
Attributes and Associations in Object Modeling
Paul Asman, Federal Reserve Bank of New York, September 1999

Object-oriented software developers often create models, especially if they work
cooperatively with users. Developers use models to show users that they understand their
domain and needs, and to give programmers a basis for coding. Models that meet both
these goals can be difficult to create.

Some of the trouble lies in determining whether to represent domain elements with
attributes or associations. Superficially, these decisions may appear simple. James
Rumbaugh has written, "Basically, attributes are for representing relationships between
objects and values without identity, whereas associations are for representing
relationships between objects and other objects" (Rumbaugh 1996). What could be
easier?

When you apply this principle, though, you soon encounter tough cases. It is clear that a
character is a value without identity. But this is less clear of a string, which seems to be
both without identity as well as one of the "other objects," an instance of class String.
This is even less clear of an address, although this is one of Rumbaugh's examples of an
attribute. Perhaps an address can be a value without identity, for example in domains
where addresses are used only for generating mailing labels. But an address can also be a
first-class object of its own, as it is in an insurance application.

Deciding between attributes and associations is a problem for modeling, not
implementation. When you implement a model in an object-oriented language, each
element of the model that you retain becomes part of a class specification. Code is not
sand, and you cannot draw a line representing an association in it. This should create no
misgivings: good code is accurate and efficient, but does not mirror a model.

In theory, you could build models without associations, just as you could build models
without attributes. (For the first option, see Velho and Carapuça 1994; for the second, see
Tanzer 1995, who rejects it.) You therefore cannot choose between an attribute and an
association by appeal to accuracy, that is, by reference to the reality underlying the
model. Instead, you choose one or the other for what it communicates to the users and to
the programmers.

Determining what to model with an association and what with an attribute is thus an art,
not a science. However, you can subject aspects of the determination to science, or at
least to engineering. The following two patterns take the broad heuristics for identifying
attributes and associations found in object modeling literature, and replace them with
more mechanical decision procedures. Successful application of the patterns will reserve
art for what is beyond science.

Permission is granted to copy for the PloP 1999 conference. All other rights reserved.

2

The first pattern, Stable Representations, applies uniformly to both analysis and design,
and shows how to identify those elements that should always (with limited and specific
exceptions) be modeled either with attributes or with associations. The second pattern,
Changeable Representations, addresses forces that may yield different results for analysis
and design, particularly regarding object navigation. You can apply the patterns
sequentially, but need not. Stable Representation deals with easier cases, and you might
want to apply it first for that reason.

These patterns deal with only one set of problems in object modeling. They do not, for
example, show when to create association objects, which by definition “associat[e] two
other objects” (Boyd 1998). These two patterns are therefore part of a larger and as yet
unwritten pattern language.

References:

• Boyd, Lorraine L., “Business Patterns of Association Objects,” in Martin, Robert
C., Dirk Riehle, and Frank Buschmann, Pattern Languages of Program Design 3,
Addison-Wesley, 1998.

• Rumbaugh, James, "A Search for Values: Attributes and Associations," Journal
of Object-Oriented Programming, Volume 9, Number 3, June, 1996, pp. 6-8,49.

• Tanzer, Christian, "Remarks on Object-Oriented Modeling of Associations,"
Journal of Object-Oriented Programming, Volume 7, Number 9, February, 1995,
pp. 43-46.

• Velho, Amândio Vaz and Rogério Carapuça, "From Entity-Relationship Models
to Role-Attribute Models," in Proceedings of the 12th International Conference
on Entity-Relationship Approach, Arlington, Dallas, USA, December, 1993,
Springer-Verlag, 1994, and "Attribute: A Semantic and Seamless Construct," in
Magnusson, Boris, Bertrand Meyer, and Jean-Marc Nerson, Technology of
Object-Oriented Languages and Systems: Proceedings of the Thirteenth
International Conference Tools Europe '94 Versailles, France, Prentice-Hall,
1994.

Acknowledgements

The author thanks Kyle Brown, whose shepherding of this paper helped greatly in the
uncovering of its contents, and the participants in its workshop presentation at the PLoP
1999 conference. They were gracious, thoughtful, and thorough.

Disclaimer

The views expressed in this paper are those of the author and do not necessarily reflect
the position of the Federal Reserve Bank of New York or the Federal Reserve System.

3

Stable Representations

Context

You are creating a model. You know that any associations you draw will eventually be
implemented with attributes (or not at all), but you also know that your model will lack
expressive power if it does not show links between classes. You know as well that you
can go too far in drawing associations, cluttering your model with classes that are not an
interesting part of your domain.

In creating a model, you respond both to forces that remain the same whether you are
engaged in analysis or design and to forces that may differ. This pattern resolves forces
that remain the same. A second pattern, Changeable Representations, responds to forces
that may differ for analysis and design, and deals with most of the issues surrounding
object navigation.

Problem

Which domain elements are best modeled with attributes, and which with associations,
whether in analysis or design?

Forces

• Putting associations into a model clearly shows "the web that ties an entire model
together" (Rumbaugh 1996); without associations, you don’t see this web.

• An "enormous number of associations of very different importance" (Tanzer
1995) produces clutter and confusion, and obscures the relevant portion of the
web.

• Elements have different roles in different domains. For example, a billing domain
is likely to use postal code only for generating mailing labels; there will be little
to say about a postal code in that domain other than what it is. An insurance
domain, however, may associate postal code with risk level and use it for setting
rates.

• Elements have different connections in different domains. (See Papurt 1994.) A
real estate tax domain, for example, requires access to property owners through
addresses as well as access to addresses through property owners, while most
other domains require only the latter.

4

• Object models tend to ignore time. But objects hold some elements throughout
their existence or nearly so, and hold other elements temporarily, or only at
certain times. A person, for example, generally receives a name shortly after birth
and has some name from that time on. On the other hand, a person may have a
spouse, but generally not while a child, and perhaps not into old age. (See
D'Souza 1994.)

• Different assumptions may be made about the visibility of elements when they are
modeled with attributes or associations. The software tool Rational Rose, for
example, treats attributes in models as private and associations in models as
public by default. Unless a modeler changes element visibility, then, Rose will
generate Java code implementing a model’s attributes with private attributes and a
model’s associations with public attributes.

Solution

1. Use an attribute to model an element when

• There is nothing to say about the element other than what it is, and nothing
that you will ask it to do. An example is a character, such as the letter 'c'.

• Everything that you will ask the element to do comes as part of any object-
oriented language you might use. Examples include strings and numbers. You
may ask an element that is an instance of String to return its first character, but
the code for this will come with the implementation language; you won’t need
to write it.

2. Use an attribute to model an element even though you define a class for it when

• You treat the element as a fundamental type, as if it came with the language.
An example is currency (Fowler 1997).

• Only one class has access to the element. Most identifiers (e.g. name, social
security number, and bank routing number) fall under this guideline.

Since you must code the fundamental types you create, you must model them on
at least one diagram as classes with methods. Similarly, since elements with
access through a single class often have methods defined for such operations as
formatting and validation, you will normally model them also as classes on at
least one diagram. (Bank routing numbers, for example, are validated by the
computation of the last digit, which is a check digit.) Create one or more diagrams
dedicated to your fundamental types, and one or more diagrams dedicated to
elements with access through a single class. Associations may appear these
diagrams (for example, between address and post office), but need not.

5

3. Use an association to model an element when

• The element is not subject to the previous guidelines, and different classes in a
model use it differently. An example is bank account, which person and
banking institution use differently. Note the qualification "in a model," which
recognizes that you model an element differently in different domains. An
element accessible from multiple classes in one domain may be accessible
only from one class in another, and therefore be subject to a previous
guideline.

• The element is part of a bi-directional relationship between two classes. (You
need not model it as a bi-directional association, though: see Changeable
Representations.) Do not model this element by specifying an attribute in each
class of the type of the other class.

• Objects do not hold the element throughout their lifetimes (or nearly so). This
is especially important if you think you may subclass these objects, for it is
generally better to redraw associations to a subclass than to carry along or
reassign inappropriate attributes. Note that this guideline offers no guidance
when an element is held throughout the lifetime of an object (as are, for
example, one's parents).

Example

The following sketch shows a simplified part of a banking domain modeled according to
the solution. Three classes are used as attribute types rather than represented as classes
linked by associations: String and Integer, which are Java classes, and Address, which is
not. Address will appear as a class on another diagram, following solution #2. ABA
(bank routing) number and the other integers may also be drawn as classes on another
diagram if, for example, they include validation routines.

Person
name : String
socialSecurityNumber : Integer
address : Address

BankAccount
accountNumber : Integer

0..*

1..*

bankAccount

0..*

person1..*

BankingInstitution
name : String
abaNumber : Integer
address : Address

0..*

1

bankAccount

0..*

bankingInstitution 1

6

Resulting Context

While this pattern solves many of the issues in choosing between attributes and
associations, it does not deal with situations where the different expressive goals of
analysis and design models come into play. You should therefore apply Changeable
Representations simultaneously to or after applying this pattern. Choices not covered by
either of these patterns remain subject to art.

References

• D'Souza, Desmond, "Working with OMT, part 2," Journal of Object-Oriented
Programming, Volume 6, Number 9, February 1994, pp. 68-70,72.

• Fowler, Martin, Analysis Patterns: Reusable Object Models, Addison-Wesley,
1997.

• Papurt, David M., "The Object Model: Attribute and Association," Report on
Object Analysis & Design, Volume 1, Number 4, November - December 1994,
pp. 14-17.

• Rumbaugh, James, "A Search for Values: Attributes and Associations," Journal
of Object-Oriented Programming, Volume 9, Number 3, June, 1996, pp. 6-8,49.

• Tanzer, Christian, "Remarks on Object-Oriented Modeling of Associations,"
Journal of Object-Oriented Programming, Volume 7, Number 9, February, 1995,
pp. 43-46.

7

Changeable Representations

Context

You are creating a model, either for analysis or design. You have already applied Stable
Representations, or are applying it simultaneously to this pattern. In applying this pattern,
you are resolving forces that differ for analysis and design. As in Stable Representations,
you are trying to retain the expressive power of links without diminishing that power
through clutter.

Problem

Which domain elements are best modeled with attributes, and which with associations, in
analysis and in design?

Forces

• While it is inevitable that some programming considerations will effect a model (such
as the decision to implement in an object-oriented language), such considerations
should have as limited a place in analysis as is feasible.

• Analysis should (and often does) precede the delineation of target applications. Even
when it does not, directing analysis to target applications lessens the possibility of
reuse.

• An analysis model should represent its domain, and include elements conceptually
important to that domain even if those elements are thought unnecessary to target
applications.

• When design follows analysis, the designer adapts those products of analysis that are
necessary to target applications. A designer normally eliminates elements that have
no part in target applications.

• According to Fowler 1997, “A number of object-oriented practitioners are
uncomfortable with using associations in OO analysis. They see associations as
violating the OO programming principle of encapsulation.” Object-oriented
practitioners feel this discomfort even more deeply, and more appropriately, in
design.

8

• Associations should not be modeled in only one direction during analysis, where
navigability is in general unimportant.1 In some cases, modeling an association in
only one direction during analysis would cause no harm, but it would also realize no
gain, so there is no reason to risk it.

• Navigability matters to design. In design, “associations represent responsibilities”
(Fowler and Scott 1997), and responsibilities are directed, either unidirectionally or
bidirectionally.

Solution

During analysis,

1. If “the reverse direction [of a candidate association] is determined to be
unimportant during analysis” (Papurt 1994; his emphasis) – that is, if the
navigation is conceptually unidirectional – model the element as an attribute. For
example, in a domain in which geographical areas and demographics are of no
consequence, model post office as an attribute of address (although it may appear
as a class with an association to address on one diagram, following Stable
Representations solution #2).

2. If navigation from one element of a domain to another conceptually goes in both
directions, model the relationship as an association. Do this even if one direction
is not relevant to target application(s), for other applications will then be able to
reuse the analysis. For example, in a domain in which addresses may potentially
be used for more than mailing, model an association between address and person
during analysis, even if you will make address an attribute of person in design. In
a demographics domain, model an association between post office (identified in
the United States by ZIP code) and address.

During design,

1. If navigation from one element of a domain to another conceptually goes in both
directions (as found in analysis), but one direction is irrelevant to the
application(s) being designed, model the relationship as a unidirectional
association. (See Papurt 1994.) The association between a person and his or her
car may be bidirectional or have unstated directionality in an analysis model, for
example, but be navigable only from owner to car in a design model. The

1 Some writers prefer associations in analysis models to be bidirectional (e.g. Fowler and Scott 1997: “each
association has two roles”; see also Papurt 1994), while others prefer them to be non-directional (e.g.
Henderson-Sellers 1998). The distinction between bidirectional and non-directional associations has little
consequence, however. UML even represents both unstated and bidirectional navigability equivalently: “If
navigability has not been decided, then it is bidirectional in the general case” (Rumbaugh et al. 1999).

9

association modeled in analysis would nonetheless remain an association in
design.

2. If, however, all that you retain of an element modeled as an association in analysis
is a value, model it as an attribute. For example, if target application(s) use
address only for mailing purposes, model address as an attribute, even if it was an
associated class in analysis. (Following Stable Relationships solution #2, there
will be one diagram on which address appears as a class, but there will be no
associations to that class.)

Examples

In certain demographic domains, a post office is more than a part of a mailing address.
Some insurance applications, for example, use post office (ZIP code) to set rates, and
some marketing applications use it to identify potential customers. In such applications,
this would be an appropriate diagram in an analysis model:

In a design model for a marketing application, this would be an appropriate diagram:

Person

PostOffice
zipCode

Address
0..*0..*

residesAt

0..*

isResidenceOf

0..*

0..1

1..*

isServedBy0..1

serves1..*

Person Address
0..*

address

0..*

DirectMailMarketer
PostOffice

zipCode

1..* addresses1..*

1..*

target

1..*

10

In other domains, post office is simply a part of an address. In some such domains, this
would be an appropriate diagram in an analysis model:

In other domains, addresses are used for nothing but mailing labels. In such domains,
address would be appropriately diagrammed in both analysis and design models as an
attribute of type Address (which would be specified on another diagram):

Resulting Context

When this pattern is applied in conjunction with Stable Representations, it solves those
issues in choosing between attributes and associations that are subject to engineering.
Other choices remain subject to art.

References

• Fowler, Martin, Analysis Patterns: Reusable Object Models, Addison-Wesley,
1997.

• Fowler, Martin, with Kendall Scott, UML Distilled: Applying the Standard Object
Modeling Language, Addison-Wesley, 1997.

• Henderson-Sellers, Brian, "Open Relationships - Associations, Mappings,
Dependencies, and Uses," Journal of Object-Oriented Programming, Volume 10,
Number 9, February 1998, pp. 49-57.

• Papurt, David M., "The Object Model: Attribute and Association," Report on
Object Analysis & Design, Volume 1, Number 4, November - December 1994,
pp. 14-17.

• Rumbaugh, James, Ivar Jacobson, and Grady Booch, The Unified Modeling
Language Reference Manual, Addison-Wesley, 1999.

Person
address : Address

Address
zipCode

Person
0..*0..*

residesAt

0..*

isResidenceOf

0..*

	Acknowledgements
	Disclaimer
	Stable Representations
	Changeable Representations
	
	Examples

