
PLoP '95 1 Steve Berczuk

 Organizational Multiplexing:
Patterns for Processing Satellite
Telemetry with Distributed
Teams

Stephen P. Berczuk
MIT Center for Space Research

Organizational issues play a significant role in many
software architectures, though often more as a side
effect than by design. This paper presents a pattern
language for developing ground software for satellite
telemetry systems that illustrates how to take
organization into account in the architecture. In particular,
this paper addresses:

• extending a pattern from the 1995 PLoP
conference [Berczuk95] into a pattern
language.

• assembling patterns from other pattern
languages into a domain specific pattern
language, and

• including social context as a motivating
context for a pattern.

Since scientific research satellite systems are often
developed at academic institutions, where similarities
between ongoing projects exist only at the architectural
level (code typically cannot be reused), documenting
architectural insights such as these in the pattern form
can be a very practical way to achieve reuse. Since
assembly of telemetry involves (re)creation of objects
from a serial stream, these patterns are relevant to
designers of any systems which creates objects from a
serial stream

PLoP '95 2

Introduction Organizational issues have an impact on the development of software systems. It

is important to design an architecture in a way that fits well with existing social

and organizational constraints.

As an example of how these issues can be addressed, this paper presents a pattern

language to guide the development of a ground based system that will process

telemetry data from an earth-orbiting astronomical observatory. Systems of this

type involve many diverse, and often geographically distributed groups of

people; such a system is challenging to design from a social as well as a

technical point of view.1 The patterns present in this system are applicable to

other systems that have similar organizational constraints. Since telemetry can

be considered a form of persistence, where objects are serialized into a stream and

transmitted, some of these patterns will also be of interest to builders of systems

that use parsing and reconstruction of objects from a serial data stream.

1The patterns in this paper might also be of use to designers in other situations

where development teams are distributed.

PLoP '95 3 Steve Berczuk

This pattern language makes use of Coplien's patterns of organization

[Coplien95]2 as context for the other patterns, and also shows how to effect

some of these patterns in the context of a ground based scientific telemetry

processing system.

After a description of the relevant elements of the organizatonal structure of a

typical project, patterns which address some of the issues raised by this structure

will be described.

Most of the projects being pursued at the Center For Space Research at MIT

share an organization similar to the following:3
Project Organization

Typical Project Organization

Instrument
Team 1
@MIT

Instrument
Team 2 @

another
University

Science Operations
Center

 at NASA

• A number of instrument teams each with primary responsibility for
deployment and analysis of the data from a single scientific instrument
that will be on the satellite. Often these teams will be at geographically
separate locations.

• A central organization (the operations center) which performs a
coordination function. The operations center may not have the expertise
to understand the scientific objectives of each of the instrument teams,

2To facilitate understanding of paper copies of this document, the appendix

describes summarizes the patterns from [Coplien95] [Gamma+94] and [Beck]

referenced in this paper.

3This particular structure is based on that of the X-ray Timing Explorer project

(XTE), currently in progress at the MIT Center for Space Research.

PLoP '95 4

and is focused on the operational aspects of the system (processing so
many bytes of telemetry per second, and archiving data, for example).

• A small base of shared knowledge between instrument teams and
operations center.

• Small work groups, particularly at the instrument team locations. At
each team site, many of the subsystems fulfill the context of Solo
Virtuoso [Coplien95].

The architecture of the data analysis system takes the following general form:

Typical Architecture

Science Operations
Processes and

archives data from all
instruments

Instrument
Team1
Client

Instrument
Team2
Client

Telemetry

Sends data to appropriate
team's client
for processing

The operations center depends on the instrument teams for providing details

about telemetry specific to each instrument.

Each of the teams has very different motivations; the instrument teams are

focused on getting the best science from "their" instruments, and the operations

team is focused on getting the system assembled (with science often a secondary

consideration). The teams have a large degree of autonomy, but they must agree

on certain interfaces. As a result, a minimal amount of coupling is best4. A

major challenge in designing an architecture of such a system is to handle the

4It can be argued that minimizing coupling is an important consideration in

building any system, but because of the degree of decentralization and non

locality in the projects being discussed here, it is especially important.

PLoP '95 5 Steve Berczuk

organizational and political issues that arise, in such a way that individual

organizations are not overly affected by external forces.

The general organizational forces involved in scientific satellite telemetry

processing systems can be summarized as follows:

• Distributed experience
• Small teams, distributed geographically.
• Little carryover of personnel from one project to the next.

This paper focuses on the process of classification and interpretation of the

telemetry packets as they are received from the spacecraft, and dispatching the

resulting data objects for further processing. Other patterns can be written to

guide the development of other aspects of the system such as commanding and

data analysis.

While this paper discusses patterns found in a scientific satellite application, the

patterns have applications to other domains as well.

The architectural goals and the patterns that complete them are as follows:

• Facilitate autonomous development: Loose Interfaces

• Interpret a Data Stream: Parser/Builder

• Divide responsibilities for interpretation: Hierarchy of Factories

• Connect Systems: Handlers

Context: To help development of a system with many teams proceeding at a

reasonable pace it is important to keep interfaces between systems loose. This

is particularly important in a situation where there are teams of developers that

are geographically distributed and a situation where rapid turnaround time for

design and development is important.

Problem: Communication is difficult. If requirements are changing and the teams

are located in a variety of places then the poor communication can stall a project.

This can be particularly problematic when an organization does not have an

architectural center, such as specified by Architect Controls Product [Coplien95].

This is particularly applicable in a research satellite application where teams are

small, requirements are changing, and the potential for gridlock is great if

dependencies are too high. The operations center is the organizational center of

the architecture, but does not always have the capability to design a complete

The Patterns

1. Loose Interfaces

PLoP '95 6

system. To avoid development bottlenecks, we need to be able to limit the effect

one team's work will have on another.

Therefore: Limit the number of explicit, static, interfaces. Use loose interfaces

like Callback and Parser/Builder and Hierarchy of Factories to achieve this.

Decoupling interfaces in this way will also simplify the development of Early

Program [Beck], since it provides a mechanism for building incremental

systems. It can also facilitate implementation of Developer Controls Process

[Coplien95], by making it easy to define features that can be controlled by a

developer or group.

Context: Many systems need to read data from a stream and classify elements on

the steam as objects. A way is needed to create arbitrary objects based on tokens

in the data stream.

Problem: Given a data stream, we want to interpret it, classifying the elements

into the appropriate class of object. The data stream contains tags that can be

used to identify the raw data, and we want to convert the stream into object form,

so we can process the data.

As a non-telemetry related example consider the problem of reading in raw UNIX

files and classifying them into types of files based on their "magic number" —as

in the tags in the /etc/magic file. You could create the appropriate subclass of

File and then invoke its virtual edit() method, bringing up the appropriate

editor.

In a telemetry processing system each telemetry packet has identifying

information in its header. The telemetry processing system design requires that

an object, once created, knows how to process itself (i.e., we will not use a

dispatch table, or a switch on type— this is to satisfy the Organization Follows

Location[Coplien95] pattern). At the lowest level objects will be created using a

Factory Method [Gamma+94]. Each class of packets will be processed

differently; some will assemble themselves into larger units, others will issue

messages. Consider the following hierarchy, as shown in figure 1, for a

spacecraft that there are two subclasses of Packet:APackets and BPackets.

2. Parser/Builder

PLoP '95 7 Steve Berczuk

Sample Packet Hierarchy

Packet

APacket BPacket

We want each Packet, once created, to process itself by using a virtual method,

process(). If we pass a data stream into a factory, we want to return a pointer

to a Packet that has the appropriate type. To summarize the forces:

• There is a need to interpret a raw data stream.
• There is a generic way to process the packets once they are returned

from the factory.
• The raw data contain tags which can be used for classification.

Therefore: to resolve these forces use a Parser/Builder which reads the identifying

information from the header of the packet, and creates an object of the

appropriate type, removing only one object's worth of data from the stream.

An example of a client interface is:

while (!dataStream.empty()) {
PacketFactory f;
Packet* p = f.make(dataStream);
if(p) p->process()

}

This is a variant of Abstract Factory[Gamma+94] but the object to be created is

defined in the data stream, rather than by the client. Factories and Parser/Builders

can be used to in part implement Loose Interfaces by providing a means of

separating clients from producers of data (assuming that data producers also

define the factories).

PLoP '95 8

Other uses:

In some object persistence mechanisms, objects are assigned class Id's which are

placed in the storage stream. These Ids are restored first to allow the system

decide what class object to make from the restored stream.

Parser/Builder is used in in the pattern Query Objects 5[Chasms] to convert SQL

statements to QUERY objects. [Riehle96] discusses similar issues, building

objects on a desktop using specifications.

The distinction between this pattern and Builder [Gamma+94] and Factory

Method [Gamma+94] is that in this pattern the factory reads from a stream and

the client does not know which type of object will be returned. For text

interpretation, Parser/Builder can be a front end to the Interpreter [Gamma+94]

pattern.

Also Known As: Composite Factory

Context: Once we decide that the Parser/Builder is the right way to create

objects, we need to partition the details of how to construct objects of various

classes into the various groups responsible for this construction, in other words

we need to have Loose Interfaces. We want to complete Form Follows Function

[Coplien95] or Organization Follows Location [Coplien95]. On a lower level

we want to implement Developer Controls Process [Coplien95] for a system

which creates objects of various types.

Problem: In a distributed work group it is important to divide responsibilities as

cleanly as possible and reduce coupling. There should be a way to do this in a

creational system.

Sometimes the secrets of classifying elements in a data stream are divided

between various groups. The reasons for this partitioning can involve company

politics, or simply that the knowledge of the telemetry formats is distributed and

there is a strong desire to reduce coupling. We need a way to partition the

3.Hierarchy of Factories

5Query Objects addresses the problem of handling the generation and executation

of SQL statements in an object-oriented way, when you are trying to use a

relational database to store objects.

PLoP '95 9 Steve Berczuk

responsibilities for classifying the telemetry packets, while maintaining a

centralized client interface.

In a telemetry application, various instruments can generate telemetry which is

then fed into one stream. The instruments are developed by different teams (at

different institutions, for example), and these teams have control over the format

of the telemetry that they generate (after taking some standard headers into

account).

We want a way to isolate the details for identifying each team's objects, while at

the same time allowing the objects to be identified and created in a single

application. The scheme that we develop should be layered so that the main

factory needs to know only of the existence of a class of objects, but need not

know how deep the hierarchy below that class is. Packets created from the

hierarchy are processed in a generic way, perhaps by using virtual functions.

One way to address the classification problem is to put all the

classification/dispatch logic into a single Parser/Builder (combining the

Interpreter [Gamma+94] pattern with a Builder [Gamma+94]) — perhaps by

using a big switch statement— and rely on communications between groups to

ensure that the details make it into the master code through some

communications method. This is error prone, and subject to delays. We could

also divide the processing into a number of factories and have the client call each

in turn. This violates our requirement of transparency, and the client needs to

know when a new class of object is added.

It would be useful to have a way to have the client interface emulate a single

Factory, but hide the details of the construction hierarchy.

To summarize the forces:

• Division of responsibilities (Organization Follows Location).
• A need for a central interface for parsing data streams and building

objects.
• A need to add objects to the construction hierarchy in a manner

transparent to clients.
• The ability (or requirement) to process entities by virtual functions.
• Each class of object can know about its immediate derived classes.

Therefore: Use a hierarchy of factories, each of which understands the criteria for

making a packet of its type, and knows about the immediate subtypes. The

client invokes the make method with the base class factory instance. That

PLoP '95 10

factory checks to see that there is indeed an object of class packet in the stream,

based on some attributes. The factory then passes the data stream to the factories

of each of its immediate subclasses, which check the appropriate data fields in

the manner of the Parser/Builder pattern.

 The Singleton pattern [Gamma+94] can be used to access the factories for the

derived classes, or the members of the hierarchy can be registered with the master

factory at run time.

 While this pattern violates encapsulation to some extent by requiring that a base

class know about its immediate subclasses, it can be made acceptable by

agreeing on generic interface classes (say, one per team) and allow each team free

reign to subclass these interface classes. Also in this application this requirement

is not terribly limiting, since the top level operations team knows abou the

basic instrument team interfaces and the number of instrument teams is fixed by

contract when the project begins.

Hierarchy of Factories

PacketFactory

PacketBFactory PacketCFactory

createPacket

An example implementation is:

//Base class factory method
Packet* PacketFactory::make(Stream* dataStream){
 Packet* pkt=0;
if(isAPacket(dataStream) {

 if(! pkt = APacket::factory()->make(dataStream))
 if(!pkt = BPacket::factory()-

>make(dataStream)){
 pkt = new Packet(dataStream);
}
return pkt;
}

PLoP '95 11 Steve Berczuk

 The result of applying this pattern is that each class needs to know only:

• The criteria for what constitutes a member of that class in terms of
elements in the data stream.

• The immediate subclasses.

It is possible to use a Registration 6 mechanism to inform the base class of

what the subclasses are rather than hard coding the relationship. It is also

possible to implement this pattern using containment rather than inheritance.

Other uses:

This pattern is also useful for isolating the definition of packets for which a

single team is responsible, so the information can be encapsulated, making it

easier to work on a project with large or widely distributed teams.

Related Patterns

This is similar to the Builder [Gamma+94] pattern in that it has a hierarchy of

"factories." It is different in that the data stream defines what is made rather than

the application explicitly specifying what objects to construct by argumenst to

the factory.

This pattern helps us realize Organization Follows Location and Code

Ownership [Coplien95]

 Context: This pattern provides for decoupling needed to implement Organization

Follows Location [Coplien95], for the products of a creational system. After we

assemble packets from the telemetry stream we process them, generating data

products. We need a way to direct the processing of these new data products.

4. Handlers 7

6This pattern is not yet written, but would specify a mechanism for notifying a

base class factory that a derived class factory has been created. The basic idea

would be similar to the View/Model connection in a Model/View/Controller

mechanism, but would also address issues of uniqueness (only one instance of

each derived class can notify a base class) and guaranteed notification (the

construction of any object/factory of the derived classes would generate a

registration event automatically).

7Adapted from PLoP 94 paper. See [Berczuk95] for details.

PLoP '95 12

Problem: In an environment where components developed by separate teams

with different specific goals must inter-operate, it is necessary to partition

responsibilities in such a way that dependencies can be reduced while

interoperability is maintained. In particular well defined portions of the system

should be isolated fron the to be specified pieces. This may be particularly

important if the teams are geographically distributed.

To summarize the forces at work:

• The requirements for the end to end system are not complely specified.

• Requirements for one component of a system need to be available before

downstream processing is defined.

• Upstream and downstream components will be demonstrated/tested at

different times.

• Upstream components should know nothing of the downstream processing.

Callback Pattern

Factory

Entity

creates

Application

Instantiates

Entity
Class

Handler

Associates Sends Self to

PLoP '95 13 Steve Berczuk

Solution: Use a callback mechanism to define connections between assembly

process and the processing process. Provide a mechanism (Registration) to

assign a Handler object for which a completed entity will be forwarded.

One implementation uses a static Handler data member for class Unit. Whenever

a Unit is completed it hands itself to the Handler for processing.

The issue of when to subclass and when to differentiate objects by an attribute

can be a confusing one, and can only be resolved by examing the specific details

such as the number of classes, and the type of behaviour.

This pattern is similar to Observer [Gamma+94] but differs in that the

"observer" is the class of object being created, and the event that triggers the

notification is the creation of an object of a class.

Organizational issues play a significant role in determining the direction a

software system can take. They affect the context in which a system is

developed. It is also necessary to architect a system to minimize the negative

effects of organizational issues. When the organizational patterns such as those

in [Coplien95] exist, there should be ways to architect a system to aid the

realization of good organizational patterns. This paper illustrates some of the

ways to reflect organizational issues in the context of other patterns as well as

showing some ways to implement good organizational patterns in a software

architecture.

There is a common structure to scientific satellite applications, and there also

tends to be little carryover of personnel between projects, so many of the lessons

learned must be rediscovered. Since there are different hardware and software

platforms from one project to the next and the details of each project vary

greatly, code reuse is not really feasible. Design elements can be reused,

however. This application domain, and others which share these factors, could

benefit greatly from documentation of architectural principles as patterns.

While the patterns explicitly address scientific spacecraft satellite telemetry, the

ideas in this paper can be applicable to any system being built with a number of

distinct teams. Some of the patterns such as Parser/Builder also have

applicability in other creational systems.

Conclusions

PLoP '95 14

References [Berczuk95] Berczuk, Steve, "Handlers for Separating Assembly and Processing."
In Pattern Languages of Program Design. James O. Coplien & Douglas
Schmidt Eds. Reading, MA: Addison Wesley, 1995.

[Coplien95] Coplien, James. "A Development Process Generative Pattern
Language." In Pattern Languages of Program Design. James O.
Coplien & Douglas Schmidt Eds. Reading, MA: Addison Wesley,
1995.

[Gamma+94] Eric Gamma, Ralph Johnson, Richard Helm & John Vlissides,
Design Patterns: Elements of Object-Oriented Software Architecture.
Addison Wesley, 1994.

[Beck] Beck, Kent. Early Development Patterns. Portland Patterns Repository.
URL: http://c2.com/ppr/early.html.

[Chasms] Brown, Kyle and Whitenack, Bruce. "Crossing Chasms– A Pattern
Language for Object-RDBMS Integration." In Pattern Languages of
Program Design., Volume II John Vlissides, Norm Kerth, and James
O. Coplien Eds. Reading, MA: Addison Wesley, 1996.

[Riehle96] Riehle, Dirk. "Patterns for Encapsulating Class Trees." In Pattern
Languages of Program Design., Volume II John Vlissides, Norm
Kerth, and James O. Coplien Eds. Reading, MA: Addison Wesley,
1996.

Thanks to Dirk Riehle, Doug Lea and Lena Davis for reviewing early and final

drafts, and the members of the PLoP working group for making many useful

suggestions. The IM Pei home group at PLoP 95 made helpful suggestions on

how to reference other patterns, and the Appendix is based on their ideas. This

work was supported in part by NASA/GSFC contract number NAS5-30612.

Authors address: Room 37-561; 77 Massachusetts Ave, Cambridge MA
02139. current email address; berczuk@acm.org.

Acknowledgements

PLoP '95 15 Steve Berczuk

Appendix: Brief
Descriptions of
Referenced Patterns

This appendix briefly describes the intent of the referenced patterns. These

summaries are quite brief and the orginal pattern should be consulted to fully

understand it.

Patterns from "A Development Process Generative Pattern
Language" [Coplien95].

These summaries are an adaptation of the work of the IM Pei group at PLoP 95.

Architect Controls Product. Describes how a central architect in a controlling

role can help build a cohesive product.

Code Ownership. Modules are assigned to developers who control then and

typically make all changes. This simplifies the task of keeping up with the

details of the entire system.

Developer Controls Process. . Use a developer as a focal point for the project

communication and process for the development of a given feature.

Form Follows Function. . In a project lacking well-defined roles, group closely

related activities (those coupled by either implementation, manipulation of the

same artifacts, or domain related) together.

Organization Follows Location. When assigning tasks arcoss a geographically

distributed workforce, assign architectural responsibilities in such a way that

decisions can be made locally.

Solo Virtuoso. Design and implementation of a small software product which is

required in a short time should be done by one or two people.

Patters from Design Patterns [Gamma+94].

These summaries are from the intent summaries on the inside cover of

[Gamma+94], and are repeated here for reference.

Abstract Factory. Provide an interface for creating families of related or deoendent

objects without specifying their concrete classes.

Builder. Spearate the construction of a complex object from its representation so

that the same construction process can create different representations.

Factory Method. Define an interface for creating an object but let classes decide

which classes to instantiate.

PLoP '95 16

Interpreter. Given a language, define a representation for its grammar along with

an interpreter that uses the representation to interpret sentences in the language.

Singleton. Ensure a class only has one instance, and provide a global point of

access to it.

Patterns from Early Development Patterns [Beck]

Early Program. Build concrete software early on that shows how the system

works and fulfills specified scenarios.

