
Transaction Patterns
A Collection of Four Transaction Related Patterns

By Mark Grand

mgrand@mindspring.com

Copyright © 1999 Mark Grand. Permission is granted to copy for the PLoP 1999 conference. All other rights reserved.

1

This paper contains some transaction related patterns from my forthcoming book, Patterns in Java, Volume 3: Design
Patterns for Enterprise and Distributed Applications.

A transaction is a sequence of operations that change the state of an object or collection of objects in a well defined
way. Transactions are useful because they satisfy constraints about what the state of an object must be before, after or during a
transaction. For example, a particular type of transaction may satisfy a constraint that an attribute of an object must be greater
after the transaction than it was before the transaction. Sometimes, the constraints are unrelated to the objects that the
transactions operate on. For example, a transaction may be required to take place in less than a certain amount of time.

The patterns in this chapter provide guidance in selecting and combining constraints for common types of transactions.
Figure 1 shows how the patterns in this chapter build on each other.

Composite
Transaction

ACID
Transaction

Two Phase
Commit Audit Trail

Figure 1: Pattern Map
The first and most fundamental pattern to read is the ACID Transaction pattern. It describes how to design

transactions that never have inconsistent or unexpected outcomes. The Composite pattern describes how to compose a complex
transaction from simpler transactions. The Two Phase commit pattern describes how to ensure that a composite transaction is
atomic. The Audit Trail pattern describes how to maintain an historical of ACID transactions.

You may notice the lack of code examples in this paper. It is the author’s opinion that the patterns in this paper are too
high level for concrete code examples to be useful. The application of these transaction related patterns can be readily understood
at the design level. However, there is generally no clear relationship between individual pieces of code and the fact that they are
part of a transaction.

The topics discussed in this chapter are discussed in greater detail in [Gray-Reuter93] and [Date94].

ACID Transaction

Synopsis
Ensure that a transaction will never have any unexpected or inconsistent outcome. You do that by ensuring that the

transaction has the ACID properties: atomicity, consistency, isolation and durability.

Context
Suppose that you are developing software for a barter exchange business. It works as a clearing house for indirect barter.

For example, a hotel chain offers vouchers for a stay in one of their rooms in exchange for new mattresses. The clearing house
matches up the hotel with a mattress manufacturer that spends lot of money on business trips. The clearing house also facilitates
the exchange of the vouchers for the mattresses.

Every transaction that the system handles consists of an exchange of goods or services. Each transaction must update
the system’s model of who is supposed to exchange what goods and services with whom in exactly the expected way. The

2

system must not lose any transactions. The system must ensure that two different clients don’t make a deal for the same goods or
service.

Forces
• You want the result of a transaction to be well defined and predictable. Given only the initial state of the objects in a

transaction and the operations to perform on the objects, you should be able to determine the final state of the objects. Even
if the nature of the transaction is non-deterministic (i.e. a simulated roll of dice), given the initial state of the object involved,
you should be able to enumerate the possible outcomes.

• Once started, a transaction may succeed. It is also possible for a transaction to fail or abort. There are many possible causes
for a transaction to fail. Many causes may be unanticipated. Even if a transaction fails, you don’t want it to leave objects in
an unpredictable state that compromises their integrity.

• A transaction can fail at any point. If there is a failure at a random point in the transaction, additional operations may be
required to bring the objects involved into a predictable state. Determining what operations to perform may be difficult or
impossible if a failed transaction can put objects in a state that violates their integrity.

• You want the outcome of transactions to depend only on the initial state of the objects a transaction acts on and the
operations in the transaction. The possibility of concurrent transactions should not affect the result of the transactions.

• If the results of a transaction are stored in volatile memory, then the observed results of the transaction are less predictable.
The contents of volatile memory can change unpredictably. More generally, the observed results of a transaction are
unpredictable if they do not persist as long as objects that are interested in the results or until another transaction changes
the state of the effected objects.

• Satisfying all of the forces listed in this section may add complexity and overhead to the implementation of a transaction.
The nature of some transactions ensures a satisfactory outcome without having to address all of the forces. For example, if
there will be no concurrent transactions, then there is no need to address the possibility that concurrent transaction could
interfere with each other. Also, if the outcome is the same whether a transaction is performed once or more than once, then
recovery from catastrophic failure can be simplified.

It is not possible take such shortcuts in the design of most transactions. If a transaction does not lend itself to the use of
these shortcuts, then there is a good justification for the complexity and overhead associated with satisfying all of the forces
listed in this section.

 Solution
 You can ensure that a transaction has a predictable results by ensuring that it has the ACID properties:

 Atomic — The changes a transaction makes to the state of objects it operates on are atomic: Either all of the changes happen
exactly once or none of the changes happen. These changes include both internal state changes and database changes,
transmission of messages and visible side effects on other programs.

 Consistent — A transaction is a correct transformation of an object’s state. At the beginning of a transaction, the objects a
transaction operates on are consistent with their integrity constraints. At the end of the transaction, whether it succeeds or
fails, the objects are again in a state consistent with their integrity constraints. If all or the transaction’s preconditions are
met before the transaction begins, all of its postconditions are met after the transaction successfully completes.

 Isolated — Even though transactions execute concurrently, it appears to each transaction, T, that other transactions execute
either before T or after T but not both. That means that if an object that is involved in a transaction fetches an attribute of an
object, it does not matter when it does so. Throughout the lifetime of a transaction, the objects that the transaction operates
on will not notice any changes in the state of other objects as the result of concurrent transactions.

 Durable — Once a transaction completes successfully (commits), the changes it has made to the state of the object(s)
become relatively persistent. They will persist at least as long as any object that can observe the changes.

3

Because most database managers ensure that transactions performed under their control have these properties, many
people only think of ACID properties in connection with database transaction. It is important to understand that the ACID
properties are valuable for all kinds of transactions.

 Consequences
• Use of the ACID transaction pattern makes the outcome of transactions predicable.

• Use of the ACID transaction pattern can substantially increase that amount of storage required by a transaction. The
additional storage requirement arises from a need to store the initial state of every object involved in a transaction, so
that if the transaction fails it is possible to restore the initial state of the objects it acted on. Maintaining the isolation of
a transaction may require the copying of objects. The purpose of the copies is to allow the original object to be
modified while an unchanging copy of the original is visible to other transactions.

• Often, ACID transactions are implemented by having transaction logic manipulate objects indirectly through a
mechanism that automatically enforces the ACID properties for transactions, such as a database manager. In those cases
where the logic for a transaction is also responsible for maintaining the transaction’s ACID properties, the complexity
of the transaction logic may be greatly increased. The use of an intermediary that takes responsibility for enforcing the
ACID properties makes it much easier to correctly implement the logic that drives a transaction.

 Implementation
 The simplest way to ensure the ACID properties of a transaction is for the transaction logic to manipulate the state of

objects through a tool such as a database manager that automatically enforces the ACID properties. If a program works with
transactions that will not involve persistent data or objects, the performance penalty introduced by a database manager that
persists data may be undesirable. Such applications may be able to take advantage of in-memory databases.

 Sometimes it is not possible to use any tool to enforce ACID properties. The common reasons for that are performance
requirements and a need to keep the size of an embedded application small. Adding logic to an application to enforce the ACID
properties for its transaction can introduce a lot of complexity into a design.

 Here are strategies for explicitly supporting each of the ACID properties:

 Atomicity

 The primary issues to address when providing support for atomic transactions is that there must be a way to restore objects to
their initial state if a transaction that ends in failure.

 The simplest way to be able to restore an object’s state after a failed transaction is to save the object’s initial state in a
way that it can easily be restored. The Snapshot pattern (discussed in [Grand98A]) provides guidance for this strategy. Figure 2
is a class diagram that shows this general approach.

4

...TransactionParticipantClass1 TransactionParticipantClass2

5 Manipulates

1

0..* 0..*

1

...StateSavingClass1 StateSavingClass2

6 Uses to Restore State

0..* 0..*

TransactionManager

abort()
commit()

 Figure 2: Saving State for Future Recovery
 An object in the role of transaction manager manipulates instances of other classes that participate in a transaction.

Before doing something that will change the state of an object that it manipulates, the transaction manager will use an instance of
another class to save the initial state of the object. If the transaction manager’s commit method is called to signal the successful
completion of a transaction, then the objects that encapsulate the saved states are discarded. However, if the transaction manager
detects a transaction failure, either from a call to its abort method or the abnormal termination of the transaction logic, then it
restores the objects that participate in to their initial state.

 If it is not necessary to save an object’s state beyond the end of the current program execution, the simplest way to
save the objects state is to clone it. You can make a shallow copy1 of an object by calling its clone method.

 All classes inherit a clone method from the Object class. The clone method returns a shallow copy of an object
if its class gives permission for its instances to be cloned by implementing the Cloneable interface. The Cloneable
interface is a marker interface (See the Marker Interface pattern in [Grans98A]). It does not declare and methods or variables. Its
only purpose is to indicate that a class’s instances may be cloned.

 In order to restore the state of an object from an old copy of itself, the object must have a method for that purpose. The
following listing shows an example of a class whose instances can be cloned and then restored from the copy.2

 class Line implements Cloneable {
 private double startX, startY;
 private double endX, endY;
 private Color myColor;
 ...
 public void restore(Line ln) {
 startX = ln.startX;
 startY = ln.startY;
 endX = ln.endX;
 endY = ln.endY;
 myColor = ln.myColor;
 } // restore(Line)

 1 A shallow copy of a object is another object whose instance variables have the same values as the original object. It refers to the same objects as the original
object. The other objects that it refers to are not copied.
2 At the beginning of this chapter, I stated that there would be no code examples. The code examples that appear here are examples are implementation examples and
not examples of the pattern itself.

5

 } // class Line

 For saving the state of an object whose state is needed indefinitely, a simple technique is to use Java’s serialization
facility. Here is how to use it:

 Java’s serialization facility can save and restore the entire state of an object if its class gives permission for its instances
to be serialized. Classes give permission for their instances to be serialized by implementing the interface
java.io.Serializable like this:

 Import Java.io.Serializable;
 ...
 class Foo implements Serializable {

 The Serializable interface is a marker interface. It does not declare any variables or methods. Declaring that a class
implements the Serializable interface simply indicates that instances of the class may be serialized.

 To save the state objects by serialization, you need an ObjectOutputStream object. You can use an
ObjectOutputStream object to write a stream of bytes that contains an object’s current state to a file or a byte array.

 To create an ObjectOutputStream object that serializes that state of objects and writes the stream of bytes to a
file, you would write code that looks like this:

 FileOutputStream fout = new FileOutputStream("filename.ser");
 ObjectOutputStream obOut = new ObjectOutputStream(fout);

 The code creates an OutputStream to write a stream of bytes to a file. It then creates an ObjectOutputStream
that will use the OutputStream to write a stream of bytes.

 Once you have created an OutputStream object, you can serialize objects by passing them to the
OutputStream object’s writeObject method, like this:

 ObOut.writeObject(foo);

 The writeObject method discovers the instance variables of an object passed to it and accesses them. It writes the values
of instance variables declared with a primitive type such as int or double directly to the byte stream. If the value of an
instance variable is an object reference, the writeObject method recursively serializes the referenced object.

 Creating an object from the contents of a serialized byte stream is called deserialization. To deserialize a byte stream,
you need an ObjectInputStream object. You can use an ObjectInputStream object to reconstruct an object or
restore an object’s state from the state information stored in a serialized byte stream.

 To create an ObjectInputStream object, you can write some code that looks like this:

 FileInputStream fin = new FileInputSteam("filename.ser");
 ObjectInputStream obIn = new ObjectInputStream(fin);

 This code creates an InputStream to read a stream of bytes from a file. It then creates an ObjectInputStream object.
You can use the ObjectInputStream object to create objects with instance information from the stream of bytes or
restore an existing object to contain the instance information. You can get an ObjectInputStream object to do these things
by calling its readObject method like this:

 Foo myFoo = (Foo)obIn.readObject();

 The readObject method returns a new object whose state comes from the instance information in the byte stream.
That is not quite what you need when restoring an object to its initial state. What you need is a way to use the instance
information to set the state of an existing variable. You can arrange for that as you would for allowing objects’ state to be restored
from a clone. You ensure that the class of the objects to be restored has a method that allows instances of the class to copy their
state from another instance of the class.

6

 Saving the initial state of object that a transaction manipulates is not always the best technique for allowing the initial
state of a objects manipulated by a transaction to be restored to their initial stated. If transactions perform multiple operations on
objects that contain a lot of state information and the transaction only modifies some of the state information in the objects,
saving the object’s entire state information is wasteful.

 An implementation approach that produces more efficient results in this situation is based on the Decorator pattern
described in [Grand98A]. The technique is to leave the original object’s state unmodified until the end of the transaction and use
wrapper objects to contain the new values. If the transaction is successful, the new values are copied into the original object and
the wrapper objects are then discarded. If the transaction ends in failure, then the wrapper objects are simply discarded. Figure 3
is a class diagram that shows this sort of design.

-attribute1
-attribute2
...

DataClass1

+getAttribute1
+setAttribute1
+getAttribute2
+setAttribute2
...

Buffers-changes

TransactionManager

abort()
commit()

0..1
transaction-values

pre-
transaction-values

Buffers-changes

DataClass2

-attribute1
-attribute2
...

+getAttribute1
+setAttribute1
+getAttribute2
+setAttribute2
...

0..1
transaction-values

pre-
transaction-values

Contains-
data-for 5

1 1

Contains-
data-for 5

1 1

3 Manipulates

TransactionParticipantClass1 TransactionParticipantClass2

11

...

1

«interface»
TransactionParticiipantIF

startTransaction()
abort()
commit()

 Figure 3 Atomicity through Wrapper Objects
 In this design, the objects that the transaction manipulates do not contain their own instance data. Instead, a separate

object contains their instance data. To ensure strong encapsulation, the class of the objects that contain instance data should be an
inner class of the class of the manipulated objects.

 When a transaction manager becomes aware than an object will be involved in a transaction, it calls the object’s
startTransaction method. The startTransaction method causes the object to create and use a new data object.
When the manipulated object calls one of the new data object’s methods to fetch the value of an attribute, if the data object does
not yet have a value for that attribute, it calls the corresponding method of the original data object to get the value.

 If a transaction ends in failure, then the transaction manager object calls the abort method of each of the manipulated
object’s. Each object’s abort method causes it to discard the new data object and any values that it may contain.

7

 If a transaction ends in success, then the transaction manager object calls the commit method of each of the
manipulated object’s. Each object’s commit method causes the new data object to merge its data values into the original data
object. It then discards the data object.

 This design only requires data values to be copied if they are altered by a transaction. It may be more efficient than
saving an object’s entire state if the object contains a lot of state information that is not involved in the transaction. The
disadvantage of this design is that it is more complex.

 Consistency

 There are no implementation techniques specifically related to consistency. All implementation techniques that help to ensure the
correctness of programs also help to ensure consistency.

 The most important thing that you should do ensure the consistency of transaction is testing. The Unit Testing and System
Testing patterns described in [Grand98B] are useful in designing appropriate tests.

 Isolation

 Isolation is an issue when an object may be involved in concurrent transactions and some of the transactions will change the state
of the object. There are a few different possible implementation techniques for enforcing isolation. The nature of the transactions
determines the most appropriate implementation technique.

 If all of the transactions will modify the state of an object, then you must ensure that the transactions do not access the object
concurrently. The only way to guarantee isolation is to ensure that they access the object’s state one at a time by making the
methods that modify the object’s state synchronized. This technique is described in more detail by the Single Threaded Execution
pattern described in [Grand98A].

 If some of the concurrent transactions modify an object’s state and others use the object but do not modify its state, you can
improve on the performance of single threaded execution. You can allow transactions that do not modify the object’s state to
access the object concurrently, while only allowing transactions that modify the object’s state to access it in a single threaded
manner. This technique is described in more detail by the Read/Write Lock pattern described in [Grand98A].

 If transactions that are relatively long lived. It may be possible to further improve the performance of some transactions that use
but not modify the state of the object if it is not necessary for the objects to have a distinct object identity. You can accomplish
this by arranging for transactions that use an object but do not modify the object’s state to use a copy of the object. Some
patterns that can be helpful in doing this are

• The Return New Objects from Accessor Method pattern (described in [Grand98B]).

• The Copy Mutable Parameters pattern (described in [Grand98B])

• The Copy on Write Proxy pattern, which is used as an example in the description of the Proxy pattern in [Grand98A].

 Durability

 The basic consideration for ensuring the durability of a transaction is that its results must persist as long as there may
be other objects that are concerned with the object’s state. If the results of a transaction are not needed beyond a single execution
of a program, it is usually sufficient to store the result of the transaction in the same memory as the objects that use those results.

 If other objects may use the results of a transaction indefinitely, then the results should be stored on a non-volatile
medium such as a magnetic disk. This can be trickier than it seems at first. The writing of transaction results to a disk file must
appear atomic to other threads and programs. There are a few issues to deal with in ensuring this:

8

• A single write operation may be translated into multiple write operations by the object responsible for the write
operation or the underlying operating system. That means that data written using a single write call may not appear in a
file all at once.

• Operating systems may cache write operations for a variety of efficiency reasons. That means data written by multiple
write operations may appear in a file at the same time or may be written in a different sequence than the original write
operations.

• When accessing remote files, additional timing issues arise. When a program writes information to a local file, the
modified portion of the file may reside in the operating system’s cache for some time before it is actually written to the
disk. If another program tries to read the modified portion of a file while the modifications are still cached, most
operating systems will be smart enough to create the illusion that the file has already been modified. If read operations
on a file reflect write operations as soon as the occur, the system is said to have read/write consistency.

Read/Write consistency is more difficult to achieve when accessing a remote file. That is partially because there can be
unbounded delays between the time that a program performs a write operation and the time that the write arrives at the
remote disk. If you take no measures to ensure that access to a remote file has read/write consistency, the following
sequence of event is possible:

1. Program X performs a write operation.

2. Program Y reads the unmodified but out of date file.

3. Program X’s write arrives at the file.

• An object that may read the same data from a file multiple times will pay a performance penalty if it does not cache the
data to avoid unnecessary read operations. When reading from a remote file, caching becomes more important, because
of the greater time required for read operations. However, caching introduces another problem.

 If the data in a file is modified, then any cache that contains data read from the file is no longer consistent with the file.
This is called the cache consistency problem.

 The following paragraphs contain some suggestions on how to deal with the problems related to the timing of actual
writes to local files. The Read/Write Consistency pattern explains how to handle the read/write consistency problem. The Cache
Consistency pattern explains how to handle cache consistency.

 It is not generally possible to control exactly when the data from a write operation will actually be written to physical
file. However, it is possible to force pending write operations to local file systems to complete. This guarantees that all pending
write operations have completed at a known point in time. It is generally good enough for ensuring the durability of a transaction
unless the transaction is subject to real time constraints.

 There are two steps to forcing write operations to local file systems to complete. The first step is to tell objects your
program is using to perform write operations to flush their internal buffers. For example, all subclasses of OutputStream
inherit a method named flush. A call to the flush method forces the OutputStream object to flush any internal buffers
that it might have.

 The second step to forcing write operation to local file systems to complete is to get the FileDescriptor object
for the file your are writing. FileDescriptor objects have a method named sync. A call to a FileDescriptor
object’s sync method tells the operating system to flush any cached write operations for the associated file.

9

 All

 There is another implementation issue that affects all four ACID properties. The issue is how to handle a commit
operation that is unable to successfully complete. In all cases, the objects manipulated by the transaction must be left in a
consistent state that either reflects that success or failure of the transaction.

 There are two failure modes that we are concerned about. Ones is that the commit operation is unable to commit the
changes made during the transaction, but the objects that are interested in the results of the transaction are alive and well. The
other is a larger scale failure that causes the commit operation not to complete and also causes all of the objects that are interested
in the results of the transaction to die.

 The problem is simplest when the failure is limited to the commit operation and the objects interested in the results of
the transaction are still alive and well. In this case, since the commit could not succeed, the transaction must fail. All that is
required is to restore the objects manipulated by the transaction to their state at the beginning of the transaction.

 The larger scale failure presents an additional challenge if the objects that were interested in the results of the transaction
will persist after the failure. Before processes or threads are started that will allows objects to see an incomplete transaction, the
incomplete transaction must be detected and its commit must be completed or backed out.

 In summary, adding your own logic to an application to enforce ACID properties for transactions adds considerable
complexity to the application. When possible, use an available tool than can manage the ACID properties for you.

 If you must create your own support for the ACID properties of transactions, your design for each transaction will
include some of the elements shown in the class diagram in Figure 4.

TransactionParticipant1

Contains-
data-for 5

Contains-
data-for 5

1

5 Manipulates

TransactionParticipant2

11

...

1

StateSavingClass1

1

StateSavingClass2

TransactionLogic

ReadWriteLock ReadWriteLock

Uses 6 Uses 6
1 1

1 1

«interface»
TransactionParticipantIF

TransactionManager

Uses 5

1

Uses 5

1

Uses 5

1

3 Uses

1

1

 Figure 4: Generic Transaction Classes
 Here are descriptions of the roles classes play in ACID transactions as indicated in Figure 4:

10

 TransactionLogic

 Though there are many ways to organize the logic of a transaction, the most common design is to have one class that
encapsulates the core logic of a transaction. This class may encapsulate the core logic for multiple related transactions.

 TransactionParticipant1, TransactionParticipant2, …

 The logic encapsulated in a TransactionLogic class modifies the state of instances of these classes.

 TransactionManager

 This class encapsulates reusable common logic to support atomicity. For distributed transactions, it may also encapsulate
the logic to support durability. TransactionLogic objects use an instance of this class to manage a transaction.

 TransactionParticipantIF

 Each TransactionParticipant class implements this interface. The purpose of this interface is to allow a
TransactionManager object to manipulate TransactionParticipant objects without having a
dependency on any specific TransactionParticipant class.

 StateSavingClass1, StateSavingClass2, …

 Classes in this role are responsible for saving and restoring the state of TransactionParticipant objects. These
classes are usually specific to a single TransactionParticipant class or a small number of related
TransactionParticipant classes.

 ReadWriteLock

 If there will be concurrent transactions accessing TransactionParticipant objects, with some transactions
modifying an object and other transactions just requiring read access, an instance this class is used to coordinate shared read
access and exclusive write access to the object. These classes are usually reusable.

 Known Uses
 Database management systems guarantee ACID properties for transactions. Some use an implementation of atomicity

based on keeping a copy of the initial state of each item involved in a transaction. For example, Interbase keeps the original and
the modified version of every record involved in a transaction until the transaction completes. When the transaction completes, it
discards one or the other, depending on whether the transaction succeeds or fails.

 Oracle uses an implementation of atomicity that is analogous to the implementation using wrapper objects.

 Related Patterns
Snapshot

 The Snapshot pattern (described in [Grand98A]) describes techniques for saving and restoring the state of objects. This is
the better way to recover from a transaction failure when a transaction involves a long sequence of operations that modify
the state of a small number of simple objects.

Command

 The Command Pattern (described in [Grand98A]) describes techniques for remembering and undoing a sequence of
operations. This is the better way to recover from a transaction failure when a transaction involves a short sequence of
operations that modify the state of a large number of complex objects.

Audit Trail

 Logging a sequence of operations to support the Command Pattern is structurally similar to maintaining an audit trail.

System Testing

 The System Testing pattern (described in [Grand98B]) should be used to ensure the consistency of transactions.

Unit Testing

 The Unit Testing pattern (described in [Grand98B]) may also help to ensure the consistency of transactions.

11

Single Threaded Execution

 The Single Threaded Execution Pattern (described in [Grand98A]) can be used to keep transactions that modify the state of
the same object isolated from each other.

Read/Write Lock

 The Read/Write Lock pattern (described in [Grand98A]) can be used to keep transactions that use the same object isolated
from each other while allowing transactions that do not modify the object’s state to execute concurrently.

Read/Write Consistency

 If you directly manage the storage of persistent distributed objects, you may need the Read/Write Consistency pattern to
ensure that data and objects that are read from files are consistent with the most recent write operation.

Cache Consistency

 If you directly manage the storage of persistent distributed objects, you may need the Cache Consistency pattern to ensure
that the result of a locally initiated read operation matches the current contents of a remote store.

12

 Composite Transaction

 Synopsis
 You want to design and implement transactions correctly and with a minimum of effort. Simple transactions are easier

to implement and make correct than complex transactions. Design and implement complex transactions from simpler ACID
transactions.

 Context
 Sometimes, you want to design a complex ACID transaction using existing ACID transactions as building blocks. Using

ACID existing transactions to build a more complex transaction does not automatically give it the ACID properties. Consider the
following situation.

 You work for the IT department of a supermarket chain. In addition to having a number of stores to sell food, the
company has a central facility where it produces bread, cakes and other baked goods for the stores. The IT Department provides
systems to support these activities:

• There is manufacturing software for the bakery. Every evening it is fed the quantities of each item that each store will need
for the following day. It produces reports telling the bakers how much of each item to produce and what ingredients need to
order for following days.

• There is transportation scheduling software. Every evening it is also fed the quantities of each item each store will need for
the following day. It schedules trucks to transport baked goods to the stores. It produces reports telling the bakers how
much of each item to put in each truck.

 Currently, the amount of each product each store needs for the next day must be keyboarded into both software
applications. This increases labor costs. It makes data entry errors more likely, since there are twice as many opportunities to
make mistakes. The costs of data entry errors are higher because they can lead to baked goods being produced but not loaded onto
a truck or too many trucks being scheduled.

 You have the task of creating a mechanism that allows the data to be entered only once. You think of writing a data
entry program that will put the data in the appropriate database table of each application. Though you know that you can make it
work, you search for another way. Because the program would assume the internal structure of other applications, you are
concerned about maintenance problems later on.

 Reading each application’s documentation, you find that they both have an API to programmatically present data to
each application. Transactions initiated by the APIs have the ACID properties. This gives you a way to build the data entry
mechanism using only supported features of the applications.

 The fact that both APIs support the ACID properties greatly simplifies the task of building a composite data entry
transaction with a predictable outcome. By creating a composite transaction that simply invokes each API, you get a transaction
that is consistent and durable without doing anything else. However, you must carefully consider how to ensure that the
composite transaction is atomic and isolated. They will generally not be atomic or isolated. You must either take additional steps
to make them so or determine that a less stringent guarantee of their behavior is sufficient. Without proper attention to these
details transactions can be lost, be applied multiple times or concurrent transactions may corrupt each other.

 The composite transaction in the example is not automatically atomic. That is not a problem, for two reasons.

• Before the transaction runs, the quantity of all baked good scheduled to be produced for a store is zero. For that reason, there
is no need to save the old values before the transaction. You can back out the transaction by setting all of the values to zero.

13

• Both the component transactions are idempotent. Idempotent means that a transaction can happen once or more than one and
still have the same outcome. This simplifies the task of recovery from a crash because the only information that needs to be
saved is the fact that the transaction was begun. It is not necessary to be certain that it completed.

 The other area you will need to address is isolation. Though each component transaction has the isolation property, this
sequence of events is possible:

Composite Transaction 1 Composite Transaction 2
Manufacturing Transaction 1

Manufacturing Transaction 2
Transportation Transaction 2

Transportation Transaction 1

 If the composite transaction is isolated from other transactions, then neither transaction should be able to observe state changes
made by the other. This is not the case in the above scenario. In this sequence of events, the first half of transaction 1 sees things
as they were before transaction 2; the second half of transaction 1 sees things as they are after transaction2. If you only need to
isolate these transactions from each other, you can solve the crash recovery problem and the isolation problem the same way:

 Before the composite transaction invokes any of its component transactions, it can store the transaction data in a file.
When the transaction is done, it deletes the file. If there is a crash that prevents the completion of the transaction, then when the
program restarts it can detect the existence of the file and restart the transaction.

 The existence of the file can also be used to isolate transactions. Using the Lock File pattern, if the file exists when a
composite transaction starts, it waits until the file no longer exists before it continues.

 Figure 4.5 is a class diagram that shows your design.

CompositeTransaction

DataEntryDialog

Store

LockFileManager

ManufacturingTransaction TransportationTransaction

Uses 6 Uses 6

1 1

1 1

Provides-data-to 4
1

0..*

6 enters-data-for

1

* Contains-
transaction-details 5

0..*

1

TransactionFile Manages 3
11

 Figure 5: Composite Data Entry Transaction
 Figure 5 adds a detail not previously discussed. Instead of using just one transaction file, it uses one transaction file per

store. This is based on an assumption that each store only enters data for itself and no other stores. This means concurrent
transactions from different stores are isolated from each other simply because they are from different stores. You only need the
file to isolate concurrent transactions from the same store. Forcing transactions for one store to wait for transactions for another
store to complete introduces an unnecessary delay.

 In this example, it was possible to find a solution that did not require that the composite transaction was atomic and
isolated. This is the exception rather than the rule. In most cases, it is necessary to take measures ensure that a composite
transaction as all of the ACID properties.

14

 Forces
• Building complex transactions with predictable outcomes from simpler transactions is greatly facilitated if the simpler

transactions have the ACID properties.

• If the ACID properties of a set of transactions are implemented using a single mechanism that supports nested transactions,
then implementing the ACID properties for a composite transaction composed of those transactions is very easy.

• If the ACID properties of a set of component transactions are implemented using a mechanism that does not support nested
transactions, then implementing ACID properties for a composite transaction is more difficult. Implementing a composite
transaction using component transactions whose ACID properties are implemented using incompatible mechanisms that do
not work with each other is also difficult. In some cases, it is impossible.

• It is more difficult for a maintenance programmer having to maintain a composite transaction to understand the full inner
workings of a composite transaction, especially if there are multiple levels of composition.

 Solution
 Design classes that implement complex transactions so that they delegate as much work as possible to classes that

implement simpler transactions. When selecting classes that implement transactions for incorporation into more complex
transactions, you should with use classes that already exist and are known to be correct or you should select classes that will have
multiple uses.

 The simpler transactions should have the ACID properties. That greatly simplifies the task of ensuring predicable
properties for the composite transaction.

 Carefully choose the granularity of the simpler transactions. When designing with existing transactions, you generally
have to work with the transactions as the exist. If you are designing the simpler transactions along with the complex, the
granularity of the simpler transaction should be a balance between the need to keep the simpler transactions simple and the need
to keep the more complex transactions understandable.

 Sometimes, circumstances make ensuring the ACID properties of a composite transaction complicated. Figure 6 shows
the structure of a composite transaction design when there are no such circumstances that make it more complicated.

15

Uses 5

5 Manipulates

...

1

TransactionManager

5 Uses

1

Uses 5

1

1

3 Uses

1

1

«interface»
TransactionParticipantIF

startTransaction()
commit()
abort()

CompositeTransactionLogic

startTransaction()
commit()
abort()
transactionOperation1()
transactionOperation2()
...

ComponentTransactionAdapter1

startTransaction()
commit()
abort()

ComponentTransactionAdapter2

startTransaction()
commit()
abort()

ComponentTransaction1

transactionOperation1()
transactionOperation2()
...

ComponentTransaction2

transactionOperation1()
transactionOperation2()
...

Manages-
transactions-for 5

Manages-
transactions-for 5

1

1 1

1

...

 Figure 6: Composite Transaction Pattern
 The classes shown in figure 6 play the following roles in the Composite Transaction pattern:

CompositeTransactionLogic Although there are many ways to organize the logic of a transaction, the most common design
is to have one class that encapsulates the core logic of a transaction. This class can encapsulate the core logic for multiple
related transactions.

ComponentTransaction1, ComponentTransaction2, … Classes in this role encapsulate a component transaction that is
part of the composite transaction. CompositeTransactionLogic classes delegate transaction operations directly
to ComponentTransaction objects. However, transaction management operations that begin or end a transaction are
delegated indirectly through a TransactionManager class.

TransactionManager This class encapsulates reusable common logic to support atomicity and isolation. For distributed
transactions, it may also encapsulate the logic to support durability. CompositeTransactionLogic objects use an
instance of this class to manage a transaction.

In order to be independent of the classes that it manages within a transaction, it interacts with these classes through a
TransactionParticipant interface.

16

TransactionParticipantIF TransactionManager classes interact with ComponentTransaction classes
through an interface in this role.

ComponentTransactionAdapter Unless ComponentTransaction classes are specifically designed to work with
the TransactionManager class being used, they don’t implement the TransactionParticipantIF
interface that the TransactionManager class requires. Classes in this role are adapters that implement the
TransactionParticipantIF interface with logic that delegate to a ComponentTransaction class and
supplement its logic in whatever way is necessary.

 There are two areas in which applications of this pattern most often vary from the organization shown in Figure 5. Both areas of
variability usually add complexity.

 The first area of variability is that some portions of the composite transaction’s logic may not already be encapsulated as a self-
contained transaction. In many cases, such logic is too specialized for you to have an expectation of reusing it. It may not be
possible to justify encapsulating such specialized logic in this way. In these situations, the design usually looks like a hybrid of
figures 5 and 3, with some portions of the logic encapsulated in self-contained transactions and the unencapsulated portions
having the additional details shown in figure 3.

 The other area of variation is managing the predictability of the composite transaction’s outcome. The preferred strategy for doing
that is to ensure that the composite transaction has the ACID properties. Extensive experience has shown this is to be a
successful strategy. Though using component transactions that have the ACID properties may simplify the task of ensuring that
the composite transaction has the ACID properties, it is not sufficient.

 The simplest situation for ensuring the ACID properties of the composite transaction is when there is a single mechanism for
ensuring the ACID properties of all of the component transactions and the mechanism supports nested transactions. Such a
mechanism does not only allow individual component transactions to abort themselves. It also allows the composite transaction
to abort and restore all objects modified by committed component transactions to the state they had at the beginning of the
composite transaction.

 The simplest possibility is that you are using a tool to manage transactions and the tool supports nested transactions.
Alternatively, if you control the implementation of all of the component transaction classes that you are using, then it is relatively
easy to modify the techniques described by the ACID Transaction pattern to support nested transactions.

 If the component transactions are managed by a mechanism that does not support nested transactions then you will need a
different way to ensure the predictable outcomes of the composite transactions. If the component transactions are managed by
different mechanisms, as is the case in the example under the “Context” heading, it is also necessary to find a different way to
ensure the predictability of the outcome of the composite transaction.

 The Two Phase Commit pattern describes a way to combine component transactions that have the ACID properties and are
managed by different mechanisms into one composite transaction that has the ACID properties. However, you may not be able
to use the Two Phase Commit pattern if all of the classes that encapsulate the component transactions have not been designed to
participate in the Two Phase Commit pattern.

 In some cases, it may be impractical or even impossible to ensure the ACID properties for the composite transaction. You will
find descriptions of common alternatives and how to implement them under the “Implementation” heading.

 Consequences
• Writing classes that perform complex transactions by having them delegate to classes that perform simpler transactions is a

good form of reuse, especially when the classes that implement the simpler transactions already exist or will have multiple
uses.

• The core logic of a transaction implemented as a composite transaction is less likely to contain bugs than a monolithic
implementation of the same transaction. That is because the component transactions you build on are usually already

17

debugged. Because implementing transactions in this way simplifies the core logic of the transaction, there are fewer
opportunities to introduce bugs into it.

• If you are not able to use nested transactions or the Two Phase Commit pattern to manage the ACID properties of a
composite transaction, it may be difficult to implement the ACID properties for the composite transaction. It may even be
impossible to implement the ACID properties for the composite transaction. In such situations, you are forced to
compromise on the guarantees you can make about the predictability of the transaction’s outcomes.

• If there are no dependencies between component transactions, then it is possible for them to execute concurrently.

 Implementation
 There are a number of lesser guarantees that you may try to implement when it is not possible to enforce the ACID properties
for a composite transaction. Some of the more common ones are discussed in this section

 When it is not possible to ensure that a transaction is atomic, it may be possible to ensure that it is idempotent. If you are rely on
idempotence rather than atomicity, then you must be able to ensure that a transaction will be completed at least once, after it is
begun.

 In some situations, it is possible to ignore the issue of isolation. If the nature of the transaction ensures that there will be no
concurrent transactions that modify the same objects, then you do not need to anything to ensure that the transactions execute in
isolation.

 Known Uses
 Sybase RDBMS and SQL Server support nested transactions and facilitate the construction of composite transactions.

 JAVA API Usage
 The Java Transaction API has facilities to aid in the construction of composite transactions.

 Related Patterns
 ACID Transaction

 The Composite Transaction pattern is built on the ACID transaction pattern.

 Adapter

The Composite pattern uses the Adapter pattern, which is described in Volume 1.

 Command

 The Command Pattern (described in [Grand98A]) can be the basis for an undo mechanism used to undo operations and
restore objects to the state they were in at the beginning of a transaction.

 Composed Method

 The Composed Method pattern (described in [Grand98B]) is a coding pattern that describes a way of composing methods
from other methods that is structurally similar to the way the Composite Transaction pattern composes transactions.

Lock File

 The Lock File pattern can be used to enforce the isolation property for a composite transaction.

 Two Phase Commit

 The Two Phase Commit pattern can be used to ensure the ACID properties of a composite transaction composed from
simpler ACID transactions.

 Mailbox

 When there is a need to ensure the reliability a composite transaction, you will want to take steps to ensure the reliability of
the component transactions that constitute it. If the composite transaction is distributed, you will also want to ensure the

18

reliable transmission of messages between the objects that participate in the transaction by such means as the Mailbox
pattern.

19

 Two Phase Commit
 This pattern is based on material that appears in [Gray-Reuter93].

 Synopsis
 If a transaction is composed of simpler transactions, you want them to either all complete successfully or to all abort,

leaving all objects as they were before the transactions. You achieve this by making an object responsible for coordinating the
transactions so that they all complete successfully or all abort.

 Context
 Suppose that you have developed software for a barter exchange business. The software is responsible for managing

barter exchanges. It records offers of exchange, acceptances and the consummation of each exchange.

 The business has grown to the point where it has offices in a number of cities, each office facilitating barter exchanges
between people local to its city. The business’s management has decided that it is time to move take the business to the next level
and allow barter between people in different parts of the country. They want someone in one city to be able to swap theater
tickets for balloon rides near a different city. Currently that is not possible.

 Each office runs its own computer that manages transactions for its clients. The offices run independently of each other.
In order to support exchanges between clients of different offices, if must be possible to execute ACID transactions that are
distributed between multiple offices.

 To make that happen, there must be a mechanism that coordinates the portion of each transaction that executes in each
office. It must be the case that every portion of each transaction successfully commits or every portion of each transaction aborts.
It must never happen that one office thinks that a transaction completed successfully and another thinks that it aborted.

 Forces
• Otherwise independent atomic transactions must participate in a composite atomic transaction.

• If any one of the component transactions participating in a composite atomic transaction fail, they must all fail. This implies
that the component transactions are coordinated in some way.

• Though it is possible to distribute the responsibility for coordinating transactions over multiple objects, it is an unusual
design decision. Distributing coordination of self-contained transactions adds complexity. It is an area that is not as well
understood as designs that make a single object responsible for the coordination. Distributed coordination of transactions is
still a valid research topic.

• There is very extensive industry experience with designs that make a single object responsible for coordinating transactions.

• The results of a transaction should persist as long as any objects may be interested in the results or until another transactions
changes the state of the effected objects. If the transactions being coordinated have the ACID properties, then their
durability attribute implies that this will be true for the results of each of the coordinated transactions individually.

• The responsibility for coordinating component transactions persists until the composite transaction has completed.
However, the object(s) responsible for coordinating a transaction may experience a catastrophic failure during a transaction.

 Solution
 Make a single object responsible for coordinate otherwise independent ACID transactions participating in a composite
transaction so that the composite transaction has the ACID properties. The object responsible for the coordination is called the
coordinator. The coordinator coordinates the completion of the composite transaction in two phases. First, it determines if each

20

component transaction has completed it work successfully or not. If any of the component transactions complete unsuccessfully,
then the coordinator causes all of the component transactions to abort. If all of the component transactions complete successfully,
the coordinator causes all of the component transactions to commit their results.

 Figure 7 is a class diagram that shows the roles in which objects participate in the Two Phase Commit pattern.

5 Manipulates

...

1

Coordinator

5 Uses

1

Uses 5

1

Uses 5

1

3 Uses
1

ComponetTransaction1

startTransaction()
commit()
abort()
transactionOperation1()
transactionOperation2()
...

ComponetTransaction2

startTransaction()
commit()
abort()
transactionOperation1()
transactionOperation2()
...

«interface»
TransactionWrapperIF

startTransaction()
commit()
abort()
synchronization()

CompositeTransactionLogic

startTransaction()
commit()
abort()
transactionOperation1()
transactionOperation2()
...

TransactionWrapper1

startTransaction()
commit()
abort()
getStatus()
transactionOperation1()
transactionOperation2()
...

TransactionWrapper2

startTransaction()
commit()
abort()
getStatus()
transactionOperation1()
transactionOperation2()
...

Uses 5 Uses 5

1

1 1

1

1..*

5 Uses

1

1..*

 Figure 7: Two Phase Commit Pattern
 Here are descriptions of the roles in which classes participate in the Two Phase Commit pattern:

 CompositeTransactionLogic

 A class in this role is responsible for the top level logic of a composite transaction.

 Coordinator

 An instance of a class in this role is responsible for coordinating the component transactions of a composite transaction. It
determines if they are all successful and then either tells them all to commit or to all abort. Classes in this role are usually
reusable and contain no application specific code.

21

 ComponentTransaction1, ComponentTransaction2, …

 Classes in this role encapsulate the component transactions that comprise the composite transaction.

 TransactionWrapper1, TransactionWrapper2, …

 ComponentTransaction objects can only participate directly in the Two Phase Commit pattern if they are designed
to do so. That is usually not the case. ComponentTransaction objects that are not designed to directly participate
in the Two Phase Commit pattern can do so through a wrapper object that provides the logic necessary for it to do so.
Classes in this role are those wrapper objects. The details of the logic they need to provide are discussed later in this section.

 TransactionWrapperIF

 Classes in the TransactionWrapper role must implement this interface, which is required by the Coordinator
class.

 The collaboration diagram in Figure 8 illustrates the way that these classes work together.

CompositeTransactionLogic

1: startTransaction()
2: commit()

wrap1:TransactionWrapper1

wrap2:TransactionWrapper2

Coordinator

ComponentTransaction1

ComponentTransaction2

1.1: register(wrap1)
1.2: register(wrap2)

2.1: commit()

1.1.1: synchronize()
1.1.2: status1:=getStatus()

1.1.2/[all status==SUCCESS]2.1a.1: commit()
[any status==FAILURE]2.1a.2: abort()

1.2.1: synchronize()
1.2.2: status2:=getStatus()

1.2.2/[all status==SUCCESS]2.1b.1: commit()
[any status==FAILURE]2.1b.2: abort()

1.3a: startTransaction()

1.3b: startTransaction()

1.3a.1: startTransaction()
2.1a.1.1: commit()
2.1a.2.1: abort()

1.3b.1: startTransaction()
2.1b.1.1: commit()
2.1b.2.1: abort()

 Figure 8: Two Phase Commit Collaboration
 Here is a step-by-step description of the interactions shown in Figure 8:

 1

 The composite transaction is started.

 1.1, 1.2

 The composite transaction registers the objects that wrap the component transactions with the Coordinator object.
This simplifies the logic of the composite transaction by allowing it to commit or abort the transaction with a single call to
the Coordinator object. It also allows the Coordinator object to provide better handling of component
transactions that fail. This is discussed in more detail under the “Implementation” heading.

22

 These calls are asynchronous. They start another thread to do their work and then return immediately.

 1.1.1, 1.2.1

 The Coordinator object calls the synchronize method of the objects that wrap the component transactions. The
purpose of these calls is so that the Coordinator object knows when each of the component transactions has
completed. Calls to the synchronize methods do not return until the component transaction they are associated with
completes.

 The call that precedes these calls is asynchronous. These calls made by the Coordinator object are made in a different
thread than the calls to the Coordinator object. The objects that call the Coordinator object’s register
method are able to go about their business while the Coordinator object is waiting for its calls to synchronize
methods to return.

 1.1.2, 1.2.2

 The Coordinator object calls the getStatus method of the objects that wrap the component transactions. The
purpose of these calls is to determine if each component transaction was successful or failed.

 1.3a, 1.3b

 The logic of the composite transactions starts each of the component transactions by calling the startTransaction
method of the wrapper object for each component transaction. When possible and advantageous, the invocations of the
component transactions are concurrent. In many cases, that is not possible. Sequential invocation of component transactions
is more common than concurrent invocation.

 1.3a.1, 1.3b.1

 The wrapper objects start their corresponding component transaction.

 2

 The CompositeTransactionLogic object’s commit method is called. A call to the commit method requests
the object to commit the results of the composite transaction.

 2.1

 The CompositeTransactionLogic object delegates the work of committing the composite transaction to the
Coordinator object by calling its commit method.

 2.1a.1, 2.1b.1

 For each component transaction, the Coordinator object waits for the transaction to complete. If the status of all of the
component transactions indicate that they completed successfully and will be able to commit their results successfully, then
the Coordinator object calls the commit method of each component transaction’s wrapper object.

 2.1a.1.1, 2.1b.1.1

 If their commit method is called, the wrapper objects for the component transactions commit those transactions.

 2.1a.2, 2.1b.2

 If any component transactions did not complete successfully or their status indicates that some of them will not be able to
successfully commit their results, then the Coordinator object calls the abort method of each component
transaction’s wrapper object.

 2.1a.2.1, 2.1b.2.1

 If their abort method is called, the wrapper objects for the component transactions abort those transactions.

 Based on this, the additional logic that wrapper objects for component transactions may be required to provide are:

• The ability to tell if a component transaction has completed its work successfully and will be able to successfully commit its
results.

• The ability to determine if a component transaction will be unable to complete its work.

When a Component Transaction Fails

23

A Coordinator object learns that a component transaction has failed when its wrapper’s getStatus method
returns failure. If any of the component transactions fail, the Coordinator object aborts them all.

When a Component Transaction Object Crashes

When a Coordinator object learns that a component transaction object has crashed, it also aborts all of the component
transactions. Coordinator objects are generally not able to learn directly that a component transaction object has
crashed. Instead they generally learn indirectly of a crash. A Coordinator object may infer that a component
transaction object by the amount of time that it takes for the call to the component object’s getStatus method to return.
If the call takes too long to return, the Coordinator object may consider the call to have timed out and infer that the call
will never return.

If the length of time that a component transaction takes is highly variable, then the amount of time that the must elapse
before the Coordinator object may consider the call to have timed out may be unreasonable long. In such cases, the
Coordinator object can use the Heartbeat pattern to detect the crash of a Coordinator object.

When The Coordinator Crashes

One other aspect of this pattern to look at more closely is what happens when the Coordinator object crashes.

When a Coordinator object has a transaction pending, it records in a file the fact that there is a pending transaction
and the identities of the transaction’s participants. If the Coordinator object crashes, it is automatically restarted.

After the Coordinator object restarts, it checks the file for pending transactions. When the Coordinator
object finds a transaction in the file, the transaction will be in one of three states:

• The transaction may be open. In this case, the Coordinator object does not need to take any immediate action.

• The transaction may be aborted. This will be the case if the Coordinator object received a request to abort the
transaction, but had not informed all of the transaction’s participants to abort before the crash. In this case, the
Coordinator object calls the abort method of all the transaction’s participant’s.

• The transaction may be committed. This will be the case if the Coordinator object received a request to commit
the transaction but had not informed all of the participants to commit before the crash. This is the most interesting of
the three cases.

If the Coordinator object had been asked to commit the transaction before it crashed, it has to find out the status
of the participants before it can proceed. The Coordinator object proceeds by calling the getStatus method of all the
transaction’s participants. Each call to a participant’s getStatus method tells the Coordinator object one of three
things:

• The participant has committed the transaction.

• The participant is ready to commit the transaction

• The participant is unable to commit the transaction.

Because of the way that two phase commit works, it should never be the case that some participants have been
committed and other participants are unable to commit. Once the Coordinator object knows the status of all the
participants, it either asks all of the participants to commit or all of the participants to abort the transaction.

24

 Consequences
• The Two Phase Commit pattern ensures that all component transactions in a composite transaction either commit their

results or abort.

• In most situations, the Two Phase Commit pattern adds only a modest amount of overhead.

• There is a situation in which a transaction implemented using the Two Phase Commit pattern can take an indefinite amount
of time to complete.

 The lifetime of a composite transaction is greater than the lifetime of its component transactions. In a distributed
environment, it is possible for some components of the transaction to crash or have some other sort of catastrophic failure
while the others are alive and well. If the object(s) coordinating a transaction experience a catastrophic failure, the
Coordinator object can generally detect the failure within a bounded and predetermined amount of time. In such cases,
the Coordinator object tells the rest of the component transactions to abort.

 If the Coordinator object experiences a catastrophic failure, it is not generally possible to guarantee a maximum amount
of time it will take for it to be restarted and complete the transaction. That means there is no definite guarantee on how long
it can take for coordinated transactions to complete.

• Some transactions cannot participated in the Two Phase Commit pattern because there is no way for a wrapper object to get
the information it needs about the transaction.

 Implementation
 It is possible to guarantee an upper bound on the amount of time that it takes for coordinated transactions to complete by forcing
them to abort after a predetermined amount of time has elapsed. This has the unfortunate consequence of creating a period of time
when it is possible for the outcome of the coordinated transactions to become inconsistent. The problem arises from the fact that
when the object(s) that coordinates a transaction decides that the coordinated transactions should commit their results, the
message does not reach the objects responsible for each transaction at the same time. This creates a window of vulnerability
between the time that the message to commit reaches the first transaction and the time it reaches the last transaction. During the
window, some of the transactions may time out, causing those transactions to abort while those that the message reaches in time
commit their results.

 In distributed environments, you should ensure that the Coordinator object becomes aware of the catastrophic failure of a
component transaction within a bounded amount of time. The simplest solution is available if the component transaction takes
about the same amount of time to complete every time it runs. In this situation, the Coordinator object can detect a
catastrophic failure of a component transaction by placing a limit on how much time it will wait for it to complete before it
decides that the component transaction has failed.

 If the amount of time that a component transaction requires is not predictable, you can use the Heartbeat pattern to ensure that
the Coordinator object detects a catastrophic failure within a set amount of time.

 JAVA API Usage
 The Java Transaction API defines interfaces that are suitable for some of the roles of the Two Phase Commit pattern.

 Known Uses
 The CORBA transaction service supports the Two Phase Commit pattern.

 Databases such as Oracle and Sybase that support distributed transactions use the Two Phase Commit pattern.

25

 Related Patterns
 ACID Transaction

 The Two Phase Commit pattern is used to build composite transactions having the ACID properties from component
transactions that have the ACID properties.

 Composite Transaction

 The Two Phase Commit pattern is used with the Composite Transaction pattern

 Decorator

 The Decorator pattern (described in [Grand98A]) provides the basis for the organization of the wrapper objects used in the
Two Phase Commit pattern.

 Heartbeat

 The Heartbeat pattern may be used with the Two Phase Commit pattern to ensure that the Coordinator object is able
to detect catastrophic failures of component transactions in a bounded amount of time.

Process Pair

 The Process Pair pattern may be used to restart a Coordinator object after it crashes.

26

 Audit Trail

 Synopsis
 You need to verify that transactions are being processed correctly and honestly. Maintain an historical record of

transactions that have been applied to an object or set of objects. The record should contain enough detail to determine how the
objects affected by the transactions reached their current state.

 Context
 Suppose that you are designing software for a business that will serve as a clearinghouse for barter exchanges. Each

transaction will involve the exchange of a combination of goods and services.

 Each day, the clearinghouse’s clients make deals. At the end of each day, each client is expected to consummate the their
trades through the exchange of certificates promising the future delivery of goods or services. The clearinghouse provides its
clients with the necessary digital certificates it expects them to digitally sign and forward to the indicated recipient. The recipient
on the certificate may be a different party than anyone that the client made any direct deal with, because of subsequent trades.

 Clearing house clients must trust the clearinghouse to correctly identify the recipients of the goods or services that they
have traded away. For that reason there must be a way to verify the correctness and honesty of the clearinghouse. One way to do
that is to keep an audit trail.

 The audit trail will consist of a record of all of the trades. By reviewing randomly selected sequences of transactions, it
is possible for auditors to verify that the transactions are handled correctly and honestly.

 Forces
• You need a record of the transactions that have modified the state of an object or set of objects in order to determine if the

current state of the object(s) is correct.

• You need to account for the actions of an object. The need for accountability can come from the application domain. For
example, in accounting and finance applications real world financial events drive the actions of objects. These applications
generally have requirements that it be possible to audit the actions of these objects so that they can be compared with real
world events. Such audits provide an opportunity to detect human error and dishonesty in recording financial events.

The need for object accountability may come from internal design considerations such as the need to review an object’s
actions for security or debugging purposes. A record of an object’s actions may help detect patterns in a hacker’s actions.
When debugging a program, comparing a record of an object’s actions with its expected actions can help in tracking down
bugs.

• Once a record is made of a transaction, it must not be possible to alter that record. If it is possible to alter it, then you cannot
be sure of what actually happened.

• The number of recorded transactions consistently grows but the amount of available on-line storage does not.

• The purpose of keeping an historical record of transactions is to enable auditors or troubleshooters to verify that the
transactions in the record satisfy a set or expectations or requirements. In many cases, the volume of transactions makes it
impractical for people to examine every individual transaction. In such cases, people will need a way to examine samples or
summaries of the transactions.

27

 Solution
 Maintain an historical record of transactions. The record should include all transactions that effect the state of objects of

interest. In order to use the historical record to determine if the objects are currently in the correct state, it is necessary to
determine the object’s original state. For this purpose, you also store the original state of the object. Knowing the original state of
an object makes it possible to determine if the transactions applied to an object after it was in that state should have brought the
object to its current state or not.

 The record should also include transactions initiated by objects of interest. The purpose of such an historical record is
to record the behavior of the object that initiates the transactions. In many cases it is necessary to for the historical record to
include information about the object’s state at the time it initiated a transaction in order to evaluate the object’s behavior.

 To facilitate the analysis of transaction records, the transaction records should be under the control of a mechanism such
as a database manager that allows people to extract samples or summaries of the transaction. For example, consider the situation
described under the context heading. It would be desirable to be able to pick an arbitrary clearinghouse client and review the
sequence of trades that resulted in the client being told to send his trade goods to a particular recipient.

 Consequences
• If you use the Audit Trail pattern to keep track of the transactions that an object is given to process, then you can determine

if the object is in its correct state by auditing the transactions in the audit trail.

• If you used the Audit Trail pattern to keep track of the transactions an object initiates, you will have a way to validate its
behavior or debug it.

• The audit trail pattern adds complexity to designs.

• The storage requirements for maintaining an audit trail can be very large. As time goes on, an audit trail will continue to grow.
If the audit trail is to be kept on-line, there is generally a limit to the amount of storage that is available to for storing the
audit trail. For that reason, it is common to move portions of an on-line audit trail that exceed a particular age to removable
storage such as a tape.

Implementation
When an audit trail is mandated by application requirements, the collection of historical transactions that constitutes the

audit trail is called a journal. As is the case with all audit trails, the transactions in a journal never change because they are a true
and accurate record of history. If an application processes a transaction whose purpose is to correct the effects of a previous
erroneous transaction, the transaction that corrects the problem is called an adjustment transaction.

 There are many ways to implement the Audit Trail pattern. Figure 9 shows a sample design to implement the Audit
Trail pattern.

28

Transaction TransactionRecord

TransactionProcessor

QueryManager

TransactionRecorder

Processes 5

*

1

3 Records-transactions-for1..* 1

recorderclient

3 Records
0..*

5 Adds-transactions-to

Extracts-samples-and-summaries-of 4

Snapshot
Saves-original-state-of 4

1

1

Figure 9: Audit Trail Pattern
In the design shown in Figure 4.9, TransactionProcessor objects process transactions encapsulated in
Transaction objects. As it processes transactions, it passes them to a TransactionRecorder object, which adds
the transactions to the collection of Transaction objects it manages. TransactionRecorder objects are responsible
for adding information to the transactions that will be needed for the historical record. One such commonly needed piece of
information is the time that a transaction was processed.

Figure 9 also includes a snapshot object that encapsulates the original state of the TransactionProcessor object. The
contents of that object are used when analyzing the historical transaction record.

One other detail in Figure 9 is a QueryManager class. It is responsible for generating subsets and summaries of the historical
transaction record as they are requested by auditors.

 To validate an object’s current state from an historical record of transactions, the historical record does not need to
include failed transactions. There may be advantages to including failed transactions in the historical record. It can facilitate
debugging and detection of security problems. Because those are not continuing needs, if there is support for failed transactions in
the historical record it should be possible to turn off the inclusion of failed transactions. If it is possible to include failed
transactions in an historical record some of the time, then all transactions in the record must include an indication of whether each
transaction was successful or not.

The volume of transactions in some applications may make it impractical to store and manage a complete audit trail. In
such cases, it may be possible to keep a partial audit trail that still allows valid audits to be performed.

When moving transaction off-line the object’s state that they gave rise to should be determined and stored on-line. That
makes it possible to analyze the on-line portion of the historical record without having to access off-line information.

For some applications, it is not possible to sufficiently limit the time historical transaction records are kept on-line to
keep the on-line storage requirement small enough. If the application processes transactions for many objects, it may be sufficient
to only keep an historical transaction record for randomly selected objects.

Known Uses
Accounting applications intended for medium to large applications support the Audit Trail pattern.

Workflow applications generally provide an audit trail that allows people to find out who did what with a work item.

29

Source code management systems such as CVS provide an audit trail describing changes that have been made to source
code and who made them.

Related Patterns
ACID Transaction

If the transactions in an historical record do not have the ACID properties, then it may not be possible to unambiguously
determine the effect of each transaction on an object.

Snapshot

The Snapshot pattern (described in [Grand98A]) provides advice on how to capture the state of an object.

30

Bibliography
[Date94] Chris J. Date. An Introduction to Database Systems. Addison-Wesley,

Reading, MA, 1994.
[GoF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

[Grand98A] Mark Grand. Patterns in Java, Volume 1. John Wiley & Sons, New York,
NY, 1998.

[Grand98B] Mark Grand. Patterns in Java, Volume 2. John Wiley & Sons, New York,
NY, 1998.

[Gray-Reuter93] Jim Gray, Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufman Publishers, San Mateo, California, 1993.

