Plop 2004

Software Development Patterns:

· Methodology

· Methodology Selection

· Team Composition

· Management

· Project Management*

Plop 2004

David L. Hecksel

Sun Client Services

Sun Microsystems

Dhecksel@yahoo.com

Executive Summary

Background

Software Development is a tricky business. The standard approach is to treat software development like other engineering projects – with the expectation that engineering level predictive standards are applicable. However, software is different – much different. The differences are driven by:

· The environment of the software development project is ambiguous

· Project requirements typically change 60% once the project vision has been created.

· Technical complexity leads to greater variance – projects often having to be a pioneer and doing something for the first time.

· Software development is a people intensive process – governed by random and unpredictable events and human behavior

· Ambiguity of requirements translates to increased project risk. To operate effectively within the environment of “squishy” requirements, iterations are often performed in an attempt to mitigate risk, do what can be done, and get early feedback from the customer. Requirements generate requirements – thus early iterations will likely generate additional project requirements as the customer continues to finalize the definition of what they want.

The default assumption is that a stepwise sequenced set of events occurring in a waterfall fashion will lead to project success for any given software project. Business owners, product salesman, and project managers with experience in other disciplines that lend themselves to well known, stable, and predictable environments will inevitably want to apply the techniques that are in their comfort zone when working on a software project. The methodology applied to other project domains outside of software is typically a stepwise sequenced (waterfall) approach. The application of a waterfall methodology in the software domain often (due the conditions above) leaves the project manager, project owner, and development team angry, frustrated, and often delivering late or not at all. Over thirty (30) percent of software projects are cancelled before delivery. Eighty six percent of software projects fail to deliver, deliver late, or exceed their projected budget. Sixty five (65) percent of “very large” information technology (IT) projects are cancelled prior to delivery. Over sixty (60) percent of a software project requirements change during the project.

What’s it all about

One can dramatically improve these dismal statistics by selecting a methodology that is compatible with their project. Even then, further efficiencies can be gained by further tailoring and adapting the selected methodology to the specifics of the project as documented in the white-paper Methodology Evaluation and Selection by David Hecksel (for more information, visit http://www.davidhecksel.com). A pattern mining framework is defined at the end of the Methodology Evaluation and Selection whitepaper. Software Development Patterns applies the defined pattern-mining framework to software development. Particular areas of focus are:

· Methodology Selection Patterns

· Methodology Patterns

· Team composition Patterns

· Management Patterns

· Project Management Patterns

Leveraging the influential attributes defined within the software development project context, the patterns below represent influential rule and rule groups that have been shown to be valuable / applicable / useful / influential to the successful outcome of two or more software projects. As a reminder, the three primary components of the software development project context are People, Process, and Technology.

It should be noted that many of these patterns, and the underlying forces, are not particular to Software Development. They are equally applicable to many other areas of Information Technology.

Thumbnails

Methodology Patterns

· Interfaces First: Interfaces often represent 80% of the work in a software project, but represent 20% of the activities on a project plan. Interfaces are inherent with risk and are frequently tasked for completion at the end of the development project. The solution is to build 3rd party interfaces first resulting in reduced project risk and less
Rework
· Hire Skills Over Growth: A natural tendency is to hire “silo” skilled individuals. In addition, when a project gets into trouble, the natural tendency is to hire additional people to get the project back on track. The solution is to hire individuals that have a breadth of skills in two or more areas resulting in greater team flexibility, enhanced team communication (team members more likely to speak each others technical discipline). The probability of successful project delivery is enhanced by avoiding the disruptions of adding new people to the project during perceived resource shortage crises
· Utilize Tools Over Growth: When a project gets into trouble, a natural reaction is to add additional people to the project to get the project back on track. The solution is to prefer investing in productivity tools over hiring additional people when there are low hanging fruit manual tasks that can provide large return on investments if automated. Use software tools as a substitute for hiring additional “silo” skill (builds, configuration management, system administration, …) individuals on a team
· Don’t Forget Ilities: All software is not alike. Teams often forget about software architecture by taking a “one glove fits all” approach to software methodology. The solution is to add an architecture workflow to address the ilities and treat non functional requirements as a first class citizen along with functional requirements.
· Agile Until It Hurts: Project stakeholders, technology managers, project managers and developers often treat software projects with a one glove fits all approach. The solution is to adopt a best fit methodology and adapt it to the specific needs of your development project. Do not perform a process step unless there is significant pain caused by not performing the item
· Build The Risky Stuff First: There is a natural tendency in human nature that when faced with a list of tasks (some of them risky, some hard, some easy and well defined), an individual will choose to complete the easy and well defined tasks first. The solution is to attack business risk early on via a sound, prioritized, and often iterative best fit adapted development methodology
Methodology Selection Patterns

· Context Is King: Project stakeholders, technology managers, and developers often treat software projects with a one glove fits all methodology approach. The solution is to periodically survey the project and select a best fit methodology and adapt the methodology according to the project context focusing on the components People, Process, and Technology. See Figure 1, Figure 2
· Communication Is Queen: Software is a people driven process governed by the random events and personalities of those involved. Poor communication is the number one cause of software project failures. To maximize project success, create a virtual core team represented by members of the project team and representatives from 3rd party systems

· Vary And Adapt By Size: Project stakeholders, technology managers, and developers often treat software projects with a one glove fits all approach. The solution is to vary and adapt the project team methodology according to the number of 3rd party system interfaces; technical complexity; team size, and number of requirement scenarios.

· Bleeding Edge: Project stakeholders, technology managers, and developers often treat software projects with a one glove fits all approach. Project teams must take corrective action to mitigate the risks introduced by adopting bleeding edge technologies. The solution is build a small expert team up front and adopt an iterative methodology with proof of concept prototyping for each risky “yet to be proven” technology planned for use in the project

· Set Senior Developer Ratio: Software development is a people intensive process that delivers (manufactures) solutions to complex business and/or technical problems. Often times hiring managers / project managers fall into the “more is better” trap. The solution is to select the appropriate ratio of skilled Senior Developers on your team based on the project context.

· Accommodate Offshore: How do you accommodate the economic pressures of moving activity offshore? The solution is to segment the work by components and teams that have the least amount of dependencies between them

· Team Composition Patterns

· Breadth Over Depth: A policy of hiring “Silo” skill personnel creates communication problems as the size of the team grows. Ensure there are sufficient team members that understand the “big picture” on both project requirements and selected technologies

· Quiet Expert

· Young In Years Expert: an important (unseen) advocate and supporter for any changes introduced to the organization. Recognized by peers for their technical excellence, but often not by management. A useful role to find for a consultant performing an assessment

· Super Analytical

· Balanced Team

· Abstract Thinker

· Balanced Thinker

· Abstract Balanced Thinker

· Architect Leads

· Hands On Architect

· Configuration Manager Sees It All

· True Type Fit

· Management Patterns

· Steering Committee: Put in place a small cross functional management team for the project to ensure timely decision making on high risk / high impact escalated issues

· Core Team: Put in place a small cross functional team of high performing, hands on (individual contributor or first line manager) individuals that understand “the big picture” and can make decisions on items that used to be handled by a small number of people over a cup of coffee when the team was smaller but are now paralyzing the team by having to involve so many real and potential approvers, stakeholders, decision makers

· Open Communication: Build and enforce a set of policies that encourage cross department and cross organization information sharing and cooperation

· Single Delivery Owner

· No Bad Apples: Immediately remove team members that are causing problems with the team through bad attitude, poor communications, or poor performance – even if they are actively working on key deliverables

· One Man Band: Ensure adequate and regular backup personnel support coverage for IT programs generating more than $10 million in revenue. Allow no One Man Band support scenarios for IT programs responsible for $10 million or more in revenue (a fireable offense for the immediate manager)

· Project Management Patterns

· Hall Of Fame: Provide recognition for key team member efforts / contributions / solutions / results in a common well traveled location

· Visibility For All: Create an Action Item list showing when actions are due, and the owner. Make that list visible among all team members, Core Team, and Steering Committee
· Roster: Create a team roster for all team members – including key contacts on 3rd party systems
· Joined At The Hip: The interaction between the Architect and Project Manager is critical – daily communication and updates need to take place

· Communication Plan: Document how communication will occur on the team

· Implementation Plan: Build and document a plan for the deployment of the solution into production

Methodology patterns

· Interfaces First

· Hire Skills Over Growth

· Utilize Tools Over Growth

· Don’t Forget Ilities

· Agile Until It Hurts

· Build The Risky Stuff First

Name
Interfaces First

Problem
Time after time, history has shown projects being worked upon, almost nearing completion (according to the development manager, project manager, and/or stakeholder), only to find that most of the development project time lay ahead because the integration interfaces were scheduled as one of the last items to complete on the project plan. Interfaces are inherent with risk and can cause substantial amounts of rework to ripple inside the project via changes to the data model, mobject model, and exception flows in requirements. Requirements generate requirements. Very often the 80/20 rule applies to software development. The 80 percent of the solution that takes 20% of the effort is often the application itself (user interface, business objects). The 80% of the work can often be the 20% of the project tasks in the project plan representing integrations to third party systems, application to application, or application to service interfaces (EJB, Corba, Messaging, HTTP, SOAP, FTP, …) that give the application the life sustaining data it needs to consume, massage, export to others, or persist. Project team members can be lulled into a false sense of security having most or all of the user interface and application complete when in reality they have the bulk of the work ahead of them.

Context
An application is being written (new or modified) that requires data or services over and above what the end users can provide through the application user interface or provided with the product installation

Forces
· Lack of experience among key project roles (architect, release manager, project manager) in projects requiring data interfaces / data exchange to / from other systems

· It is human nature to procrastinate on tasks that are not familiar and to work on the easy tasks first.

· Lack of perceived need of application architecture or architecture workflow execution

· Understanding interfaces, particularly custom or undocumented interfaces, requires communication, something that developers tend to avoid when given a choice.

Solution
Build 3rd party interfaces first. Focus on interfaces to databases, data connectors, and services during the architecture workflow and in parallel with project requirements gathering activities. Because of the tendency to put these tasks off, each interface must be placed on the project risk list to ensure the task is given the priority and early attention it deserves. By working on the interfaces first, remaining non functional requirements will be flushed out, incoming / outgoing data definitions can be fully defined, resulting in substantially less rework on the application data and object models once the application itself gets cast into stone with code.

Examples
1. A new application is being built to replace an existing legacy system. The existing application interfaces with four other legacy systems in addition to its own local application database (customer activity, revenue accounting, corporate customer database, customer awards program).

2. Personalization is needed on an existing web site / web site application. Existing customers and partners need to be recognized upon visiting the site and presented with tailored content that is relevant to them. The personalization application must integrate with the existing CRM application and homegrown corporate partner database in addition to its own local application database.

Resulting context
· Increased emphasis on architecture workflow

· Increased communication with those outside the immediate project team (owners of the systems and/or data to be integrated)

· Each interface is assigned as a “high risk” task and included in early risk mitigating iterations

· Each interface utilizes a Façade object to hide details of the interface to just one object

Rationale

Related Patterns
Build The Risky Stuff First, Don’t Forget Ilities, Façade, Super Analytical

Known uses
Travel Industry, Telecom industry, Fortune 500, B2B and B2C startups

Name
Hire Skills Over Growth

Problem
When a project gets into trouble or has a sudden need to grow to meet a tight deadline, a natural reaction is to add additional people to the project to get the project back on track.

If a team is composed of silo experts, when a problem arises related to a given silo, an entire silo is often blocked. Productivity of resources dependent on the blocked silo area grinds to a halt until the problem is resolved.

Context
A project team is being assembled or additional resources are being considered for an existing team

Forces
· Inexperienced candidate pool to choose from

· Disruptions to the team when adding new resources

· Default hiring tendency among managers to hire software candidates with a single (silo) expertise area

· Desire by project and release managers to add resources when the project gets behind schedule

· Desire to assemble a productive team at reasonable cost (Maximum productivity constrained by minimum cost)

· The one month baby syndrome

· Avoiding “over budget” conditions

Solution
When building or increasing the size of a project team, prefer to add project team members that have breadth in skills versus a pure expertise silo.

The following skill combinations for a given individual are especially productive to your software development teams:

· web programming, database programming

· requirements analysis/planning and programming

· testing, programming

· database administration, programming

· testing, system administration

· programming, system administration

Hire team members that can fill more than one skill role on the team to add flexibility and agility to buffer resource shocks as employee turnover, new “must have” requirements, and changing priorities of existing requirements.

Eliminate hiring people to fill “silo” support position (system administration, project builds, testing) by hiring people that can fulfill the need for the support work, but also add to the development capacity of the team as needed.

Software developer productivity can range from 1 to 20x depending on their skills and experience. Hire skills over volume. A mix of analytical and balanced thinkers is ideal – with a recommended 3 to 1 ratio.

Domain expertise can be critical to the successful
 outcome of the project during the requirements gathering, integrating with domain intensive external 3rd party systems, and testing. Prefer to hire an experienced resource with Domain expertise for the following roles where domain expertise is needed
:

· Lead Requirements Analyst

· Hands On Architect

· Test lead

Hire individuals that possess transferable skills (including communication skills) in addition to technical skills.

Examples
1. A project team requiring expertise in SAP, J2EE EJB, JDBC, and IMS would require a minimum of 8 resources if “Silo” expertise hiring decisions were made with redundant coverage. 8 people, 8 personalities, 8 communication points whereas the following skill mix on a team of 4 is more agile and communicates more effectively while still providing redundant coverage:

· SAP, J2EE

· J2EE EJB, JDBC

· IMS, JDBC

· SAP, IMS

Resulting context
1. Fewer team members with a single (silo) area of expertise, more team members having two or more areas of expertise

2. Fewer team disruptions due to less panic hiring. Team additions typically have a negative Net Return on Total Productivity (NRTP) for the first 4+ weeks

3. Greater communication among the team because those with multiple areas of expertise have more in common to talk about

4. Less “one month baby syndrome” hiring behavior by managers due to enhanced flexibility, productivity, and teamwork by their teams.

5. Less risk and fewer expertise voids to a project team when someone leaves the team

Rationale

Related Patterns
Utilize Tools Over Growth, Balanced Thinker, Super Analytical, Breadth Over Depth, Hands On Architect, Domain Expertise In Roles

Known uses
Travel Industry, B2C startup, Telecom

Name
Don’t Forget Ilities

Problem
All software is not alike. Writing software for a single user address book desktop application is much different than a web-site application that is serving up to 1000 simultaneous users, tens of thousands of users per hour, performing credit checks, e-Commerce orders, and/or mission critical operations. Software teams often fail to consider the ilities due to:

· Adopting a “one glove fits all” methodology approach for their projects

· Forgetting about software architecture

Context
Organizational leaders within software development often fall into the trap of taking a one glove fits all approach to how they build software applications, performing the same steps for each project no matter how small or complex the project. Non functional requirements play a role in the balance of agility and plan driven methods

Forces
· Increasing use of the application in the future (Scalability)

· Increasing amounts of time for the application to perform without flaw (Reliability)

· Changing requirements over time related (Maintainability)

· The degree to which a system cannot suffer degradation or interruption in its service as a consequence of failures of one or more of its parts. Expressed as a percentage (Availability)

· The degree of ease with which corrective maintenance or preventative maintenance can be performed on a system (Serviceability)

· Protection, guard, defends. Freedom from anxiety or fear (Security)

· The requirement to be capable of being managed or controlled (Manageability)

· The requirement to be adaptable or variable (Flexibility)

· The requirement for users to be effective, efficient, and satisfied when performing tasks within an application (Usability)

The requirement for the solution to respond or interact with the user within given time constraints (Performance)

Solution
Address non-functional requirements along with functional requirements. Whether the project is small, medium, or large, go through the “ility” list early on in the project rather than waiting for problems to crop up during development, test, or even worse, production. Make it a habit to address the ilities in the architecture workflow which occurs in parallel with functional requirements gathering:

· Scalability

· Reliability

· Maintainability

· Availability

· Serviceability

· Security

· Manageability

· Flexibility

· Usability

· Performance

Build the following items into your initial project plan and project budget:

· An architecture workflow that spans the duration of the project:

· Analyzes non functional requirements

· Identifies and prioritizes non functional risk

· Prototypes connectivity and rudimentary data exchange between the application and 3rd party interfaces that are on the risk list

· Provides designers and developers sufficient information so that they can work independently and in parallel

· Creating a System Architecture document artifact. Create an initial draft of this artifact in parallel with requirements gathering, followed by iterative increasingly detailed versions in early iterations and/or the elaboration phase. The System Architecture includes:

· Architecture assumptions, goals, and constraints

· Logical Architecture

· Security Architecture

· Architecture approach

· Infrastructure layer, including development, test, staging, and production environments

· Non functional requirement solutions, including 3rd party interface and other data source decisions. A representative sequence diagram is documented for each of the 3rd party interfaces and data source access scenarios on the risk list. Each ility is listed with specific steps taken in the architecture to properly address and accommodate the “ility”.

· Load testing

· Application fail over testing

A System Architecture Document provides a mechanism to capture non-functional requirements and other project Architecture artifacts (lightweight or heavyweight depending on the project). Solutions, strategies, and tactics to address the needs of these non-functional requirements will vary by project. The Project Context attributes for these ilities, technical complexity, and # of 3rd party interfaces will provide insight into the amount of effort needed to assess and address the non functional requirements.

A methodology that incorporates the Don’t Forget Ilities pattern is the SunTone Architecture Methodology

http://www.sun.com/service/sunps/jdc/patterns.html#suntone

Examples
1. An application needs to persist personalization, preferences, or customer order data. Choosing to store this data on the computer’s local hard drive may be ok for a single user desktop application. But the decision may cause significant reliability problems for a solution deployed on a set of load balanced servers. The next request of the user may not be serviced by the same server, and the users personalization, preferences, and/or order data appears to be lost from the users point of view. A prototype was developed in the 2nd iteration of the project to ensure a an architecture and subsequent design that is capable of operating in a sever farm environment. A system architecture document was created to communicate non functional requirements, non functional requirements decisions, and 3rd party interface / data source choices and selections.

2. An IMS based system is being re-written in an OO based language after being in production for over 20 years. The application needs to support at least 50 concurrent “agent” users (scalability), be available 7 days a week (availability - the application processes and is the source of record for over $100 million of generated customer revenue (revenue is processed daily)), and accurately and timely calculate government taxes (reliability). The application requires interfaces to four (4) 3rd party system interfaces, as well as a sizeable existing data migration task. Connectivity (validates firewall and security assumptions) and rudimentary data exchanges (simple create, simple read) for each 3rd party interface and data sources on the risk list were prototyped during the elaboration phase. A system architecture document was created to communicate non functional requirements, non functional requirements decisions, 3rd party interface / data source choices and selections, logical architecture, sequence diagrams of the riskiest and infrastructure architecture to enable design / development teams to work independently (yet consistently) with one another.

3. An application is being written to automate the distribution of products that are distributed manually via paper. The application must work with over 3,000 direct customers, and over 50,000 partners. Connectivity and rudimentary data exchange/interface prototypes were created for the Customer data access, product fulfillment, and approval workflow (relies on new uses of an existing security infrastructure) scenarios that were captured on the project risk list.

Resulting context
Substantially lower chances of a significant and costly rework event when the application enters testing and higher volume usage

Rationale

Related Patterns
Interfaces First, Build The Risky Stuff First, Build Prototypes

Known uses
Telecom, Travel Industry, Fortune 500, B2B startup, B2C startup

Methodology selection patterns

Sixty one attributes in the software development project context have been identified whose values have predictive insight into the successful outcome of a project. The following are a subset of the patterns enabled by examining the project context, attributes, and attribute relationships.

· Context Is King

· Communication Is Queen

· Vary And Adapt By Size

· Bleeding Edge

· Set Senior Developer Ratio

· Accommodate Offshore

· Prefer Pragmatic

Name
Vary And Adapt By Size

Problem
Project stakeholders, technology managers, and developers often treat software projects with a one glove fits all approach. The constraints upon the project and chosen methodology are kept the same whether the project is two people working side-by-side, or 45 people split across 3 continents and time zones. Opportunities for adaptive tailoring of the methodology, and the resulting “best fit” productivity benefits, are almost always lost / ignored.

Context
A project is forming. The size of the project must be estimated. Once estimated, the methodology can be adaptively tailored based on the size of the project.

Forces
· Project size needs estimation

· The size of the project influences the appropriate methodology and subsequent adaptive methodology tailoring for a project

· The attributes number of geographic locations, technical complexity, and number of scenarios (among others) influences the flow of communication and impact the selection and adaptive tailoring of a project appropriate methodology

Solution
Estimating

To determine a size of a project, a number of useful heuristics are available:

· 48 person hours to develop, unit test, and test basic functions per screen for a web application

· 1 person per 3rd party interface prototype in elaboration (6 weeks)

· 1 person per 3rd party interface for 12 weeks

· 1 Hands On Architect for the duration of the project (may participate in 3rd party interface work)

· ½ person duration of the project for project builds and configuration management setup / maintenance

· 1 project manager (who may be split across more than one project)

· 1 release manager per 20 technical resources (prorated percentage if less than 20 technical resources)

Vary and Adapt by Size

The size of the project team is an important attribute of the project regarding selection of an optimal methodology / operational approach. The size of the project has important predictive powers for project success. Take into account the size of the project team when selecting the methodology for a software project. See Figure 3 for an example of how the optimal Methodology for a project can be selected by looking at project size and number of geographies. Other attributes having a similar shaped graph would be:

· Size of team and technical complexity

· Size of team and number of scenarios

As the size of the project increases, communication barriers arise, as more and more people have to be involved in decisions. Additional process ceremony and structure are needed to enforce basic communication points as complexity, functionality, and geographic distribution increases.

Many factors are influential and interact with team size on a project (technical complexity, number of geographies, number of scenarios, time to market urgency). In the absence of using a methodology selection and adaptive tailoring engine to provide a context appropriate best fit and adapted methodology, you can use the following to vary your methodology by size as follows:

Team Size Compatible Methodology

_______ _____________________

1 – 15 Lightweight Agile (XP, Scrum, …)

8 – 25 Agile (Unified Process – Lite Edition, AM, …)

15 – 60 Unified Process

30 – up Heavyweight

Hire designers / developers / testers 2-4 weeks in advance of when the requirements they will be working on will be designed / developed / tested. If initially prototyping 5 high risk main flows in 5 usecases (representing 8 screens), the architect, analyst, build/configuration, and sufficient design / development resources

Examples
· A large computer company attempted to rewrite an existing legacy major networking protocol legacy application when adding peer-to-peer networking support. The existing mainframe application was millions of lines of code long, supporting protocols and hardware that had long been discontinued, and had grown relatively unstructured over time despite an understanding of the benefits of and practice of periodic spot code refactorings over it’s 20+ year product history. The scope of the project was enormous – rewriting the primary network protocol stack representing 20+ years of functionality in addition to the estimated quarter of a million lines of code
 new peer-to-peer networking functionality. The project adopted a heavyweight process to enforce key communication and checkpoints among the 300+ people on the project multiyear project. Dozens of hardware interfaces, and hundreds of usecases lead to a team size that quickly exceeded 25. Crisp and clear technical specifications and product requirements requiring sign-off had to be exchanged with dozens of impacted software and hardware engineering groups. Anything less than a heavyweight process would have quickly degraded into chaos due to the project size and number of 3rd party integration and communication points

· An industry transportation company wanted to rewrite an existing IMS based customer membership and program usage application to the J2EE architecture. The project was particularly data intensive, having to migrate existing customer data and accommodate equivalent data exchanges that the IMS based application had. A caveat to this particular project was a signed contract promising delivery into production in less than 12 months (time to market requirements). The project had numerous 3rd party interfaces to work out quickly:

· Ticketing

· Pricing

· Revenue Management

· Customer loyalty program

· Existing application (migration and cutover)

This project had visibly failed twice before due to a lack of attention to 3rd party interfaces up front and lax project management. A release manager, project manager, architect, two senior analysts, and three Senior developers spent 2 ½ months understanding and documenting the functional requirements, non-functional requirements, and architecture. Prototypes for the top 3 risky 3rd party interfaces, as well as top two risky functional usecases (pricing, process flown data) were completed and validated during elaboration. The team size ranged from an initial size of 5 at project kick-off to close to 20 at the end of elaboration. After prototyping, additional developers and testers came onboard with a maximum team size of 50. The Unified Process made sense over a very lightweight methodology (XP, SCRUM) due to the large number of 3rd party interfaces / technical complexity, anticipated team size (75 usecases – about 100 screens), not including reporting), split development resources located in two locations (US and India), and the associated communication challenges that would arise within this context. Multiple sub teams (Contract, Customer, Ticketing, Pricing, Reporting, Statement generation) were formed within the project, each having 5 – 8 individuals. This project remained on a non-heavyweight process due to the speed and agility required to delivery (mandated by contract) within 12 months. All opportunities to practice “Agile Until It Hurts” were taken.

· A retail project concept was floated by the business team and introduced to IT Management in July with the constraint that it be in production in all the stores by Thanksgiving for the entire Holiday season. The project created a “best fit” product selection application based upon the customer’s prior usage history. The web-based application was envisioned as running on a kiosk machine in the store. The application had a set of less than 10 screens, and was limited to two data sources (product listing library, customer usage database). A complicating factor was one of the data sources had tables with more than 20,000,000 rows and all queries were mandated to be sub second.

Two requirements analysts, a hands on architect, and a Senior Developer were assigned to the project. Shortly thereafter, a DBA was assigned to the project. Because of the small number of screens, limited 3rd party interfaces, and extreme time to market requirements, the team was given “hand selected” top resources that had a history and reputation for delivering on time. This team was never expecting to grow beyond more than a couple beyond the size of 5. The team adopted an extreme programming approach, iteratively developing the requirements with the business unit, and prototyping out the required database queries to ensure response times were adequate. Daily (usually more than once daily) telecon calls took place between the developers, requirements analyst, and sponsoring business owner. One factor that favored a heavier weight process was the number of geographies. In this case, the hands on architect and developer were in Dallas, Texas. The business owner was in Oregon. The analysts and DBA were in Washington State. Three sites, and two timezones for a team with 5 people. However, daily (often multiple) phonecalls and instant messaging technology allowed the team to stay in frequent and constant contact.

Resulting context
An appropriate methodology is selected that is compatible with / influenced by the size of the project – project size being one of the most influential “people” attributes in the “people” component of the context of the project.

Rationale

Related Patterns
Context Is King, Hire Skills Over Growth, Size The Organization, Architecture Team, Small Writing Team, Build Prototypes, Agile Until It Hurts

Known uses
B2B, B2C, Travel Industry, Fortune 500, Telecom

Name
Bleeding Edge

Problem
Project stakeholders, technology managers, and developers often treat software projects with a one glove fits all approach. Independent of the technology required (or chosen) used, the stakeholder often mandates that a waterfall or stair step type approach to the project must be followed. When the place on the technology curve attribute is more than one standard deviation to the right, we label them a bleeding edge technology. Project teams must take corrective action to mitigate the risks introduced by adopting bleeding edge technologies Without prototyping, project teams often fall into the trap of doing the easy stuff first (see Do The Hard Stuff First), letting other components and large amounts of development code build dependencies on these unproven technologies.

Context
A project has decided to use one or more technologies in the solution that are early on the adopter curve.

Forces
· Complexity – The complexity of the technology used in the project

· Number of 3rd party interfaces – Number of 3rd party interfaces / system integration points

· Number of physical tiers – The number of estimated physical tiers in the final deployed system

Solution
Build a small expert team up front and adopt an iterative methodology with proof of concept prototyping for each risky “yet to be proven” technology used planned for use in the project. If successfully prototyped, the confidence interval for tasks dependent on that technology will be smaller, increasing the chances for a successful on time delivery. Should the prototype fail, adopt or prototype the next best architecture solution based on it’s “Bleeding Edge” factor.

On a final note, to the extent possible, solution components utilizing the new technology must minimize the number of touchpoints the new technology has with the solution. Bleeding edge technology apis should be hidden from the rest of the solution by a more abstract api, limiting the number of dependencies the rest of the solution has on the new technology allowing easier transition should the technology choice have to be replaced

Examples
1. A project has decided to use a new set of secure Web Services apis from their merchant account provider as well as use a beta version (new / changed beta level apis) of their product fulfillment vendor. Even though the company typically uses a waterfall or phase gate like methodology, the team adopts an iterative methodology to prove out the new technologies early on. In addition, components interfacing to the new web services apis or new fulfillment provider talk to a façade object. A façade object is created for fulfillment and another façade object is created for the merchant account apis. A façade object is used to shield the users from the complexity and details of new technology interfaces and functionality reducing vendor lock-in and enabling the team to revert to a prior technology should one or more not work out.,

Resulting context
A project that has selected an appropriate methodology to reduce the risk of failure as a result of adopting insufficiently proven technologies in the project solution

Rationale

Related Patterns
Context Is King, Do The Hard Stuff First, Façade

Known uses
Travel industry, telecom, b2b, fortune 500

Name
Set Senior Developer Ratio

Problem
When forming a software development team for a project given a fixed budget, project stakeholders and technical managers often feel that “more is better” when it comes to the number of people working on a project. Similar to a factory, they feel that if they have 8 manufacturing machines (developers) in place they will be better off than with 6 machines. In fact, a manufacturing machine that is younger than another is preferred as the machine will require less maintenance and perhaps be more efficient than older models.

Software development is a people intensive process that delivers (manufactures) solutions to complex business and/or technical problems. Often times hiring managers / project managers fall into the “more is better” trap, ignoring the need for a blend of experience, leadership, and skill level on a project team.

Context
A project is being formed and a decision needs to be made regarding the amount of experience, skills, leadership, and maturity the developers on the project possess.

Forces
· The number of Senior Developers
 compared to the total number of developers on the project

· Project Complexity

· Time to Market

Solution
A “Senior Developer” in this pattern is someone with a blend of experience, leadership, and deep expertise in one or more areas. In addition, the “Senior Developer” is likely to distinguish his/her self by having:

· “Can do” / positive attitude

· Strong work ethic

· Experience on at least two (probably more like 5 or 6) different types (size, industry, primary technology, …) of projects where they have observed and learned what works / what does not work on the project

· Takes ownership of problems

· Excellent problem solving skills

· Average or better communication skills

Build your software team with the appropriate number of Senior Developers on your team. Maintain a minimum ratio of a 25% Senior Developers on your project team. The percentage can go up to 50% depending on the estimated amount of communication, time to market, and technical complexity facing your team. Tailor that ratio to the context of the project. The following items will increase the percentage of Senior Developer resources on your team:

· A greater number of unique technologies on the team

· A greater number of “early adopter” technologies being used

· A greater number of complex technologies being used

· Greater number of barriers to communication (number of geographies, higher percentage of Super Analyticals on the team, greater number of third party interfaces).

· Greater pressure on time to market

When the ratio is too small, adding a Senior Developer to the project team can have up to a 20x productivity contribution to the team compared to adding another inexperienced team member

Given the urgency of the time to market requirements, and technical complexity, choose an appropriate Senior Developer Ratio as shown in Figure 4.

One word of caution. While Senior Developer resources can be very useful to a team, more Senior Developers are not always better. Do not fall into the “more is better” trap and hire all Senior Developers thinking that is of course the absolute best choice. Not only will your budget be pressured by a higher (possibly much higher) than average IT payroll, your team will operate as a set of all chiefs and no Indians. Everyone will seek, desire, and expect decision making authority, leaving the team unable to resolve a steady stream of “decision worthy” opinions. There will be no one to delegate typical, less risky (but time consuming) tasks too. Just because the recommendation says 25% is better than 5%, do not infer that 90% is better than 25%.

Examples
· A small project with a critical “time to market” requirement needs to deliver in less than 4 months. In addition, technical complexity is high with critical data queries on over 20 million rows of data and sub second query response time. The project requires Set the Senior Developer Ratio high – 50 percent

· A small “skunk works” project (stealing from existing resources on hand) has been put together to prototype the feasibility of a given product concept extension. Technical complexity is lower than average as the primary product already exists and are simply extending a given concept. Time to market urgency is low as the sponsor has no formal budget for the project and is using existing resources on an “as available” basis.

Resulting context
The ratio of Senior Developers on the project appropriately matches the project context

Rationale

Related Patterns
Breadth Over Depth, Context Is King, Agile Until It Hurts, Hire Skills Over Growth, Skunk Works, Moderate Truck Number

Known uses
B2B, B2C, Travel Industry, Telecom, Fortune 500

Methodology Selection Appendix

[image: image1.wmf]| 2004

JavaOne

SM

Conference | Session XXXX

13

Heavyweight

UP

UP

-

Lite

•

Attribute pairing

Size of

Team

Number of Geographies

XP

Selecting a best fit Methodology

Project Context XY attribute pairing

Figure 1

[image: image2.wmf]| 2004

JavaOne

SM

Conference | Session XXXX

10

Project Context

People

Technology

Process

Root

Attribute

Root

Attribute

Selecting a best fit Methodology

Project Context

[image: image3.wmf]| 2004

JavaOne

SM

Conference | Session XXXX

14

System

1000

Memory

1004

Compatible

methodology and/or

Agility score

1016

Processor

1002

Software

Methodology

evaluation and

selection

mechanism

1006

Project context

attribute values

1008

Methodology

definitions

1014

Rules

1010

Component sub-

scores

1020

Compatibilities and

incompatibilities

1018

Compatibility

matrix

1012

Customized best fit

Methodology

Agility Index

Agility Blueprint

•

Fits

•

Misfits

Pattern References

* Methodology

* Management

* Team Composition

* Architecture

* Methodology

Selection

* Project Management

Project Context Instance / survey

Periodic Context Update

Changes

Figure 3

[image: image4.wmf]low

medium high

Time to Market

Complexity

high

low

25%

50%

Complexity and Urgency impacts Senior Developer Ratio

Figure 4

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� Delivering on schedule, on budget

� Industry regulation, governance, or interfacing to systems that have industry regulation, governance

� Barry Boehm – Balancing Agility and Discipline

� Does not include the HTML / XHTML / CSS creation

� This project occurred in the early 1990’s – lines of code estimation is no longer recommended

� An experienced developer exhibiting a “Senior” level of maturity, above average leadership, and above average skills in one or more areas

� See productivity research data available from Dave Thomas, author Pragmatic Programmer.

Plop 2004

[image: image5.wmf]| 2004

JavaOne

SM

Conference | Session XXXX

13

Heavyweight

UP

UP

-

Lite

•

Attribute pairing

Size of

Team

Number of Geographies

XP

Selecting a best fit Methodology

Project Context XY attribute pairing

[image: image6.wmf]| 2004

JavaOne

SM

Conference | Session XXXX

10

Project Context

People

Technology

Process

Root

Attribute

Root

Attribute

Selecting a best fit Methodology

Project Context

[image: image7.wmf]low

medium high

Time to Market

Complexity

high

low

25%

50%

Complexity and Urgency impacts Senior Developer Ratio

[image: image8.wmf]| 2004

JavaOne

SM

Conference | Session XXXX

14

System

1000

Memory

1004

Compatible

methodology and/or

Agility score

1016

Processor

1002

Software

Methodology

evaluation and

selection

mechanism

1006

Project context

attribute values

1008

Methodology

definitions

1014

Rules

1010

Component sub-

scores

1020

Compatibilities and

incompatibilities

1018

Compatibility

matrix

1012

Customized best fit

Methodology

Agility Index

Agility Blueprint

•

Fits

•

Misfits

Pattern References

* Methodology

* Management

* Team Composition

* Architecture

* Methodology

Selection

* Project Management

Project Context Instance / survey

Periodic Context Update

Changes

_1152258208.ppt
| 2004 JavaOneSM Conference | Session XXXX

*

Selecting a best fit Methodology

Project Context XY attribute pairing

Attribute pairing

Heavyweight

UP

UP-Lite

Size of

Team

Number of Geographies

XP

Think of Java technologies for the first bullet:

	- the traditional Java stuff, J2EE, SE, ME

	- the Java products that used to carry the SunONE branding (App server, Web server, portal)

Migration from VB or Visual C++ to Sun would qualify.

Developing an employee portal which involves writing code to integrate with backend systems would be considered App Dev.

Java

Sun’s 2004 Worldwide Java Developer Conference”

S,

@Sun

Project
Context n

People

Technology

o
3
23
o
X
-+

xajuod

ofoid

_1150466258.ppt
| 2004 JavaOneSM Conference | Session XXXX

*

 Customized best fit

 Methodology

Agility Index

Agility Blueprint

		Fits

		Misfits

Pattern References

 * Methodology

 * Management

 * Team Composition

 * Architecture

 * Methodology

 Selection

 * Project Management

Project Context Instance / survey

Periodic Context Update

Changes

Java

Sun’s 2004 Worldwide Java Developer Conference”

S,

@Sun

System

1000

Memory

1004

Compatible

methodology and/or

Agility score

1016

Processor

1002

Software

Methodology

evaluation and

selection

mechanism

1006

Project context

attribute values

1008

Methodology

definitions

1014

Rules

1010

Component sub-

scores

1020

Compatibilities and

incompatibilities

1018

Compatibility

matrix

1012

Project
Context n

People

Technology

o
3
23
o
X
-+

xajuod

ofoid

_1152214169.ppt

 low medium high

 Time to Market

Complexity

high

low

25%

50%

Complexity and Urgency impacts Senior Developer Ratio

mmmmmmmmm

_1150466067.ppt
| 2004 JavaOneSM Conference | Session XXXX

*

Selecting a best fit Methodology

Project Context

Think of Java technologies for the first bullet:

	- the traditional Java stuff, J2EE, SE, ME

	- the Java products that used to carry the SunONE branding (App server, Web server, portal)

Migration from VB or Visual C++ to Sun would qualify.

Developing an employee portal which involves writing code to integrate with backend systems would be considered App Dev.

Project Context

People

Technology

Process

Root

Attribute

Root

Attribute

Java

Sun’s 2004 Worldwide Java Developer Conference”

S,

@Sun

Project Context

People

Technology

Process

Root

Attribute

Root

Attribute

Project
Context n

People

Technology

o
3
23
o
X
-+

xajuod

ofoid

