
Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 1

A Mini-pattern language for Distributed Component
Design

Kyle Brown
IBM Corporation

brownkyl@us.ibm.com
Philip Eskelin

CS First Boston
philip@eskelin.com

Nat Pryce
Imperial College, London

Introduction

This language is an exploration of the problem of building distributed systems using component
technology. Unfortunately, there are many definitions of what the term “component” means, lending many
possible interpretations to our language. As such we will seek to make things as simple and clear as
possible, and to define our terms as we go, so that the confusion of the reader will be reduced.

For our purposes, a “component” is a software entity that fulfills a basic role in a system. A component has
a well-defined set of points of interaction with a surrounding component framework. A component software
framework, like JavaBeans, Enterprise JavaBeans, COM or COM+ supports the component and provides it
with services (like distribution, transaction support, or persistence support) that the component may use. A
component may be a single class in an object-oriented language, but it usually consists of several
cooperating classes that work together with the framework to fulfill the component’s role.

For example, an “Account” may be a component in a banking system. It would provide a fixed set of access
points (an API) to classes and components outside itself, and behave in a particular, predictable way. For
example, the “Account” may provide methods to retrieve a balance, make credits, and debits. It would
interact in a predefined and particular way with the relational database the account information is stored in,
and would behave in a well-understood and reliable way when it is queried from multiple clients running in
different threads on the same machine, or in different processes from different machines.

Our pattern format

We have chosen to represent our observations on these technologies, and our proposed solutions to the
problems that we have found in the form of a Pattern language. In particular, we have chosen to use the
Alexandrian pattern form that was first elucidated in [Alexander]. Alexander’s pattern language has several
key identifying features that we have chosen to use in our pattern language:

· Patterns are presented linearly, starting with the most general, and moving to the more specific.

· Patterns are written in plain, concise English, with a minimum of stylistic or typographic
embellishment

· Patterns follow a particular, fixed format.

In particular, our pattern format will be:

Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 2

· A pattern name in noun or noun phrase form in large bold type

· A short paragraph orienting the context of this pattern among the previous patterns

· A short problem statement presented in boldface

· A discussion of the problem, particularly focusing on why this problem is difficult and not trivially
easy to solve. The discussion explores the forces in the problem, leading to a resolution of these
forces where it ends with the word therefore:, leading up to

· A concise solution to the problem in boldface

· Any diagrams and/or further arguments that are necessary to make the solution understood

· A concluding paragraph showing how this pattern can lead to other patterns in the language.

We have chosen to omit a number of parts of the pattern format presented in [Alexander] such as the
number preceding each pattern name (since we have a small pattern language, we do not feel that this is
necessary), and the introductory diagram or photograph at the beginning of each pattern. We do not feel
that these elements are essential to the pattern format, and we believe we can sufficiently convey the
information in our language without them.

How this language came about

This pattern language has evolved over the last year as part of the Component Design Patterns effort began
by Philip Eskelin on the wiki web (http://www.c2.com/ppr). Many of the patterns presented here were first
proposed on the wiki web, where they received excellent comments and revisions from a number of
contributors.

Overview of the Language

This language is a subset of a larger pattern language encompassing the design and use of component
frameworks. In particular, These patterns investigate how to address issues raised by the use of a
Component framework and an Object-Oriented language in designing distributed systems. The patterns in
this mini-language are:

· Replicated Object

· Distributed Facade

· Object Factory

· Distributed Command

Together these four patterns form a micro-architecture for building distributed components that we have
seen employed in many different problem domains and component technologies. In particular, they examine
what results from using a distribution framework (like CORBA, or EJB’s) that utilize proxies.

The reader of these patterns should have a basic understanding of the terminology and architecture of these
distributed component frameworks. For a good overview of the CORBA Architecture, see [OMG1], or for a
more complete introduction to CORBA with Java, read [Orfali]. For an introduction to the Enterprise Java
Beans Architecture, the reader should refer to [Sun].

Component Design Patterns

Replicated Object

Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 3

When building components in a layered architecture, efficiency and code management concerns often
dictate an alternative to always using Proxies1 for all objects.

The overhead of the number of network calls required to handle complex data manipulation in a system that
only supports pass-by-reference (Proxy) is restrictive.

* * *

Proxy is such a powerful pattern that many programmers begin thinking that it is the complete solution to
their distribution problems . However, proxy has the unfortunate side effect that every call to a proxy
crosses the network. In many situations, this is not only too costly, it is unnecessary. For instance, imagine
a simple stock-trading application. (See Figure 1: Original Design)

Let’s imagine that we use a Session EJB to represent a customer Account. We will also create other EJB’s
which contain information about his holdings and the trades that he has made. Then, we want to display
that information on the screen. Unfortunately, every single piece of information we need, the customer
name, his address, his account number, the stock ticker symbols and the amounts of his trades, must be
obtained through separate network calls. (See Figure 2: Remote interactions)

1 Here we refer to the Proxy pattern from [Gamma]. In particular, we are referring to a Remote Proxy as
described in [Gamma].

Trade

getTimeExecuted(
getVolume()
getTradedPrice()

Stock

getQuote()
getTickerSymbol()

MyAccount

getCustomerName()
getCustomerAddress()
getTrades()
getCashBalance()

holdings

tradeHistory

equity

All classes
shown here
are EJB’s

Figure 1: Original Design

Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 4

This makes no sense, especially in the case where there are specific objects (like a Trade, or an Stock) that
have been completely fetched from a back-end persistent store and do not vary from one method invocation
to our Account EJB to another. Therefore,

Use a pass-by-value approaches for most of the business objects in your system. An object that is passed by
value is “serialized” (or marshalled) on the server and “reconstituted” (or unmarshalled) on the client
end. This object is then called a replicate. Programmers can choose which objects in their system will
need to be manipulated on both ends of a client-server conversation, and replicate them.

So, in our example system, the Trade and Stock objects would be replicates that are passed all at once from
the server (the Account EJB) to the client application that needs to display them. In EJB’s, this can be done
by making the Trade and Stock to be Serializable objects, rather than making them full EJB’s. (See Figure 3:
Serializable Objects)

Client MyAccount : My
Account

Trade : Trade

getCustomerName ()

getTrades ()

getVolume ()

getTradedPrice ()

getTimeExecuted ()

These steps
all happen
remotely

Figure 2: Remote interactions

Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 5

This change results in change in the distribution boundary – now only some of the messages from the client
to the other objects are remote calls. Now, calls to the Trade are local. (See Figure 4: Local and Remote
Mixed)

Replication is particularly useful when there is a complex object nets that needs to be traversed. If each call
to obtain a new “node” in an object net required a network call, the overhead from those calls would be too
high to be practical in most applications.

Trade

getTimeExecuted(
getVolume()
getTradedPrice()

Serializable

Stock

getQuote()
getTickerSymbol()

Account

getCustomerName()
getCustomerAddress()
getTrades()
getCashBalance()

holdings

tradeHistory

equity

Now only
Account is
an EJB

Figure 3: Serializable Objects

Client Account :
Account

Trade : Trade

getCustomerName ()

getTrades ()

getVolume ()

getTradedPrice ()

getTimeExecuted ()

These steps
happen locally

These steps
happen
remotely

Figure 4: Local and Remote Mixed

Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 6

This pattern first arose in the GemStone object-oriented database for Smalltalk, which provided both OODB
and application server functionality. When working with GemStone programmers had the option of
choosing to execute methods in either the server process space, or the client process space. This meant
that at runtime an object could be declared to either be a replicate, or a proxy.

The set of objects that can be passed by value may be disjoint from the set that can be passed by reference
(EJB) or may overlap that set (Java RMI). For example, the semantics of Java RMI are such that methods of
Remote Interfaces may return any primitive or legal Java class, so long as that class implements the interface
Serializable. In this way, objects are serialized on the server end when the method completes, and then
deserialized on the client end and returned to the object that initiated the call to the proxy. So any
Serializable object may be a replicate in RMI (and by extension, EJB).

However, it is not easy to implement this pattern in all distribution frameworks. For instance, in CORBA 2.22,
there is no way to define an object that can be passed by value. CORBA 2.2 only provides for structs,
analogous to C structures, that are data-only and do not allow for the definition of behavior. So if a
programmer wishes to ask a distributed CORBA component for some information, and then manipulate that
information on the client (receiving) end, he must first ask for a struct from the local proxy to the CORBA
component, and then copy the information from that struct into another object that can manipulate the
information. This copying must be hand-coded3, and is prone to error and also prone to break when the
definition of the struct changes in IDL.

CORBA will support passing objects by value in a later version – a Joint submission [98-01-18] on Objects
by Value has already been approved. It does so by proposing a new IDL keyword (value) which allows for
the creation of objects that have state and methods, but that are not descended from CORBA:Object and
thus cannot be represented as an IOR.

When you begin to use Replicated Objects, there are a number of issues that you need to consider. The
first is the issue of synchronization of replicates between the client and the server. One solution to this is
to use dirty bits to record if the information that is stored in the replicate has been changed by the client.
This does not solve the problem of reconciling differences between client and server when the information
on the server changes, however. In this case, callbacks may be employed to update the replicate whenever
the server changes. However, this requires the server to be aware of what is current on each client – this
can lead to excess memory requirements4 on the server, and network overhead in the number of calls needed
to update each client.

Replicated Objects are often what is returned by the methods of a Distributed Facade. If Replicated
Objects are sent from client to server and then later returned again to the server, the overhead of sending
multiple copies of unchanging data can result in performance problems. This naturally leads to Distributed
Commands.

Facade at the Distribution Boundary5

In a component distribution system that supports both Proxies and Replicated Objects, Facade at the

2 See [98-07-01]
3 In the IDL/Java mapping a CORBA “Struct” is mapped to a Java class, but this class is generated by the
IDL compiler. You would not implement business methods on this class because these methods would be
lost when the IDL is recompiled. For this reason, designers often have “shadow” classes that contain the
same information plus business methods to operate on this information as part of their models. Information
is copied from a “shadow” class to the generated class and vice-versa.
4 This is because the server must keep a record of all the replicates that have been made so that it can
callback to them with updated information. An alternative solution to this is to send ALL updates to an
object on the client and then let the client decide which objects should be updated from that information.
5 This pattern has been previously documented (but not in pattern form) in [Alpert] in the section on
Facade, and in [Fowler].

Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 7

Distribution Boundary allows the programmer to strike a balance in number of objects that are made
available to the network.

Many solutions using Proxy contain within themselves the seeds of their own destruction at the hands of
inexperienced designers. When Proxy is used to excess the sheer number of remote interfaces becomes
unwieldy. When using Proxy, a system must preserve part of itself as relatively static and unchanging –
otherwise the changes to the clients become problematic.

* * *

When we first come into building distributed systems from building monolithic, non-distributed systems, we
tend to bring a lot of design strategies that no longer serve us as well in the new context Consider the
following manufacturing scenario. Let's say we're building a system for a car factory. Without much thought
we identify our first object -- let's call it a Vehicle. With some more thought we come up with a few more; for
example, a BodyStyle that defines the similar properties of a set of Vehicles. We might even come up with
the idea of BuildInstructions that say "do this particular thing" which are combined together into
WorkOrders that are used to create Vehicles having a specific BodyStyle.

Now this works fine in a single process-space system. We can do all sorts of nifty things using these
objects. We can create reports on what instructions to execute, and which ones have been executed. We
can find out what Vehicles are currently in production, and how many of what BodyStyles are being built,
and change, add and update all of the above objects.

Now, consider the following problem -- we need to distribute this system using CORBA. We want client
machines to run the GUI's, while bigger server boxes handle most of the processing. We also want to split
the processing into the parts of the system that handle the robotics (which must never go down) and the
parts of the system that handle reports (which can go down occasionally).

The naive programmer says -- "No problem. CORBA gives us proxies, so we'll just take our existing objects
and write IDL interfaces for them." But they soon discover that that they are then writing CORBA interfaces
for nearly every object in our system. Not just Vehicles, BodyStyles, etc. but also for the things they contain
like PaintColors and Accessories. Suddenly they have a LOT of IDL, and that in itself becomes a problem.

Also, they start to notice that they are crossing the network a LOT. Objects in one process space are
sending hundreds of messages to closely linked objects in other process spaces. Every change to the
system requires a recompilation of IDL, and a recompilation of other classes. Testing becomes problematic,
since every test must be done over the network. There must be a way to limit the number of remote
interfaces. Therefore:

Take a different approach. Start to look in a design for the groups of objects that are closely linked
together, and bind them together inside a single process space. Define a few remote interfaces between
these new groups. In other words, apply the Facade6 pattern, e.g. build new objects that act as gatekeepers
that hide the complexity (and sheer numbers) of the objects they wrap. This results in fewer remote
interfaces to manage, while the facades help determine which messages really need to cross the network,
and which can stay local.

The following benefits and liabilities apply to using Distributed Facades:

· Less flexibility. When a component acts as a facade that contains many smaller components, one
tradeoff can be that adding new components means you must update the interface and
implementation of the facade component and test to ensure that all existing components still work
properly.

· Easier to manage change. A benefit of the facade is that you are in effect wrapping what would be
separate smaller physical components with one larger physical one, then allowing logical access to
each component inside it. You present a "view" into these components with the facade. Each of
these components can share a common infrastructure and operate off of the same framework. They

6 This refers to the Facade pattern from [Gamma]

Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 8

can reuse standard libraries, and reduce version discrepancy headaches that sometimes happen in
less-controlled development, test, or production environments.

We first applied the Facade pattern in this way when refactoring a large GemStone software project. We had
the problem of wanting to reduce the distribution cross-section to minimize network traffic and swapping
between the local and distributed object spaces (We were using a pass-by approach, e.g. Replicated
Objects for most of our objects).

Later we applied this pattern in an options trading system that we developed with a client, where we
developed a set of "services" that each did one key thing like "trade options" or "handle quotes". Each
service wrapped up many of domain objects within a relatively simple Facade API that it presented to the
other services.

A Distributed Facade must interact with the rest of the parts of the system. It will often use an Object
Factory to create the Replicated Objects that it returns to the client. It may also be able to use and interpret
Distributed Commands that are sent to the server to determine what changes need to be made to
components on the server.

Object Factory

Replicated Objects must be created from within a Facade at the Distribution Boundary from other data
sources.

Component factories are an effective solution for the creation of distributed components. However,
Replicated Objects are not full-fledged components and do not have the same level of support in the
environment as components do. As such, allowance must be made for the creation of these objects.

* * *

Most component frameworks provide a facility like a component factory7 that allows distributed
components to be built without programmer intervention. However, Replicated Objects are not as strongly
supported in these environments, since the environments do not provide for factories to create them in the
same way that distributed components can be created.

A Replicated Object, in this sense, is not a “full-fledged” distributed component like an EJB or a CORBA
component, but is something else. When developing designs that use replicated objects it is a good idea to
follow this same factory pattern, though, as the same arguments about centralized object creation and
lifecycle management apply as well to Replicated Objects as they do “full-fledged” distributed components.

Consider the following architecture, taken from an recently built application in the real estate industry. In
this design a Facade (in our case PropertyManager, which is a Session EJB) acts as a large-grained
distributed component that provides services to a client GUI application. The services provided by the EJB
are to return a list of available RentalProperties for editing, and to create and update new RentalProperties.

A RentalProperty is a Replicated Object that is manipulated by code inside of the GUI client. The Session
EJB must have some way of obtaining the information that makes the RentalProperty from the database.
The data in the database is represented in the program by a set of Entity EJB’s that wrap existing database
tables. We thus have three parts of our application represented, but there is a hole in our design – there is
no way to create the RentalProperty from the Entity EJB, and there is no way to update the information in
the EJB’s when a RentalProperty changes.

7 A component factory is a special factory object for distributed components like an EJB Home, or the
factories specified in the CORBA Lifecycle service.

Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 9

What is needed is something like a Component Factory, but one that works for Replicated Objects. We
want to be able to create (and possibly cache or reuse) Replicated Objects, and to manage for updates when
needed. Therefore:

Create Object Factories for each type of Replicated Objects that are responsible for creation, update, and
instance management of these objects. These factories will participate in Managed Transactions, and
provide services to a Distributed Facade.

Our sample application (with the addition of an Object Factory, RentalPropertyFactory) would then have
the following design (See Figure 5: Object Factory Example):

We would create a RentalPropertyFactory that responds to request from the Session EJB to create a
RentalProperty for a particular key value. It would accomplish this by using the Homes (Component
Factories) of the appropriate Entity EJB’s to locate the EJB’s that contained the needed information, and
then copy that information into a new RentalProperty, which it would return to the Session EJB. Likewise
when an update occurred, the Session EJB would instruct the Object Factory to carry out the update – it
would locate the appropriate Entity EJB’s and then update them within a single transaction regulated by the
Session EJB. A simplified version of this interaction (leaving out locating the EJB Homes) is shown below
(See Figure 6: Object Factory Interaction):

Serializable

Property
Manager,
Property,
Occupant and
RentalHistory
are EJB's

RentalProperty

Property

Occupant

Rental History

PropertyManager

getRentalProperty()
updateRentalProperty(

RentalPropertyFactory

createRentalProperty()
updateFromRentalProperty(

Figure 5: Object Factory Example

Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 10

Note that this pattern differs from several other published patterns that serve similar purposes. For
instance “Relational Database Access Layer”8 talks about the problem of taking information from a relational
database and creating objects from that information. In our case, the information may already be in the form
of an object (such as an Entity EJB), but not in a form that is suitable for replication. In other cases, your
Object Factory may, in fact, act as a facade onto a Relational Database Access Layer. For instance, a
common way of using the TopLink Object-to-Relational mapping framework with EJB’s is to use it’s built-in
Object Factories to create objects that can be obtained by clients of a Session EJB acting as a Distributed
Facade.

Distributed Command

When developing a system that uses Replicated Objects, objects must be sent in both directions across the
network connection (from client to server and server to client). This can cause efficiency concerns and
make programming difficult.

When you employ a replication solution, you now face the problem of how to send updates to replicated

8 Found in [Keller]

Client Facade :
PropertyManager

Factory : Rental
PropertyFactory

Property :
Property

Occupant :
Occupant

RentalHistory :
Rental History

getRentalProperty ()

createRentalProperty ()
getAttributes()

getAttributes()

getAttributes()

updateRentalProperty ()

updateFromRentalProperty ()

settAttributes()

setAttributes()

setAttributes()

Figure 6: Object Factory Interaction

Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 11

objects from the client to the server. If you send the entire changed object back across the network you
may be sending much more information than is necessary, since most of the object structure will not have
changed. This is not a very efficient solution, since the same data crosses the network twice. It also
makes planning for transactions complex, since the replicates (not being full-fledged components) are not
transactional objects.

* * *

For instance, let's suppose you are working on a system that allows a user to modify a complex, highly
interrelated object model. Consider a genomics system that tracks genetic markers through a family tree in
order to pinpoint how genes are inherited. There are at least three axes of information that users would be
interested in:

· The family tree itself (who descends from who)

· The information about individuals in the tree (who showed what symptoms and who's assays
showed them to have what markers)

· Information about the genetic markers (what markers are used, where they are found on the
genome, etc.)

The problem is that the three axes are interlocking. Modifications to one object can have serious
ramifications to other parts of the system. For instance, if a marker is changed, it's relation to the individuals
must change. Likewise if an individual's genetic assay is found to be incorrect and changes, then statistics
and calculations about the family and markers might now be incorrect. There are two "standard"
approaches to maintaining the consistency of this information that can be tried:

· You can apply pessimistic concurrency on the entire object structure. In this case, a large chunk of
the object structure is locked when the first user requests it. This has the drawback that other users
are kept from modifying the structure at the same time -- something that is not reasonable in a
multiuser environment.

· You can utilize optimistic concurrency on the entire structure. In this case, users are allowed to
modify the structure as they choose, but the first one to "commit" his changes "wins". Anyone
who had also modified those same structures would "lose" and find that their changes were now
lost.

A third approach, versioning, can also be tried. In this case, a new "Version" of the structure is created for
each user. However, this just trades the current problem for a different, but equally difficult, version
reconciliation problem. Therefore, since none of the previous solutions have worked, try the following:

Encapsulate the user changes as Commands9 and then treat the group of commands as a single command
that executes within a transaction boundary. Use a strategy like Two Phase Commit to merge commands
issued by different users together.

In a distributed system this solution becomes even more attractive. Imagine that our hypothetical genomics
system was built using a layered architecture10, with the genetic objects being Replicated Objects. Further,
imagine that we applied Facade at the Distribution Boundary to encapsulate the “real” interactions of the
domain model so that the GUI front-end only communicated with the business model through the
intermediaries of the facade components.

In this case we find that the Command pattern applied in this way not only helps with the concurrency
control of the system, but provides a significant benefit in that the changes that are sent from the upper
(presentation) layers of an application to the lower layers are sent in the form of “deltas” to objects, rather
than full copies of the objects themselves. This reduces the amount of network traffic, and reduces the
amount of logic needed on the server side to determine which parts of the model have changed and which

9 Here we refer to the Command pattern from [Gamma]
10 As in the Layers pattern in [Buschmann]

Ó 1999 IBM Corporation, Philip Eskelin and Nat Pryce
Permission to copy for the PLoP 1999 Conference Granted. All other Rights Reserved. 12

have not.

Acknowledgements

I would especially like to thank our Shepherd, Robert Hirschfield for all the hard work he put into
commenting on this paper and the great suggestions for improvement that he made.

Bibliography

[98-01-18] OMG TC Document orbos/98-01-18, “Objects By Value” Joint Revised Submission with Errata,
Object Management Group

[98-07-01] OMG TC Document 98-07-01, “The Complete CORBA/IIOP 2.2 Specification”, Object
Management Group

[Alexander] Christopher Alexander et.al., A Pattern Language: Buildings, Towns, Cities, Oxford University
Press, London, 1977

[Alpert] Sherman R. Alpert, et. al., The Design Patterns Smalltalk Companion, Addison-Wesley Longman,
Reading, MA, 1998

[Buschmann] Frank Buschmann, et. al., Pattern-Oriented Software Architecture: A System of Patterns, John
Wiley and Sons, West Sussex, England, 1996

[Fowler] Martin Fowler, Analysis Patterns, Addison-Wesley Longman, Reading MA, 1996

[Gamma] Erich Gamma et.al., Design Patterns: Elements of Reusable Object-Oriented Design, Addison-
Wesley Longman, Reading MA,1994

[Keller] Wolfgang Keller and Jens Coldeway, “Relational Database Access Layer”, in Pattern Languages of
Program Design 3 , Addison-Wesley, 1998

[OMG] “CORBA For Beginners”, part of the OMG web site; http://www.omg.org/corba/beginners.html

[Orfali] Robert Orfali, et. al., Client/Server Programming with CORBA and Java, Second Edition, John
Wiley and Sons, 1998

[Sun] “EJB Learning Center”; http://java.sun.com/products/ejb/training.html

