
lock server, page 1 of 6

Lock Server

Robert Hirschfeld
hirschfeld@windwardsolutions.com

Jeff Eastman
jeff@windwardsolutions.com

28. July 1998

Abstract

In enterprise information systems based on a two-tier distribution architecture, there are
several clients working with shared resources. When designing such a system one must
ensure that each client that accesses such shared resources does not interfere with other
clients accessing and modifying the same resources. If the resource in question does not
have a thread safe interface and/or it does not provide concurrency control mechanisms, a
Lock Server attached to that shared source can help provide controlled concurrent access
which allows each client to work with a consistent view of the resource. This paper
discusses the architecture of such a shared Lock Server.

Name

Lock Server

Aliases

Lock Manager

Context

You are developing an application for a distributed enterprise information system where
some clients have to access or modify shared resources (Figure 1).

You have decided to design your application based at least on a two-tier distribution
architecture. One tier holds the resources that may be shared by several clients and
another tier holds the clients themselves.

Sometimes those shared resources do not provide any facilities to manage the concurrent
access to them, or they do not provide an appropriate interface to their own concurrency
control mechanism what makes it difficult to integrate them with the mechanism used by
the clients (e.g. an operating system’s file system or proprietary databases).

lock server, page 2 of 6

SR

Resource

UI - User Interface

BL - Business Logic

SR - Shared Resource

Clients

Shared Resources

BL

UI

Client 1

BL

UI

Client 2

BL

UI

Client n

Figure 1: Distributed information system

Problem

How can you ensure that each client has the opportunity to coordinate its access to the
shared resource with other clients to ensure an adequate level of resource consistency?

Forces

Some resources are not intended to be shared within a concurrent distributed environment,
therefore, they don’t provide a thread-safe interface. That may cause inconsistencies to the
resource when accessed by more than one client at a time. Examples of such
inconsistencies are an invalid resource state or an invalid state of a resource team of which
the resource in question is a member.

SR

Resource

UI - User Interface

BL - Business Logic

SR - Shared Resource

Clients

Shared Resources

BL

UI

Client 1

BL

UI

Client n

BL

UI

Client 2

Figure 2: Client-side interconnection for access coordination

lock server, page 3 of 6

Sometimes resources rely on client side coordination to deal with concurrency control
while accessing them. One way to provide this coordination would require the
interconnection of each client with every other client that wants to access the same
resource (Figure 2). Due to the fact that every client has to negotiate with all the others
and therefore has to know all of them, it is very expensive to introduce new clients to or
remove clients from the group. All clients have to agree about the resources to share to be
able to negotiate about the required access.

If one has access to the source code of the resource, it may be possible to add required
mechanisms like concurrency. This is not a good approach, however, as these
modifications may cause inconsistencies with future releases of the resource
implementation.

Encapsulation of the resource and adding of thread safety and concurrency control
features to the capsulemay cause the loss of the identity of the resource. That in turn could
create problems with other mechanisms in which the resource is involved.

Solution

Introduce a Lock Server into the system architecture (Figure 3). This Lock Server is a
system infrastructure component that is separate from and independent of each client and
the shared resources, too. It is known to all clients, so every client may access the Lock
Server to claim a lock for accessing the related resource.

SR

Resource

UI - User Interface

BL - Business Logic

NS - Lock Server

Clients

Shared
Resources &
Lock-
Server

BL

UI

Client 1

BL

UI

Client 2

BL

UI

Client n

LS

Schnaaf

Figure 3: Lock-Server supporting access coordination

Before a client accesses a shared resource, it has to acquire a certain lock for this resource
from the Lock Server (Figure 4). After the client has completed its work with the resource
it should release the lock to allow other clients to access the resource fairly.

lock server, page 4 of 6

Depending on the lock model used, a request to acquire a lock may be rejected by the
Lock Server if it conflicts with other locks already granted.

ResourceClient nClient 2Client 1 Lock Server

accessResource

accessResource

releaseNonExclusiveLock

acquireExclusiveLock

releaseExclusiveLock

releaseNonExclusiveLock

accessResource

acquireNonExclusiveLock

acquireNonExclusiveLock

acquireExclusiveLock

Figure 4: Sample scenario showing lock acquisition

Enforce all possible clients of a resource to use its associated Lock Server to avoid
inconsistencies. Therefore all system parts sharing a resource have to agree on using its Lock
Server to coordinate concurrent access.

Consequences

All clients have to agree about the resources to share to be able to negotiate about the
required access with the Lock Server.

You also need to deal with the situation where a client locks a resource and then either
forgets to unlock it or dies.

Since the Lock Server may be located anywhere in the distributed environment, the
additional communication between a Lock Server and its associated clients may introduce
an additional performance reduction.

Implementation

Granularity. The application of a Lock Server is not limited to a shared resource as a
whole. Instead you could divide the resource conceptually into smaller parts that can be
treated as resources with their own Lock Servers. You should try to divide every resource
into disjoint parts to avoid additional locks that cause other clients to wait even if they
sometimes don’t have to. If you are not able to obtain a disjoint division, you have to
ensure that clients working with such resources take care about the locks of the joint set of
resources.

Several Resources. A Lock Server may be responsible for managing concurrency to more
than one resource. Here the resources managed by the server must be distinguishable by

lock server, page 5 of 6

all clients and the server. This could be achieved by introducing a name for each resource.
All clients have to agree about which name is associated with which resource and they
have to provide the proper name to the Lock Server while acquiring and releasing a certain
lock.

Communication. If your applications are intended to run within a distributed
heterogeneous environment, you should decide to apply standards like CORBA and
CORBAservices from the Object Management Group (OMG) as much as possible
([OMG94, OMG95, OMG96]). So you can keep your application and the Lock Server
interfaces independent from the constraints usually introduced by the environment like the
programming language and the network protocol.

Initial Connection. If a desktop client wants to establish an initial connection to the Lock
Server, it has to look for it. Here some sort of naming service may help by supporting the
client to access the Lock Server by a symbolic/meaningful name. On solution could be the
application of the OMG Naming Service ([OMG96]).

Sharing & Concurrency. A Lock Server is usually shared among many clients. Therefore
you are responsible for coordinating concurrent access to the shared Lock Server to avoid
race conditions. Since you are the developer of the server, it should not be that hard to add
concurrency control and thread safety features. One solution could be the application of
the OMG Concurrency Control Service to serialize access ([OMG96]).

Location. A Lock Server should be located on a reliable system because it must be
available as much as the resources themselves. It could be placed nearby the resources
(e.g. the same network node or even the same object space).

Related Patterns

Notification Server1 ([Hirsch96]): Like the Notification Server the Lock Server is a server
that is attached to a certain kind of resource without affecting the interface or
implementation of that resource.

1 Notification Server: In enterprise information systems based on a multi-tier distribution architecture, there are
several clients working with shared resources. When designing such a system you have to ensure that each client has
a consistent up-to-date view on the actual contents of the shared resource. If the resource in question is passive, i.e.
the resource is not able to notify interested clients about changes of its (internal) state, a Notification Server, attached
to that passive resource, helps achieving such a consistent view for each client ([Hirsch96]).

lock server, page 6 of 6

Known Uses

A prototype of a Manufacturing Control System at a big German automobile company
uses the Lock Server for coordinating access to shared resources located in the middle tier
within a Three-Tier Distribution Architecture ([Hirsch97]).

Hewlett-Packard’s DistributedSmalltalk introduces a resource manager (DSTResource-
Manager) that is used in the Presentation-Semantic-Split framework to manage resources
that are shared between several clients ([HP95]).

Acknowledgments

Thanks are due to Steven Abell and Antonio Rito da Silva for giving helpful hints for
improvement.

References

[Hirsch96] Hirschfeld, R.:
Notification Server.
Workshop on Patterns in Systems Architecture,
OOPSLA'96, San Jose CA, 1996

[Hirsch97] Hirschfeld, R.:
Three-Tier Distribution Architecture.
In: Collected papers from the PLoP '96 and EuroPLoP '96 Conferences,
Washington University, Department of Computer Science,
Technical Report No. wucs-97-07, February 1997

[HP95] HP Distributed Smalltalk User’s Guide.
Hewlett-Packard, October 1995

[OMG94] Object Services Architecture.
Object Management Group, December 1994

[OMG95] The Common Object Request Broker: Architecture and Specification
Object Management Group, July 1995

[OMG96] CORBAservices: Common Object Services Specification.
Object Management Group, March 1996

