
Copyright © 1998, 1999 Philip Eskelin.
Permission is granted to copy for the PLoP 1999 conference. All other rights reserved.

Layering Frameworks in Component-
Based Development

Part of the Component Design Patterns Project

Philip Eskelin
Ernst & Young LLP
750 Seventh Avenue

New York, NY 10019
+1 (212) 733-7638

philip.eskelin@acm.org

Abstract
Many projects today use a component-based approach to developing software. Component-Based
Development (CBD) stresses language and platform interoperability, and separation of interface from
implementation. Existing and newly constructed components are being deployed to clients and servers to
build flexible, reusable solutions.

Throughout the history of computing machinery, hardware and software engineers have endeavored to
make it easier to utilize computers to solve problems. Many times, this has been done through raising the
level of abstraction. And a consistent, exponential increase in the performance and storing ability of these
computers has facilitated it.

Components and component frameworks are being used today to build solutions at a higher level of
abstraction. However, successful integration and deployment can be a complicated task. This paper
presents LAYERED COMPONENT FRAMEWORK as a pattern that helps framework builders build more
cohesive and flexible component frameworks.

Layering Frameworks in Component-Based Development

Page 2

Introduction
As with many other technology trends, industry analysts look into their oracles and promise that CBD is
the big silver bullet. While it provides many benefits and can facilitate rapid delivery of successful
solutions with a high return on investment, it's never a drop in the hat. Lack of solid project management,
architecture, and design in CBD can be just as lethal as with any other technology panacea. Developing
software in the context of CBD is not easy, but it can lead to highly successful results if done using
proven techniques.

How do we make it easier for software developers to do it right? Let's take a step back and explore a
historical trend we've seen in software development.

Raising the Level of Abstraction
Throughout the history of computing machinery, hardware and software engineers have endeavored to
make it easier to utilize computers to solve problems. And an exponential increase in performance with a
consistent reduction in size and cost is what makes it possible. This has facilitated a trend of raising of
the level of abstraction between the user and the computer to higher and higher levels.

Perhaps one of the first instances of this trend was punch cards. They made it easier for the programmer
to quickly enter a batch of commands into a computer's operating system. Programmers went from
directly controlling the machine's buttons and switches to feeding punch cards into a slot.

Over the last few decades much of this change has occurred in software development. Programming
languages, compilers, software components, and frameworks continue to make it easier and easier for
programmers to build applications and systems that are faster and simpler to build.

For example, in the 1970s, programmers commonly wrote code in assembly language. Then, more
efficient compilers emerged that allowed programmers to write code in higher level languages such as
C++ that were nearly as efficient as if they wrote it in assembly. Now programmers could craft solutions
more rapidly that were easier to maintain and debug with an acceptable level of performance.

The trend was inevitable, driven by economic pressure and a consistently exponential increase in
performance of computing and networking. In any software project, there is a tradeoff between the
amount of programming effort, application functionality, and resulting performance. Better hardware
means that there is more performance available to be spent on increased functionality and reduced
development cost [Bolosky+98].

Over the last few years, it has been pushed further by CBD becoming a mainstream technique for reusing
components and programming at a higher level of abstraction. Different programming languages and
development environments are being used in CBD to assemble solutions from components and
frameworks of all shapes and forms.

However a major drawback is that too many layers can make it more difficult than it is worth. It can
increase the pain at assembly at a virtually exponential rate. How can one reap the benefits from a higher
level of abstraction without entering an abyss of integration nightmares? The LAYERED COMPONENT
FRAMEWORK pattern helps you answer this question.

3

LAYERED COMPONENT
FRAMEWORK*

Components and
Component Frameworks

Object-Oriented
Frameworks

Software Frameworks

Operating Environment

Application or Business Framework

… the patterns BUY WITH CARE and BUILD FOR THE USER can result
in building or reusing frameworks that provide an abstract design for
solutions to a family of related problems. Frameworks represent a large-
scale form of reuse that can reduce development costs. Users of
frameworks have requirements that often transcend its scope. This
pattern describes a way of structuring a framework to simplify the
architecture of an otherwise complex solution.

� � � �

Frameworks should increase productivity and reduce
development costs through large-scale reuse. Yet their
builders often make assumptions that fail to meet user
requirements. As a result, customization and integration
become extremely complicated, making the situation worse
rather than better.

A single framework can be complex, expensive to develop, and
difficult to use. Users might spend time finding clever ways to work
around deficiencies in the framework because the framework doesn't
support adequate customization or the ability to bypass it for direct

4

access to lower-level frameworks. Sometimes the components and
interfaces they provides are functionally adequate, but other
requirements are not met (e.g., performance), forcing the programmer to
break out of programming by interface and program directly to a lower-
level implementation.

Programmers might require special support for distribution, fault
tolerance, data entry, market feeds, data storage, reporting, visualization,
etc. Large systems typically require many of these features in their
architectures.

Existing frameworks tend to support some or most of the problem
domains that should be addressed, but rarely support all of them.
Frameworks that attempt to provide all these features out of the box tend
to make incorrect assumptions that make it extremely difficult to use.

For example, an order management framework might implement a
simple security model based on users and groups that requires the user to
enter a password at login which is stored as an encrypted string in a
database. This might not be enough for an Internet-based order
execution system that requires 128-bit encryption, authentication,
authorization, and several different levels of access.

Other systems might perhaps not require security at all, or may need
to integrate with an external enterprise security infrastructure.
Framework developers cannot meet the needs of everyone without undue
side effects.

A better approach is to build a component framework consisting of
order management components layered on top of an application services
framework that provides security, transactions, data access, resource and
lifecycle management.

The application services framework abstracts the programmer from
dealing directly with implementation details of core application services,
and the component framework abstracts the programmer from dealing
with common order management services. Together, they provide the
same functionality. However, the layered approach reduces complexity
and allows programmers to integrate custom components or bypass order
management components altogether.

Rather than being faced with the problem of dealing with different
requirements crossing many problem domains, framework builders are
sometimes presented with the opposite: too many layers. They increase
indirection, making integration difficult, and often perform insufficiently.
Let us consider the Microsoft Universal Data Access architecture as an
example. Programmers can use a component called ActiveX Data
Objects (ADO) that provides uniform data access interfaces to relational

5

and non-relational data. In this example, the programmer is using ADO
to access a Sybase database.

Sybase
DB-Lib

Intersolv
ODBC
Driver

Sybase
Database

ODBC
Driver

Manager

ODBC
OLEDB
Provider

OLEDB
ActiveX

Data
Objects

Too many layers . . .

ADO provides the highest level of abstraction in terms of uniform
database access, but there are too many layers in between the
programmer and the data. ADO goes through six different layers until it
finally reaches the database. Many enterprises locate the database on a
remote server. In addition to the above layers, several transport layers
may be used to access it through a network. The integrator is forced to
spend time ensuring that all six layers and the network are installed and
configured correctly for the programmer to utilize ADO. A more direct
approach is desired.

A better approach

Sybase
ProviderOLEDB

ActiveX
Data

Objects
Sybase

Database

A well-layered approach eliminates many of the excess layers by
using a Sybase Provider that provides direct data access to the Sybase
database. The assembler integrates less moving parts, and the
programmer has the option of bypassing ADO to access lower-level
components. Also, additional providers can be integrated that provide
access to other data sources while allowing the programmer to reuse the
same ADO interfaces for data access.

Therefore:

Build higher-level frameworks in terms of lower-level
frameworks. Each layer should provide a discernible and
cohesive abstraction to lower-level frameworks. Give
programmers who reuse the framework the freedom to bypass
and customize it when necessary.

� � � �

BYPASSABLE ABSTRACTIONS can be used by the programmer when

6

the component framework is unable to meet some requirements (e.g.
functionality isn’t suitable, unacceptable defects or performance issues
exist, etc.). Framework layers will need to be integrated to act as a
cohesive whole. Component frameworks define their own ABSTRACT
INTERACTIONS. ADAPTERS [Gamma+95] can be used to interact with
components in different frameworks that talk using different protocols.
COMPONENT GLUE and MEDIATOR can be used to integrate frameworks
or as an aid to assembling components together in a component
framework.

7

Conclusion
Future performance and storage capacity increases in hardware will continue to facilitate this trend of
raising the level of abstraction even further. As software and component frameworks are built to futher
abstract the programmer from the details of the system, allowing them to focus on the solution at hand, it
is imperative that framework builders provide cohesive designs, assemblers integrate the appropriate
layers, and programmers are allowed to bypass them.

Acknowledgements
Comments and initial conception from Nat Pryce in discussions that led to the definition of the
component framework came from discussions in the Component Design Patterns language project.

And thanks to Stuart Barker, Michael Feathers, Ralph Johnson, Scott Johnston, and Peter Maier for
contributing to the Wiki Wiki Web discussion and evolution of the LAYERED COMPONENT FRAMEWORK
pattern.

References
[Alexander+77] C. Alexander, S. Ishikawa, M. Silverstein with M. Jacobson, I. Fksdahl-King, and

Shlomo Angel. A Patterns Language: Towns, Buildings, Construction. Oxford
University Press, New York, 1977.

[Bolosky+98] W. Bolosky, R. Draves, R. Fitzgerald, C. Fraser, M. Jones, T. Knoblock, and R.
Rashid. Operating System Directions for the Next Millenium.
http://research.microsoft.com/sn/Millennium/mgoals.html.

[Booch+99] G. Booch, I. Jacobson, J. Rumbaugh. The Unified Modeling Language User Guide,
Addison-Wesley Longman, Reading, MA. 1997.

[Gamma+95] E. Gamma, R. Helm, R. Johson, J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley Longman, Reading, MA, 1995.

[Johnson+88] R. Johnson and B. Foote. Designing Reusable Classes. Journal of Object-Oriented
Programming, Vol. 1, No. 2, June/July 1988.

[Johnston+98] S. Johnston and J. Gautier, Layers of C++ Frameworks in ivtools,
http://www.vectaport.com/ivtools/ivtools-layers.html.

 [Kara98] D. Kara. Build vs. Buy—Maximizing the Potential of Components. Component
Strategies, Vol. 1, No. 1, July 1998.

[Szyperski97] C. Szyperski. Component Software, ACM Press/Addison-Wesley Longman, 1997.

