ symbol in a transition indicates that there is no corresponding value at

that field.

Predicates

A CEFSM can have predicates to control the behavior of the CEFSM so that some similar states can be grouped to

reduce the total number of states [Ellsberger+97]. Upon receiving an event, the machine checks a predicate that is

composed of variables, logical operators such as AND, OR, and comparison operators such as equal to, less than, and

greater than. If the predicate is true, the entity performs actions and produces output signals if it has something to

notify to the outside entities. In short, the CEFSM with predicates decides its next behavior based on the predicates.

The CEFSM with predicates is also 6-tuple, CEFSM = (S, s0, E, f, O, V), as the basic CEFSM except the state

transition function.  The function f returns a next state, a set of output signals, and action list for each combination of a

current state, an input signal, and a predicate. The predicate is a pre-condition for the function execution. The action

may include an assignment to a variable and a mathematical operation on the variables. For example, f (S1, e1, counter

= 8) à  (S2, {o1, o2}, (counter: = 0; encoding;)) describes that if an entity in a state S1 receives an event e1 and the

value of variable counter is eight at that time, it will move to the next state S2 and outputs o1 and o2 after setting the

counter to zero and performing encoding.

Figure 2 shows a CEFSM with predicates and its state transition diagram. A transition is labeled with an event, a

predicate, action list, and output signals. It is denoted by event (parameters)[predicate]/actions/outputs. Note that each

predicate that must return a Boolean value TRUE or FALSE is composed of variables and logical operators. The

Figure 1. Basic CEFSM and its State Transition Diagram

Basic_CEFSM = ({S1, S2}, S1, {event}, f, {outputs1, outputs2}, {param})

, where f is defined as

    f(-, -)           à  (S1, {outputs1}, (actions1))     /* initial transition */

    f(S1, event) à  (S2, {outputs2}, (actions2))

S1

S2

Basic_CEFSM

event(param)/actions2/outputs2

-/actions1/outputs1



variables in a predicate are generally either local variables of the entity or parameters of event. The predicate is an

optional field. If a predicate field is empty, it is the same as the basic CEFSM. It is very often to have several

predicates for an event. For example, if event1 and event2 of Figure2 are the same, we have two predicates, predicate1

and predicate2, for the event. In that case, the control goes to a different transition depending on the result of

predicates. To guarantee the deterministic behavior of an entity, the predicates for an event must be mutually disjoint.

Predicates after Actions

In the CEFSM with predicates, an event is followed by predicates to decide next transition. But in some cases

decisions need to be made after performing some actions. In other words, after performing a sequence of actions for an

events, an entity decides its next transition depending on the result of the actions. So the entity needs predicates after

the actions. Figure 3 shows a state transition diagram for this type of CEFSM in which there are four states, S1, S1', S2,

and S3. Note that the actions2 and outputs2 of the transition from state S1 to state S1' is followed by the predicates

predicate1 and predicate2. The control goes to a transition depending on the result of predicates. Note also that the

transitions from S1' do not have an event field.

Timers

A CEFSM can be supplemented with timers and timer-related operations. During a transition, the entity sets a

timer with a time value. If the timer is not cancelled by the entity, the timer will generate a time expiration signal after

Figure 3. State Transition Diagram of CEFSM with Predicates after Actions

S1'

-/[predicate1]actions3/outputs3

S2 S3

S1

event(param)/actions2/outputs2

- /[predicate2]actions4/outputs4

Predicates_after_Actions

-/actions1/outputs1

CEFSM_Predicates

        = ({S1, S2, S3}, S1, {event1, event2}, f,

            {outputs1, outputs2, outputs3}, {param1, param2})

, where f is defined as

    f(-, -, -) à  (S1, {outputs1}, (actions1))   /* initial transition */

    f(S1, event1, predicate1) à  (S2, {outputs2}, (actions2))

    f(S1, event2, predicate2) à  (S3, {outputs3}, (actions3))

Figure 2. CEFSM with Predicates and its State Transition Diagram

S1

event1 (param1)[predicate1]/
actions2/outputs2

S2

event2 (param2)[predicate2]/
actions3/outputs3

S3

-/actions1/outputs1

CEFSM_Predicates



the time duration has been exceeded. Generally, the entity handles the time expiration by either sending an error

notification or requesting a resubmission of the event. When an event that is wanted by an entity occurs before the

time expiration, the entity cancels the timer and proceeds normally. There are two timer-related operations, set and

reset. Set (v, T1) associates a time value v with a timer T1. Reset (T1) cancels the associated timer T1. We assume that

the time unit, for example milliseconds, is not defined in the pattern. It depends on the context of the application.

Actually, SDL does not define the time unit [Ellsberger+97].

The CEFSM with timers has the same definition as the basic CEFSM except it includes timers and operations

for the timers. Timer is an element of variable set. Figure 4 shows a CEFSM with a timer and its state transition

diagram. During the initial transition, a timer T1 is set with a time value v. On timeout for the timer T1, the entity

moves to the state S2 performing actions actions2 and outputting signals outputs2. If the entity receives an event e that

is wanted by the entity, it resets the timer and then performs the remaining transition.

Translation into SDL
The translation of a CEFSM into SDL can be done by a mechanical one-to-one mapping. Figure 5 shows an SDL

diagram fragment for the basic CEFSM of Figure 1. The initial transition is converted to a start symbol and a state

symbol S1. The initialization actions actions1 and output signals outputs1 are located between them. A transition is

represented by a input signal, tasks, and a sequence of output signals of SDL. In the figure, when the state S1 receives

an input event with a parameter p, it performs a task actions2 and outputs outputs2.

-/set(v, T1), actions1/outputs1

S1

CEFSM_Timers

S2 S3

T1/actions2/outputs2

e(param)/
reset(T1), actions3/
outputs3

CEFSM_Timers = ({S1, S2, S3}, S1, {e}, f, {outputs1, outputs2, outputs3},

                               {param, v, T1})

, where f is defined as

    f(-, -)      à  (S1, {outputs1}, (set(v, T1), actions1))    /* initial transition */

    f(S1, T1) à  (S2, {outputs2}, (actions2))

    f(S1, e(param)) à  (S3, {outputs3}, (reset(T1), actions3))

Figure 4. CEFSM with Timers and its State Transition Diagram

Basic_CEFSM (SDL Fragment)

event (p)

S1

actions2

S2

S1

actions1

outputs1

Figure 5. Translation of Basic CEFSM into SDL

outputs2

S1

S2

Basic_CEFSM

event(p)/actions2/outputs2

-/actions1/outputs1 DCL p any_type;



Translation of Predicates

The translation of predicates needs the decision symbols. Figure 6 shows an SDL diagram fragment for a

CEFSM with predicates where there are two predicates for one event. Upon receiving an event, the entity checks the

predicates predicate1 and predicate2 for the event. If the predicate1 is true, it performs actions2 and emits outputs2,

while if the predicate2 is true, it executes the action actions3 and generates outputs3.

Translation of Predicates after Actions

The translation needs the decision symbols after actions and outputs. Figure 7 shows an SDL diagram fragment

for the predicates after actions. Upon receiving an input event, it performs actions2 and outputs2, and then the entity

checks the predicates where the predicates may be affected by the actions2. Note that the state S1' is not shown on the

SDL diagram.

Figure 6. Translation of CEFSM with Predicates into SDL

S1

event (param)[predicate1]/
actions2/outputs2

S2

event (param)[predicate2]/
actions3/outputs3

S3

-/actions1/outputs1

CEFSM_Predicates

CEFSM_Predicates (SDL Fragment)

(predicate1 = TRUE)

(predicate2 = TRUE)

S1

actions1

outputs1

event (param)

S1

actions3

S3

outputs3

actions2

S2

outputs2

DCL param any_type;

Figure 7. Translation of Predicates after Actions into SDL

Predicates_after_Actions (SDL Fragment)

S1'

-/[predicate1]actions3/outputs3

S2 S3

S1

event(param)/actions2/outputs2

- /[predicate2]actions4/outputs4

Predicates_after_Actions

-/actions1/outputs1

S1

actions1

outputs1

event (param)

S1

(predicate1 = TRUE)

(predicate2 = TRUE)

actions4

S3

outputs4

actions3

S2

outputs3

actions2

outputs2

DCL param any_type;



Translation of Timers

Timers must be declared before they are used as other variables. Timers are objects to generate timer signals in

SDL. Figure 8 shows an SDL diagram fragment for the CEFSM with timers. When a timer T1 is declared, a timer

value v is assigned. So we don’t need the value in set operation. By the set operation, the timer is activated and can

generate a timer signal after the time value. In the state S1, timer signal T1 is handled as other events. If the event event

happens in time, the timer T1 must be reset to deactivate the timer.

Example
The behavior of a telecommunications system is described by a set of processes in SDL. A process

corresponding to a CEFSM communicates with other processes by signals. Each process has an implicit input queue

where signals are buffered in a FIFO style. The arrival of a signal triggers a transition, and the process can then

execute a set of actions such as variables computation, procedures calls and signals outputs. The example illustrated in

Figure 9 shows a data transfer between two basic CEFSMs that cooperate to send a data from one CEFSM to another

CEFSM.

The sending entity SendCEFSM receives an event client_data from a client entity that resides in an

environment. After performing an action encoding, the entity produces an output signal data that is transmitted to a

receiving entity RcvCEFSM. In SDL, signals between processes are transferred using signal-routes if they are

contained in the same block. If the processes are contained in different blocks, signals traverse channels. After the

transition, SendCEFSM remains in the state wait_client_data. Thus it can handle other client_data at the state. The

implementation of the entity is straightforward from the state transition diagram. After the brief implementation from

the diagram, the action encoding may be refined in detail.

RcvCEFSM is a receiving entity for the data. After performing the action decoding, it moves to the state

processing. Note that the entity does not have any output signals, which is possible because outputs are optional in a

transition.

Figure 8. Translation of CEFSM with timers into SDL

CEFSM_Timers (SDL Fragment) timer T1 := v;
-/set(v, T1),actions1 / outputs1

S1

CEFSM_Timers

S2 S3

T1/actions2/outputs2

event(param)/
reset(T1), actions3/
outputs3

S1

actions1

outputs1

set(T1)

T1

S1

actions2

S2

outputs2

event (param)

actions3

S3

outputs3

reset(T1)



Example of Predicates

Figure 10 describes a part of a call setup that reads a telephone number with nine digits. The entity

dialingCEFSM initializes its local variable counter to one and generates dialing_tone signal to initiate a dialing tone.

In the state dialing, it receives an event dial with a parameter digit, which means that the digit is pushed by a caller.

The entity receives eight more digits at the state. After receiving the ninth digit, the machine moves to the next state

connecting, which means the entity has the callee's phone number composed of nine digits. While moving to the state,

the entity generates a signal connect_req to request a connection with the callee. If the CEFSM doesn’t have

predicates, counter<9 and counter=9, the machine needs at least 10 states, i.e. initial state and states to represent each

digit received. Note that when the predicate counter<9 is true, the entity remains at the same state.

-/counter:=1/dialing_tone

dialing

DialingCEFSM

connecting

dial(digit)[counter=9]/-/connect_req (digits)

dial(digit)[counter<9]/
store digit, counter:=counter+1;/-

Figure 10. Nine Digit Dialing with Predicates

DialingCEFSM (SDL Fragment)

dialing

counter := 1

dialing_tone counter

(<9)

(=9)

dial (digit)

dialing

connecting

connect_req (digits)store digit

-

counter:=counter+1

DCL digit   character;
DCL digits charstring;

SendCEFSM

wait_
client_data

client_data

client_data/encoding/data
data

RcvCEFSM

wait_data

processing

data/decoding/-

(a) State transition diagrams

(b) Implementation in SDL

SendCEFSM (SDL Fragment)

wait_client_data

client_data

encoding

data

wait_client_data

RcvCEFSM (SDL Fragment)

wait_data

data

decoding

processing

Figure 9. Simple Data Transfer Using Basic CEFSMs



Example of Predicates after Actions

Figure 11 shows an error detection method using a checksum procedure checksum() in which if the result of the

procedure, rst, has zero, there is no error in the received message d. If it is not zero, the message has an error and a

notification message is sent. Note that the predicates rst = 0 and rst != 0 are evaluated based on the action checksum().

The control depends on the result of the action.

Example of Timers

Figure 12 presents a data transfer with an acknowledgement in a predefined time, 10.0. To guarantee the

receiving of a message ack, the entity SendAckCEFSM sets the timer T1 that has a default time value 10.0 when it is

declared. After performing an action encoding and sending data by send (date), the entity waits an acknowledgement

message in a state wait_ack. If the timer T1 expires before the event ack, the entity moves to the state error_state

emitting an output signal error. Otherwise it resets the timer T1 and moves to the next state acked.

SendAckCEFSM (SDL Fragment)

SendAckCEFSM

wait_ack

-/set(10.0, T1), encoding /
send (data)

acked

ack/reset(T1)/-

error_state

T1/-/error

Figure 12. Example of Confirmed Data Transfer with a Timer

timer T1 := 10.0;
DCL data any_type;

wait_ack

encoding

send(data)

set(T1)

T1

wait_ack

error_state

error

ack

S3

reset(T1)

Figure 11. Checksum with Predicates after Actions

Checksum_CEFSM (SDL Fragment)

wait_msg '

- / [rst = 0] encoding /
msg_ok

processing

wait_msg

msg(data) /
rst:=checksum(data)/ -

- / [rst != 0] /
msg_nok

Checksum_CEFSM

error_state

rst

(=0)

(!=0)

msg(data)

wait_msg

error_state

msg_nokencoding

processing

wait_msg

rst:=checksum(data)

msg_ok

DCL data any_type;



4. Composition of CEFSMs by Merging States

Context
In general, telecommunications systems have several entities for each system to fulfill its required functionality.

The entities are composed of several states and transitions. It is necessary for designers to define an entity with an

arbitrary number of states from the CEFSMs presented in the CEFSM pattern.

Problem
How can CEFSMs be merged to implement the behavior of a more complex entity?

Forces
Complexity of the Entity: If an entity is implemented by merging the CEFSMs that have already been

developed, the size of the entity can be too large to manage the entity. As an extreme case, a system can be

implemented in one huge CEFSM. But it is unreasonable in terms of development and maintenance. The designer

must design the system in subsystems.

Solution
A CEFSM can be expanded by merging with other CEFSMs. There are three common ways to merge: source

merge, sequential merge, and mutual merge.

Source Merge

As Figure 13 shows, if two CEFSMs have the same initial state S1 and the different transitions for events e1 and

e2, they can be combined to have an initial state and two transitions with each target state. This is commonly occurred

when a state receives several potential input events. Note that the merged entity should do both actions a1 and a3 and

both outputs o1 and o3 during the initial transition. The designer must check the effect of the merging that may cause

the different result compared to the result of the original CEFSMs. For example, if a1 was to set a variable to zero and

a3 was to set the variable to one hundred, the result of the combined entity is different from the original ones. In that

case, one of the initial states should change its name to a new one, for example, S1'. It is also possible to have conflicts

between a1 and a4, and a3 and a2 at the merged entity.

Sequential Merge

If a target state of a transition in a CEFSM is the same as a source state of a transition in another CEFSM, we can

S1

S2

S1

S3

+ e2/a4/o4 =

S1

S3

e2/a4/o4

S2

e1/a2/o2

Figure 13. Source Merge

-/a1/o1 -/a3/o3

e1/a2/o2

-/a1,a3/o1,o3



merge the target state with the source state to generate a sequential CEFSM. This situation is common when an entity

processes a sequential input from other entities.

Figure 14 shows the merging in which S2 can be reached either from state S1 or through the initialization

transition. In the combined version, the CEFSM goes to state S2 only through the state S1. As in Source Merge, the

designer must check the effect of the merging that may cause different results.

Mutual Merge

This is common when a machine returns its original state after a sequence of actions. The source state of one

CEFSM matches with the target state of the other and vice versa. The designer must identify the initial state of the

combined CEFSM. Figure 15 presents the mutual merging where S1 is the initial state of the combined CEFSM.

Translation into SDL

Source Merge

Figure 16 shows the implementation of Source Merge in SDL. It needs two transitions from the state S1. As

mentioned before, the events, e1 and e2, should be distinct.

Sequential Merge

As Figure 17 illustrates, there are two transitions where the target state of the first transition becomes the source

state of the second transition.

Mutual Merge

Once the initial state is identified, the implementation is straightforward. In Figure 18, the state S1 is the initial

state of the combined CEFSM.

S1

e1/a2/o2

S2

S2

S3

+ e2/a4/o4 =

S1

e1/a2,a3/o2,o3

S2

S3

e2/a4/o4

Figure 14. Sequential Merge

-/a1/o1 -/a3/o3

-/a1/o1

S1

e1/a2/o2

S2

S2

S1

+ e2/a4/o4 =

S1

e2/a4/o4

S2

e1/a2,a3/o2,o3

Figure 15. Mutual Merge

-/a1/o1
-/a3/o3 -/a1/o1



Source_Merge (SDL Fragment)

e1

S1

S2

e2

S3

Figure 16. Source Merge in SDL

Source_Merge

a1

o1

a3

o3

o2

a2

o4

a4

S1

S3

e2/a4/o4

S2

e1/a2/o2

-/a1,a3/o1,o3

S1

Sequential_Merge

Sequential_Merge (SDL Fragment)

Figure 17. Sequential Merge in SDL

e1

S1

S2

S1

e2

S3
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o1

a3

o3

o2

a2

o4

a4

S2S1

e1/a2,a3/o2,o3

S2

S3

e2/a4/o4

-/a1/o1

Mutual_Merge

Mutual_Merge (SDL Fragment)

Figure 18. Mutual Merge in SDL
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Example

Source Merge

Suppose we are designing a system to handle several packets. We can consider two cases: One is to handle a

connection request packet c_req and another is to handle a disconnection request packet d_req. At Case 1, we perform

a preparation action for the connection request c_prepare and emit a ready signal c_prepare_ok during the initial

transition. At Case 2, we perform d_prepare and d_prepare_ok during the initial transition.  If the two cases are

combined, we will have Case 3 where the entity performs the preparation actions and outputs for the both cases during

initialization. We do not describe the implementation in SDL because it is trivial.

Sequential Merge

In this example, let's assume that the system can be disconnected only after the connection setup is finished.

Case 1 is the same as the Source Merge example, but in Case 2, the source state should be in the connected state

because it is a prerequisite for the disconnection. In the combined case, the state disconnected can be reached through

the state connected.

Mutual Merge

This example shows a confirmed version of the simple data transfer of SendCEFSM described at the CEFSM

wait_packet

-/d_prepare/
d_prepare_ok

d_req/disconnection/
d_ok

disconnected

wait_packet

-/c_prepare/
c_prepare_ok

c_req/connection/
c_ok

connected

wait_packet

-/ c_prepare, d_prepare/
c_prepare_ok, d_prepare_ok

d_req/disconnection/
d_ok

disconnected

c_req/connection/
c_ok

connected

Case 1. Connection Scenario Case 2. Disconnection Scenario Case 3. Combined Scenario

Figure 19. Packet Handling CEFSM using Source Merge

connected

-/d_prepare/
d_prepare_ok

d_req/disconnection/
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c_req/connection, d_prepare /
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d_req/disconnection/
d_ok

disconnected

Figure 20. Packet Handling CEFSM using Sequential Merge



pattern. Upon receiving the event client_data from outside client, ConfirmedSendCEFSM performs encoding action

and outputs an event data to send data to its receiving peer. The entity moves to the state wait_ack in order to handle

the event ack from the received entity. If the entity receives the event, it notifies the client of the receiving of client

data and returns to its original state so that it can transfer other client_data.

ConfirmedSendCEFSM (SDL Fragment)

ConfirmedSendCEFSM

wait_data

wait_ack

client_data/
encoding/data ack/ack_handle/

client_data_ok

Figure 21. Confirmed Data Transfer using Mutual Merge
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5. Handling Repeated Events with Timing Constraints

Context
In telecommunications systems, one event is generally enough to initiate a reaction for the event. But in some

cases, the systems need a set of events to start actions. In other words, a CEFSM collects information from several

events in a given time, and then it performs actions based on the information. For example, if an entity wants to

encode a packet that is composed of several fragments and each fragment is given by one event from a sending entity,

the entity must receive all fragments at first. In that case, the entity starts the encoding after the events for all

fragments. It is reasonable to impose timing constraints for the events to avoid unlimited waiting.

Problem
How can we handle several events with timing constraints?

Forces
Timing Constraints: We can have two kinds of timing constraints in repeated events, one is a timing constraint

for each event and another is the total time limit of all events. The real values of the constraints are dependent on

specification.

Solution
We can merge the entity Repeat_Predicates and the entity CEFSM_Timers of Figure 4 to make a higher level

pattern. The entity Repeat_Predicates uses the predicates counter < MAX and counter = MAX for the repetition.

Figure 22 shows the merging in a state transition diagram. Note that we rename the states, actions, and outputs in the

merged diagram. Initially, a timer T1 is set for the timing limit of each event e, and T2 is set for the timing limit of all

events. An integer variable counter is set to one in order to count the number of events that have happened. At the state

S1, the entity handles the event e until it receives all the events, for example, MAX. If the counter is less than MAX, the

entity increases it and sets the timer T1 again. Setting a timer always performs reset() implicitly and the corresponding

timer signal is removed from the input queue, if it exists [Ellsberger+97]. If the timer T1 or T2 is expired, the machine

moves to a state to handle the error case.

Figure 22. Handling Repeated Events with Timers
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e(p)[counter=MAX]/a3/o3
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Translation into SDL
The translation is obtained easily from the state transition diagram.

Example
This example is a confirmed version of the nine digit dialing of the example of predicates. If a caller does not

push a digit in a given time bound, the entity notifies the caller by giving a special beep to redial the digits. This

situation is implemented at the transition from the state dialing to the state error_state. Note that the example only

checks the timing constraint for each event. The caller, therefore, must dial a digit in a time limit T1 but there is no

-/set(10.0, T1),c:=1/
dialing_tone

dialing

DialingWithTimer

connecting

dial(digit)[c=9]/reset(T1) /
connect_req (digits)

dial(digit)[c<9]/set(10.0, T1),
store digit, c:=c+1/-

Figure 24. Nine Digit Dialing with a Timing Constraint
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Figure 23. Translation of Repeated Events with Timers
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constraint for the whole dialing.

See also
The TimerControlledRepeat pattern [Geppert+96] repeats a message sending to avoid message loss during data

transfer. If a sender entity does not receive an expected acknowledgement in the given expiration time from a receiver

entity, the message is repeated by the sender. This pattern, however, does not consider the number of repeats. Thus the

entity does not know how many times it would repeat the action, although it defines a maximum number of repetition.



6. Dynamic Handlers

Context
In a client-server environment, there may exist several requests from clients at the same time. The server must

handle the requests concurrently to achieve high performance.

Problem
How can a server handle the multiple requests dynamically?

Forces
Server Capacity: If a server handles many clients at the same time, its performance will be degraded. In order

to provide services properly, the server needs to find a tradeoff between performance and maximum number of clients

that the server can handle at the same time. Since the performance depends on the server's capacity and types of

requests from clients, it is not always possible to find an optimal solution.

Static and Dynamic Approaches: We can consider two types of server in handling the multiple clients. One is

a dynamic approach where a server creates a new handler to handle each client. This approach lets the server maintain

exactly the number of handlers it needs. Another is a static approach in which the server provides a finite number of

handlers from the very beginning to reduce the overhead of handler creation. Since each approach has advantages and

disadvantages in a specific situation, we cannot say which one is better than another. The solution presented in this

pattern shows the dynamic approach. The static solution can be made in another pattern.

Solution
As Figure 25 (a) shows, an entity Admin creates an entity Handler dynamically for each client [Ellsberger+97].

The server block Admin-Handlers is composed of one static Admin and several dynamic Handlers. The Admin entity

that is created at the system initialization time waits for connection request signals from clients. Upon receiving a

signal connect_req, the Admin entity creates a Handler entity giving the address of the client, client_id. The address is

obtained by either a parameter of the signal connect_req or analyzing the origin of the signal. The dotted line from

Admin to Handler indicates the creation of a new entity. The Handler entity sends the signal connect_ok to the

corresponding client that requested the connection. When the client receives the signal connect_ok, it must also know

the address of the Handler for the later communications. After the connection setup, both the Handler and the client

perform communications through request and reply signals. The Admin entity can handle other connect_req signals

from different clients while the Handler entity is serving the client. When a session ends, either Handler or client can

initiate the disconnection by sending a signal disconnect_req. In the figure, client initiates the disconnection. The

Handler entity informs the Admin entity of the termination of the session by sending a signal terminate and ceases to

exist.

The diagram (b) of Figure 25 describes the signal flows among the entities. The diagram (c) shows the state

transition diagrams for the Admin and a Handler, in which the process termination, denoted by a cross symbol,

represents the end of process. Actually the cross symbol is not a standard notation of CEFSM. When a session starts



and ends, the Admin entity keeps the information on a Handler entity by the actions allocate and de-allocate. These

actions might be refined in later developments.

Admin (SDL Fragment)
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Handler (SDL Fragment)
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Figure 26. Translation of Dynamic Handlers into SDL
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Translation into SDL
Figure 26 (a) shows the translation of the structure of Admin-Handlers block. In SDL, the static structure of a

system is described by a hierarchy of blocks [Ellsberger+97]. A block can contain other blocks, resulting in a tree

structure. The leaf block is made up of one or more processes describing its behavior. We have two processes, Admin

and Handler, with the initial and maximum number of instances. Processes are connected with each other and to the

boundary of the block by signal routes, for example, SR1, SR2, and SR3 in the diagram.

The translation of the behavior is similar to other CEFSMs except the creation and termination of a process.

Although the diagram does not describe it, we can include a verification step for the process creation. In case of

successful creation, the offspring value of Admin entity has the instance number of the created entity. If not, it has the

value null.

Example
Figure 27 shows a simplified call handling of a switching system. A server block Call_Handling is composed of

an entity Call_Admin and an entity Call_Handler. When a caller tries to make a call, a signal off-hook goes to the

entity Call_Admin to indicate a call trial. The entity creates a Call_Handler to assign the call. The entity Call_Handler

sends a signal dialing_tone to indicate that it is ready to receive dialing digits, which is composed by merging the

entity DialingWithTimer presented in Figure 24 with a CEFSM that has connecting and talking states.

Call_Handling

[off-hook]
Call_Admin(1,1)

[digit,
on-hook]

[dialing_tone,
redial_beep]

Call_Handler(0,N)

[terminate]
create (caller_id)
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Figure 27. Call Handling with Dynamic Handlers
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See also
This pattern is similar to a pattern DynamicEntitySet [Geppert+96] where EntityAdministrator creates and

forwards requests to a TerminatingEntity. The difference is that our Admin entity does not forward the requests after

the creation of a Handler entity where communication is performed directly between the Handler entity and a client.

7. Conclusion
In this paper, we introduced patterns describing the use of communicating extended finite state machines. A CEFSM

represented in a state transition diagram is easy to understand because it describes the states, the events, and the actions

clearly. It can also describe the behavior precisely and formally. The formal description can provide several advantages, for

instance, in the tool support for the patterns and the design evaluation of the initial design made by the patterns. We also

showed the implementation of the patterns in a specific language SDL. We expect that this specific implementation will be

helpful with potential to be further reused in a real application.

In other research, [Geppert+96] proposed SDL patterns that represent their solutions and implementations in terms of

SDL, whereas we first model our solution in CEFSM, and then we translate it into SDL. As a result, the modeling in

CEFSM can be applied to other formal description techniques such as Estelle, and so on. [Yacoub+00] presents a pattern

language of finite state machines that provides solutions for the finite state machines in terms of an object-oriented design.

It proposed a basic FSM pattern and its extensions handling several design issues such as state transition mechanisms,

design structure, state instantiations, exposure of internal state, and the machine type. In our paper, we focused on the state

transition diagram and the implementation of a diagram in SDL.

The patterns presented in this paper describe relatively low-level behavior. In future work, we will add high level

patterns obtained by composition of the primitive patterns such as the pattern Handling Repeated Events with Timing

Constraints. Also, our patterns will be supplemented with the architectural patterns that will describe the structural aspects

of telecommunications systems.
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