
1

Document-View-Presentation Pattern

Ku-Yaw Chang, Lih-Shyang Chen and Chi-Kong Lai

No. 1, University Road,
Department of Electrical Engineering,

National Cheng-Kung University, Tainan 701, Taiwan, R.O.C.

E-mail: canseco@mirac.ee.ncku.edu.tw

Abstract

When designing the architecture of an interactive system, the challenge is to
keep the data model and the functional core that manipulates the data independent of
the user interface. However, we usually categorize the rendering function, which
translates the data into the form suitable for visual purposes, as the output part of the
user interface. In other words, the rendering process of the data and the way to output
the rendering result are tightly coupled. This limitation results in the need to render
the data once for each user interface whenever the data changes, even in the case that
multiple user interfaces share the same rendering result.

In this paper, we describe the Document-View-Presentation (DVP) pattern for
interactive software systems. This pattern builds on the Document-View pattern and
strongly decouples the rendering function from the output of the rendering result. This
separation makes it possible to render the data once and output the result in different
methods repeatedly. This architecture is especially suitable to those interactive
systems with computationally expensive rendering algorithms, such as graphics or
image processing systems. Moreover, the DVP pattern also introduces the 3-tier
concept into the design of an interactive system to have “thin” clients, i.e. user
interfaces. Such a thin user interface could be distributed to another process or even
another machine without a major impact on the system. This capability possibly
allows an interactive system to become a Web-based application without much effort.

Copyright © 1999, Ku-Yaw Chang, Li-Shyang Chen and Chi-Kong Lai
Permission is granted to copy for the PLoP 1999 conference. All other rights reserved.

2

Document-View-Presentation

The Document-View-Presentation architectural pattern (DVP) divides an
interactive application into three components. The document component contains the
core functionality and data. Views perform service requests and render the data of the
document. Presentation components receive events or service requests and output the
rendering result of the view. The change-propagation mechanism helps to keep the
state of (1) the document and its views, (2) the view and its presentation components
synchronized.

Example

Consider a medical application system such as Discover1 for 3D imaging
generation and diagnostic analysis. The system usually offers several windows for
representing and manipulating a 3D data interactively. These windows usually contain
different algorithms, such as volume rendering or surface rendering, to render the data.
Usually, the amount of computation for these rendering algorithms is so high that
sometimes we would speed it up by distributed computing. For the same rendering
algorithm, this system supports three different methods to output the rendering result,
including displaying it on the screen (i.e. windows), saving it to the disk, and sending
it to another component for further processing. When the 3D data changes, all the
output methods must reflect changes immediately by executing the rendering
algorithm once, not three times, as illustrated in Fig. 1. In particular, for those
interactive applications with computationally expensive rendering algorithms, there is
a significant difference (in terms of system performance) between executing the
algorithm once and three times.

Fig. 1 Render the 3D data (a) once and (b) three times to reflect the data change.

(a)

(b)

Rendering
Result

Another
Component

Disk

Screen3D Data

Rendering
Algorithm

Rendering
Result

Rendering
Result

Rendering
Result

Another
Component

Disk

Screen3D Data

Rendering
Algorithm

3

In those cases, there is a need to provide different output methods without a
major impact on the performance of the system. The system should be able to “plug-
and-play” different output methods or even input methods at run time.

Context

Interactive application systems such as graphics or image processing systems
with computationally expensive rendering algorithms.

Problem

When designing the architecture of an interactive system, one issue that needs
our attention is to keep the data and its functional core independent of the user
interface, which comprises input and output. Very often, we would design the system
to allow the data model to have many different user interfaces associated with it. And
when the data changes, all its user interfaces must reflect changes to the data
immediately. Moreover, the rendering function, which translates the data into the
form suitable for visual purposes, is regarded as part of the user interface. This
limitation makes it unavoidable to execute the rendering function once whenever a
user interface needs to be updated.

Suppose there are three different user interfaces with the same rendering
function being associated with the same data. All these user interfaces need to be
updated to reflect data changes. With the aforementioned limitation, when the data
changes, the rendering function would be executed three times, one for each user
interface. However, since these user interfaces are with the same rendering function,
they should be able to share the rendering result. That is, the rendering function could
be executed once in total and the result could be reused by different user interfaces.

Briefly speaking, regarding the rendering function as part of the user interface
may multiply the required computational time for updating all the user interfaces to
reflect the data changes. The situation becomes worse especially when the rendering
algorithm is computationally expensive.

The following forces influence the solution:

• The output of the results and behavior of the application must reflect data
changes immediately.

• The rendering result could be reused by different output methods.

• Attaching or detaching different output methods to the same rendering
result should be easy, and even possible at run time.

• Supporting different output methods should not affect the core of the
application, including the rendering function to represent the data.

Solution

The Document-View-Presentation pattern (DVP), which builds on the
Document-View pattern2,3, divides an interactive system into three components:
document, view and presentation.

The document component contains data and core functionality to manipulate
the data. It is independent of any specific input and output methods.

4

View components contain the rendering algorithms of the application. They
are hidden behind the presentation components and do not interact with end users
directly. They accept requests and fulfill the corresponding services by calling the
core functionality provided by the document or its own rendering algorithm. They
also obtain data from the document and use different algorithms to render the data. A
document can have more than one view component associated with it.

Presentation components are the representatives of their views for input and
output. They receive user events or messages from other components, and turn them
into service requests. They do not implement these services directly. Instead, they
forward these requests to their associated views. In addition, they also obtain the
rendering result from their views and output the rendering result to a destination based
on their own characteristic, such as displaying them on the window, or saving them to
the disk. Each presentation component could be for input only, for output only, or for
both input and output at the same time. They can be visible or invisible to users. The
user can directly interact with the system through those visible presentation
components.

Each presentation component should be associated with exactly one view.
However, a view component can have several presentation components depending on
its applications. In fact, the view component of DVP plays a role similar to the
controller component of Command Processor design pattern2. It allows a system to
support different modes of input and output, i.e. different presentation components.

The separation of the document from the view components allows different
rendering approaches of the same data. The separation of the view from its
presentation components allows different output methods to share the same rendering
result of the view. When the presentation component receives the events triggered by
the user, it first translates these events into service requests and then forwards the
requests to its view. The view fulfills the service request to change the data of the
document. Once the data of the document is changed, the document notifies all its
dependent views to render the data. When the rendering result is changed, the view
notifies all its presentation components. Each presentation retrieves the current
rendering result from the view and outputs the result to different devices, such as
windows, disks or the network. The change-propagation mechanism could be the
Publisher-Subscriber pattern2 or the Observer pattern4.

Structure

The document component maintains the data model and contains the
functional core to manipulate the data. It exports procedures that perform application-
specific processing so that the dependent views can call these procedures to provide
the service of requests and access the data. Of course, a change-propagation
mechanism is provided within the document. It maintains a registry of the dependent
view components. Changes to the data of the document trigger the change-
propagation mechanism to notify all the dependent views.

View components render the data of the document and keep the rendering
results. Each view defines an update procedure that is invoked by the change-
propagation mechanism. When the update procedure is called, each view retrieves the
data from the document and renders the data. In fact, another change-propagation
mechanism is also provided within each view. It maintains a registry of the dependent
presentation components. Changes to rendering result trigger the change-propagation

5

mechanism to notify all its dependent presentation components. View components
also accept service requests from the presentation components and fulfill these
services by calling the core functionality provided by the document or its own
rendering algorithm.

The presentation components receive input messages and translate them into
different service requests. Each presentation component also defines an update
procedure that is invoked by the change-propagation mechanism. When the update
procedure is called, each presentation component retrieves the current rendering result
from its view and outputs the result according to its own characteristics such as
putting the result on the screen.

The Class-Responsibility-Collaborator (CRC) cards5 for the document, view
and presentation components are illustrated in Fig. 2.

Fig. 2 The CRC cards for the document, view and presentation components.

Fig. 3 shows the principal relationships between the components of the DVP
pattern. View and presentation components are subscribers to document and view
components respectively. In other words, a document can have more than one view
associated with it, while a view can have more than one presentation component. In a
C++ implementation, each component is defined as a separate class. View and
presentation classes share a common parent - Subscriber that defines the update
interface. Similarly, document and view classes share another common parent –
Publisher that defines the attach, detach and notify interfaces.

Class
 Document

Responsibility
• Encapsulates data.
• Provides functional
 core to manipulate the
 data.
• Registers dependent
 views.
• Notifies dependent
 views about data
 changes.

Collaborator
• View

Class
 Presentation

Responsibility
• Receives input
 messages and translates
 them into service
 requests.
• Retrieves rendering
 result from the view.
• Outputs the rendering
 result.
• Implements the update
 procedure.

Collaborator
• View

Class
 View

Responsibility
• Retrieves data from the document.
• Renders the data and keeps the
 result.
• Implements the update procedure.
• Registers dependent presentation
 components.
• Notifies dependent presentation
 components when the rendering
 result changes.
• Accepts service requests.

Collaborator
• Document
• Presentation

6

Fig. 3 The object model of DVP with Object Modeling Technique (OMT)6 notation.

Dynamics

We will illustrate the behavior of a DVP architecture with the following two
scenarios.

Scenario I shows how an input message changes the document and how this
change triggers the change-propagation mechanism. For simplicity, only one view-
presentation pair is shown in the diagram.

l The presentation receives an input message and translates the message
into a service request for the view.

l The view invokes a service procedure provided by the document.

l The document fulfills this requested service, which usually changes some
data in the document.

l The document notifies all its dependent views by calling the update
procedures.

l Each view retrieves data from the document and calls the render
procedure to render the data.

l The view notifies all its dependent presentation components by calling the
update procedures.

l Each presentation component retrieves the rendering result from the view
and outputs the result.

Document
coreData
setOfSubscribers

attach(Subscriber)
detach(Subscriber)
notify
getData
service

View
renderResult
myDoc
setOfSubscribers

attach(Subscriber)
detach(Subscriber)
notify
getResult
render
service
update

Subscriber
update

Presentation

myView

input
output
update

call update call update

attach
getData

call service

attach
getResult

call service

Publisher
attach(Subscriber)
detach(Subscriber)
notify

7

Scenario I

Scenario II

DocumentViewPresentation

input
service

service
notify

update

render
getData

update

output
getResult

notify

main program

Document

View

Presentation
Document

View

initialize

attach

View initialize

Presentation
attach

8

Scenario II shows how the DVP triad is initialized. This initialization is
usually conducted by the code inside the main program with the following steps:

l The document instance is created with initialized data structures.

l A view object is created. This takes a reference to the document as a
parameter for its initialization.

l The view subscribes to the change-propagation mechanism of the
document by calling the attach procedure.

l A presentation object is created. This takes a reference to the view as a
parameter for its initialization.

l The presentation subscribes to the change-propagation mechanism of the
view by calling the attach procedure.

Implementation

To implement the DVP pattern, carry out the following fundamental steps:

1. Define the data model and core functionality. Analyze the application
domain and map it onto an appropriate data model. Separate the core
functionality from the desired input and output behavior. Design the
document component to encapsulate the data and core functionality.
Provide functions for accessing the data.

F In our Discover example, a BS object (a collection of 2D Binary Slices)
is used to represent 3D objects. Each document contains a BS object
and provides methods to access and manipulate the data, i.e. the BS
object. Since the document plays the role of the publisher, it inherits
from the Publisher base class, which will be described in step 2.

2. Implement the first change-propagation mechanism. Assign the role of the
publisher to the document based on the Publisher-Subscriber pattern.
Extend the document with a registry that holds references to the observing
objects – views. Provide a procedure to allow views to subscribe and
unsubscribe for the change notification of the data. The document’s notify
procedure calls the update procedure of all observing objects.

class Document: public Publisher {
private:
// BSOBJ is the data structure for BS objects
 BSOBJ coreData;

public:
 Document();

// methods for views to access the core data
 BSOBJ * getData();

// methods for views to manipulate the data
 void doThreshold(int low, int high);
 void doCut(CONTOUR * con2r, int alpha, int beta);
}

9

F In our C++ example, two abstract classes Publisher and Subscriber
are defined. The Publisher class holds a set of references to current
subscribers, and provides attach() and detach() methods to allow
observing objects to subscribe and unsubscribe. The Subscriber class
holds the update interface. Any method like doThreshold()that
modifies the sate of the document will call the notify() method to
notify current subscribers. The method notify() iterates over all
Subscriber objects in the registry and calls their update() method.

3. Define the contents of the rendering result. Analyze the required
information for different output behavior and define the contents of the
rendering result.

F In 3D medical imaging, we often need different information of a voxel,
such as its color, depth (z-value) and transparency, for different
purposes. Here, we use the data structure RENDER_DATA to collect all
required information.

4. Design and implement the views. Design the rendering algorithm of each
view. Specify and implement a rendering procedure to render the data of
the document. Implement the update procedure to reflect the change of the
document. The update procedure calls the rendering procedure to render
the data. Provide a procedure for each service request. Fulfill the service
by calling the core functions of the document or its own algorithm. The
initialization of a view needs to subscribe itself to the document.

F All the concrete view classes share an abstract base class View, which
defines the common behavior of different views in Discover. The View
class inherits from both Publisher and Subscriber base classes. It
contains two member variables to represent the rendering result with

class Publisher {
private:
 Set<Subscriber *> registry;

public:
 virtual void attach(Subscriber * s) {
 registry.add(s); }
 virtual void detach(Subscriber * s) {
 registry.remove(s); }

protected:
 virtual void notify() {
 // call update for all subscribers
 Iterator<Subscriber *> iter(registry);
 While (iter.next()) {

 Iter.curr()->update();
 }
 }
};

class Subscriber {
public:
// default is to do nothing
 virtual void update() { }
};

10

corresponding access methods and its relationship with document. The
constructor of View subscribes to the document to establish this
relationship. The destructor removes it from the registry by
unsubscribing. View also provides methods to receive the service
requests from its presentation components. Whenever the update()
method is called, it generates the new rendering result and then notifies
its registered observing objects about this change.

The class definition of SurfaceRenderingView demonstrates a
concrete view of the system. It redefines the render() method to
render the BS object in the surface-based approach. In addition, it also
provides methods such as doRotate() and doSetColor() to change
the rendering result without actually modifying the data of the
document.

class View: public Publisher, public Subscriber {
protected:
 RENDER_DATA renderResult;
 Document * myDoc;

public:
 View (Document * doc) : myDoc(doc)
 { myDoc->attach(this); }
 virtual ~View() { myDoc->detach(this); }

// methods for presentation components to access
// the render data
 RENDER_DATA * getResult() {
 return (&renderResult);
 }

// methods for presentation components to
// manipulate the data
 void doThreshold(int low, int high) {
 myDoc->doThreshold(low, high);
 }
 void doCut(CONTOUR * con2r, int alpha, int beta) {
 myDoc->doCut(con2r, alpha, beta);
 }

// define the default behavior to reflect changes of
// Document’s data
 virtual void update() {
 this->render();
 this->notify();
 }

// abstract method to be redefined:
// default is to do nothing
 virtual void render() {}
};

11

5. Implement the second change-propagation mechanism. Assign the role of
the publisher to the view. Extend the view with a registry that holds
references to the observing objects – presentation components. Provide a
procedure to allow presentation components to subscribe and unsubscribe
for the change notification of the rendering result. The view’s notify
procedure calls the update procedure of all observing objects. Note that to
the document the view appears as subscriber, while to the presentation
components it appears as a publisher.

6. Design and implement the presentation components. Specify the input and
output behavior for each presentation component. The initialization of a
presentation component needs to subscribe itself to the view.

F All the concrete presentation classes share an abstract base class
Presentation. The Presentation class inherits from the Subscriber
base class. It contains a member variable to represent its relationship
with View. The constructor of Presentation subscribes to the view to
establish this relationship. The destructor removes it from the registry
by unsubscribing.

The class definition of WndPresentation demonstrates a presentation
component that can receive user inputs and display the rendering result
on the screen. It redefines the update() method to obtain the current
rendering result and display it on the screen. In addition, it also
provides call-back functions to receive user inputs.

class SurfaceRenderingView : public View {
public:
 SurfaceRenderingView(Document * doc) : View(doc) {}

// method for surface rendering algorithm
 virtual void render() {
 // get core data from Document
 BSOBJ * bs = myDoc->getData();
 // do the surface rendering algorithm
 SurfaceRendering(&renderData, bs);
 }

// methods to change the rendering attributes
 void doRotate(int alpha, int beta);
 void doSetColor(int r, int g, int b);
};

class Presentation: public Subscriber {
protected:
 View * myView;
public:
 Presentation(View * view) : myView(view) {
 myView->attach(this); }
 virtual ~Presentation() { myView->detach(this); }

// define the default behavior to reflect changes of
// View’s rendering result
 virtual void update() { this->output ();}
// abstract method to be redefined
 virtual void output() {}
};

12

Known Uses

Discover1,7 is a distributed interactive system for scientific visualization and
has been on trial in National Cheng-Kung University hospital in Taiwan since 1993.
The system is built on the DVP architectural pattern. In addition to the general
imaging analysis and generation functions, Discover also provides the following
features:

1. Image Integration

Different but related 3D objects may be generated individually by different
rendering algorithms or from different medical imaging devices. Sometimes
physicians need to find out their relations in space for diagnostic analysis. Discover
allows physicians to integrate several existing 3D objects, i.e. source objects, into a
new one, i.e. the integrated object, for such visualization purposes.

As illustrated in Fig. 4, before the integration process begins, each view is
initialized with a visible default presentation component, which can accept user
events and display the rendering result in a window. When a 3D object is chosen to be
a source object, an output presentation is created and attached to the view at run time.
This output presentation component is invisible to users and does not receive input
messages at all. At the same time, the output presentation is also a publisher and
outputs the view’s rendering result to its subscribers. In addition, a new document,
view and default presentation triad for the integrated object is also created. This new
document registers with the output presentation of each source object for obtaining
their rendering results respectively.

class WndPresentation : public Presentation {
public:
 WndPresentation (View * view) : Presentation(view)
 {}

// method to output the rendering result
 virtual void output () {
 RENDER_DATA * result;
 result = myView->getResult();
 // display the image on the screen: …..
 }

// call-back functions to receive user inputs
 void onThreshold() {
 int low, high; // required parameters
 // open a dialog box to obtain parameters: ..…
 myView->doThreshold(low, high);
 }

 void onRotate() {
 int alpha, beta; // required parameters
 // open a dialog box to obtain parameters: …..
 myView->doRotate(alpha, beta);
 }
};

13

Fig. 4 An integrated object could be easily obtained by attaching an additional output
presentation to each source object.

Thus when the physician modifies any one of the source objects through its
default presentation, the rendering result of the view will be updated by executing the
rendering algorithm once. Both default presentation and output presentation
components must reflect the changes immediately: the former displays the rendering
result to the physician, while the latter notifies the integrated document. The
integrated document updates its data by retrieving the new rendering result from the
output presentation. On the heels of this, the view of the integrated object renders the
integrated data and notifies its default presentation to display the result to the
physician.

2. Web-based application

Usually the 3D imaging generation and diagnostic analysis provided by
Discover are very time-consuming functions. Although it is possible to install the
Discover system in every physician’s desktop of the hospital, not every desktop has
enough computation power to run such heavy computation jobs within an acceptable
response time. Therefore, Discover also allows physicians to use Web browsers to
control it. Thus, we can install Discover on a server machine with high computation
power. Physicians can use their desktops with different computation ability to control
Discover through the network. The response time for each desktop is almost the same
without considering the differences between the network traffic and the server’s load.

As illustrated in Fig. 5, when the Web server receives a service request
coming from a Web browser to control Discover, it launches a Common Gateway
Interface (CGI) application to fulfill this service. This CGI application first creates an
input presentation and an output presentation for the view component through the
automation mechanism8, and then forwards the service request to the input
presentation. When the rendering result kept by the view changes, the output
presentation delivers the rendering result to CGI, which forwards the result to the
Web server. At last, the rendering result will be sent to the Web browser and the
physician can see the image on the browser.

Default
Presentation

Default
Presentation

Output
Presentation

Subscriber

Publisher

Document C
(A+B)

View C

Default
Presentation

Output
Presentation

Publisher

View A

View B

Document
A

Document
B

source object

source object

integrated object

14

Fig. 5. Discover could be controlled by a Web browser through the cooperation
between the input presentation and the output presentation.

Consequences

The Document-View-Presentation architectural pattern has several benefits:

1. Reuse the rendering result. When multiple user interfaces, i.e.
presentation components, share the same rendering result, the rendering
function needs to be executed only once. This can avoid multiplying the
required computational time and acquire a more quick response,
especially when the rendering function is heavy in computation.

2. Separation of concerns. This separation of the rendering process and the
input/output behavior allows the software developer to concentrate on the
development of the rendering algorithms without worrying with any
input/ output processes. Of course, they can also focus on providing
different input and output functions without involving the development of
rendering algorithms.

3. “Pluggable” presentation components. Multiple presentation components
can be implemented and used with a view. These presentation
components can be added or even substituted at run time, without any
influence on the view.

4. Thin user interface. To remove the rendering process from the input and
output process makes the user interface “thin”. The thin user interface can
be distributed to another process or another machine easily. For example,
an interactive system can become a Web-based application if we
distribute the user interface through the HTTP protocol.

5. Easy to implement DVP using modern frameworks for window
applications. Several frameworks for developing window applications,
such as MFC of Visual C++ or OWL of Borland C++, adopt the
Document-View pattern as their default system architecture3. The DVP, in
essence, is an extension of the Document-View pattern. Therefore, we can
implement the DVP pattern easily by making use of all the classes related
to the document-view architecture and their communication mechanism
provided by the framework. We can suppress the input/output functions of

View A

Default
Presentation

Input
Presentation

CGI

process
boundary

optional
machine
boundary

Web
Server

Output
Presentation

Web
Browser

Document
A

15

the views in the framework and provide additional presentation
components. Of course, we still need to implement the communication
mechanism between the view and its presentation components.

The liability of this pattern is as follows:

1. Increased complexity. The division of each user interface into the view
and presentation components may result in a complex system structure. If
the algorithm to render the data of the document is simple, this separation
increases complexity without gaining much performance improvement.

See Also

l The Model-View-Controller pattern (MVC)2 divides an interactive application
into three components. The model contains the core functionality and data. Views
display information to users. Controllers handle user input. The Document-View
pattern (DV), a variant of MVC, combines the view and the controller from
MVC into a single component. In these two patterns, to display information to
users, in fact, includes rendering (or interpreting) the data and putting the result
on the screen.

The components of the DVP pattern and the above-mentioned two patterns,
together with their major responsibility are summarized in Table 1. The common
place of these three patterns is to put the core functionality and data together into
a single component, i.e. the model or the document. The major feature that makes
the DVP pattern different from the MVC/DV patterns is to separate the “raw”
input and output process from other components. This includes (1) dividing the
display of data in the document to users into two parts: the data rendering portion
and its output portion, (2) decoupling the close relations between user inputs and
service requests.

In addition, the architectural partition of an interactive system like MVC/DV
patterns could be regarded as a 2-tier client/server architecture inside an
application, as shown in Fig. 6. The data and functional core runs on the server
side while the clients run the rendering function and graphical user interfaces. For

MVC DV DVP

 Model

• core functionality

• data

 Document

• core functionality

• data

 Document

• core functionality

• data

 View

• display
(render + output)

 View

• display
 (render + output)

• user input

 View

• rendering functionality

• accept service requests

 Controller

• user input

 Presentation

• output

• user input

Table 1 A summary of three patterns for interactive systems.

16

those systems with heavy rendering algorithms, the client side becomes very ”fat”.
Correspondingly, the DVP pattern could be regarded as a 3-tier architecture, as
illustrated in Fig. 7. In such a 3-tier system architecture, the middle tier consists
of the business-logic units that are usually independent of the end-user
applications and can be reused by various applications. In Discover, the system
always keeps the client side “thin” by removing the data rendering process (the
business logic unit for a computer graphics application) from the client side to the
middle tier on the server side. This separation allows different clients
(presentation components) to reuse the rendering result of the middle tier (view).

Fig. 6. Both MVC and DV patterns divide an interactive application into two tiers.

Fig. 7 The DVP pattern divides an interactive application into three tiers.

Thin Client

Render &
Receive Requests

Tier 1
(Presentation)

Tier 2
(View)

Server

Data &
Core Functionality

Tier 3
(Document)

User Input &
DisplayUser Input &

DisplayUser Input &
Display

ServerFat Client

Data &
Core Functionality

Tier 1
(View / View+Controller)

Tier 2
(Document / Model)

User Input &
Display

17

References

1. P. W. Liu et al., "Distributed Computing: New Power for Scientific
Visualization," IEEE Computer Graphics and Applications, Vol. 16, No. 3,
May 1996, pp.42-51.

2. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal, A
System of Patterns - Pattern-Oriented Software Architecture, John Wiley
& Sons, New York, 1996.

3. D. Kruglinski: Inside Visual C++, Microsoft Press, 1996.

4. E. Gamma, E. Helm, R. Johnson and J. Vlissides, Design Patterns -
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

5. K. Beck and W. Cunningham, “A Laboratory For Teaching Object-
Oriented Thinking,” Proceedings of OOPSLA’89, N. Meyrowitz(Ed),
Special Issue of SIGPLAN Notices, Vol. 24, No. 10, October 1989, pp. 1-
6.

6. J. Rumbaugh et al., Object-Oriented Modeling and Design, Prentice Hall,
1991.

7. K. Y. Chang and L. S. Chen, "Using Design Patterns to Develop a Hyper-
controllable Medical Image Application,” Proceedings of PLoP'98,
Monticello, Illinois, Aug 11-14, 1998.

8. R. M. Adler, "Emerging Standards for Computing Software," Computer,
March 1995, pp. 68-77.

Acknowledgements

Special thanks to Rosana T. Vaccare Braga for her valuable comments and
suggestions for the improvement of this pattern.

