
Patterns for Session-Based Access Control
Eduardo B. Fernandez

Dept. of Computer Science and Engineerging
Florida Atlantic University

Boca Raton, FL 33431, USA

ed@cse.fau.edu

Günther Pernul
Department of Information Systems

Universität Regensburg
Universitätsstraße 31, Regensburg, Germany

guenther.pernul@wiwi.uni-regensburg.de

ABSTRACT
The concept of session, the context under wh ich a user accesses
resources is very important to apply acc ess control. We present
first th e Contr olled Access Sess ion patter n for d escribing how
sessions can lim it the ri ghts of a user . W e then combine this
pattern with t wo exi sting access control p atterns. First we
consider a patter n for Session-Based Role-Based Access Control,
intended for organizations in which job functions form the basis
for privilege as signments. Then, we pres ent a Session-Based
Attribute-Based Access Control pattern for organizations in which
accesses are controlled based on valu es of user attributes and
object properties. Since the general properties of thos e patterns
have been described earlier we emphasiz e the additional effect of
using sessions. The Controlled Access Session pattern can also be
combined with other models of access control or used on its own.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: L anguage Contructs and
Features – patterns.
D.2.11 [Software Engineering]: S oftware Architectures –
patterns.

General Terms
Security, Documentation, Algorithms, Management

Keywords
Access session, acce ss contr ol, attr ibute-based acce ss contr ol,
session-based access control, security patterns

1. INTRODUCTION
It is important to develop s ystems where security has been
considered at all s tages of de sign, which not only satis fy their
functional specifications but also satisfy security requirements. To
do this we need to start with high-level models that represent the
security policies of the inst itution. There are three models
currently used by most s ystems: the ac cess m atrix, t he Role-
Based Access Control (RBAC) model, and the multilevel model.

One of the first security models was the access matrix. The basic

access matrix [13] included the tu ple {s,o,t}, where s indicates a
subject or active entity, o is the protected object or resource, and t
indicates the ty pe of access permitted. [Har76] proved security
properties of this model u sing the s o-called HRU (Harrison-
Ruzzo-Ullman) model. In that model users are allowed to delegate
their rights (dis cretionary property, delegatable authorization),
implying a tuple {s,o,t ,f}, whe re f is a Boolean copy f lag
indicating if the right is allowe d to be delegated or not. A
predicate was added to the basic r ule to all ow content-based
authorization [7], bec oming {s,o,t ,p,f}, where p is the predicate
(the predicate could also include environment variables). Patterns
for the basic rule and for the tuple {s ,o,t,p,f} were given in
[9][23]. The rule could also include the concept of Authorizer (a),
becoming {a,s ,o,t,p,f} [8] (Explicitly G ranted A uthorization).
RBAC [22] can be considered a special interpretation of the basic
authorization model, where subjects are roles instead of individual
users. W e presented two varieties of RBAC pa tterns in [9] and
[23]. Subsequently, several variations and extens ions of thes e
models have appeared. We presented a variation called Metadata-
Based Access Control, which later we renamed Att ribute-Based
Access Control (ABAC) [19][20].

ABAC can be seen in two ways:

• A s pecialization of the model {s ,o,t,p}, where p is a
predicate which depends on attribute values.

• A variant where s and o are defined by descriptors
which depend on attribute values.

In this paper we present a general pattern for a Controlled Access
Session a s a building block and two p atterns combining this
pattern with specific access contr ol models . The concept of
session, the context under which a us er accesses resources is very
important to apply access control. We present first the Controlled
Access Session pattern for describing how sessions can limit the
rights of a user. We then combine this pattern w ith a pattern for
Session-Based Role-Based Access Control, inte nded for
organizations in which job functions form the basis for privilege
assignments. Then, we pr esent a Session-Based Attribute-Bas ed
Access Control pattern for organizations in which ac cesses a re
controlled based on values of user attributes and object properties.
Since the general properties of those patterns have been described
earlier we emphasize the additional effect of us ing sessions. The
Controlled Acces s Ses sion pattern can als o be combined with
other models of ac cess control or used on its own. The pattern
diagram of Fig ure 1 shows the relationship s between thes e
patterns. For example, adding a condition to Basic Authorization
results in Conte nt-Based Authorization, us ing the concept of
session res ults in s ession-based models , and s o on. Note that
RBAC is, in general, not d elegatable. All these p atterns define
authorization r ules and they need a reference monitor f or their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. PLoP '06, October 21–23,
2006, Portland, OR, USA. Copyright 2006 ACM 978-1-60558-372-3
/06/10…$5.00.

enforcement; we don’t show it in this diagram for s implicity (see
[23] for the correspo nding pattern). The double -lined patterns are
the ones presented here. W e ass ume the reader to know bas ic
security concepts and these p atterns are intended for system
designers trying to add security to their designs.

2. Controlled Access Session
Provide a context in which a subject (us er, s ystem) ca n access
resources with different rights and without need to reauthenticate
every time he accesses a new resource.

2.1 Example
Lisa is a secretary in a medical organization but sometimes s he
helps in the laboratory to perform patient tests. As a secretary she
has ac cess to patients ’ information such as name, addre ss, SSN,
etc. This is necess ary s o she can bill them and their insurance
companies. In the lab s he has access to anony mized patient test
results. Combining the access es provided by her two jobs in one
window she can ass ociate test res ults to names, which violates
patient privacy.

2.2 Context
Any environment where we need to control access to computing
resources and where us ers c an be clas sified ac cording to their
jobs, groups, departments, assignments, or tasks.

2.3 Problem
A given user may be a uthorized to access a system because she
needs to pe rform several functional ac tivities. H owever, for a
particular access only those privileges should be active whic h are
necessary to perform the intended task. This is an appl ication of
the principle of least-privilege and necessary to p revent the user
from mis using the system (intention ally, accidentally by
performing an error, or without knowledge and tricked to do so,
for e xample through a Troj an Horse att ack). Additionally this
would potentially restrict damage in case of session hijacking. A
successfully attacking process would not have all pr ivileges of a
user available but only the active subset.

The following forces will affect the solution:

• Subjects may have many rights directly or indirectly through
the execution contexts that they need for their tasks. Using all
of them at one time may result in conflicts of interest and

security violations. We need to res trict the use of those rights
depending on the application or task the subject is performing.

• In the context of an int eraction we can make the access to
some functions implicit, thus facilitating the use of the system
and preventi ng errors that may res ult in vulnerabili ties. For
example, som e editor s or other tools could be implicitly
available in some sessions.

• It is not convenient to make subjects reauthenticate every time
they request a new r esource. Once the s ubject is
authenticated, this condition s hould remain valid during the
whole session.

2.4 Solution
Define a unit of interaction, a session, which has a limited
lifetime, e.g. between login and logoff of a user or between the
beginning and the end of a transaction. When a user logs on and
after authentication, the session activates some execution contexts
with only a subset of the authorizations she possesses. It should
be the minimal s ubset which is needed for the user or transaction
to perform the intended ta sk. Only thos e rights are ava ilable
within the session. A subj ect can be in sever al sessions at the
same time; however, in every s ession only the n ecessary r ights
are active.

Structure
Figure 2 shows th e clas s model of the Access Sess ion patter n.
Classes Subject and Session have the obvious meaning. The class
ExecutionContext contains the set of active r ights t hat the user
may use within the session.

Dynamics
Figure 3 shows the use case Open (Activate) a session. A subject
logs on and the logon interface authenticates it. The box with a
double arrow indicates s ome authentication dialog or protoc ol.
After the subject is authenticated, the i nterface creates a session
object and returns a handle to the subject.

2.5 Implementation
Based on ins titution and application pol icies def ine w hich
contexts (implying specific rights) should be us ed in e ach tas k
and grant them to the corresponding subject. The rights should be
selected using the least privilege principle and there should be no
contexts with excessive rights, e.g. the administrator rights should
be divided into smaller sets.

2.6 Example resolved
Lisa can log on a s ecretary or as a lab ass istant but she cannot
combine these activiti es in one ses sion. No w s he cannot r elate
results to patient names.

Figure 1. Relationships between access and control patterns

Figure 2. Class model for Access Session pattern

2.7 Known uses
• Session Access is part of the RBAC standard proposal

by NIST which later has been adopted by the American
National S tandards Ins titute, I nternational Committee
for Information T echnology Standards (ANSI/INCITS)
as ANSI INCITS 359-2004 [10].

• Multics [Sum97] us ed exec ution context s (based on
projects) to limit access right s. Ses sion Access is
implemented in the s ecurity module CSAP [Dri03] of
the Webocrat Sy stem in conju nction with an RBAC
policy.

• Views in relational databases can be used to define sets
of rights. Controlling the use of views by u sers can
control their use of rights in sessions. This is done for
example in Oracle and DB2, where SQL can be used to
define restricted views [6].

2.8 Consequences
This pattern has the following advantages:

• We can give to each context only the nee ded r ights
according to its function and we can invoke in a ses sion
only those contexts that are needed for a given task.

• We can exclude c ombinations of contexts that mig ht
result in pos sible a ccess violati ons or conf licts of
interest.

• Any functions can be made implicit in a session.

• Once a subje ct s tarts a ses sion it doesn’t have to be
reauthenticated. Its status is kept by the session.

Possible disadvantages:

• If we need to apply fi ne-grained access , it mi ght be
inefficient to include many contexts to perform complex
activities.

• Using sessions may be confusing to the users.

2.9 Related patterns
The Access Session pattern is u sed in the Session-Based RBAC
and ABAC patterns, discussed later.

The Session pattern of [26] created a session object that defined a
namespace to hold all the variables that need to be referenced by
many objects. P. Sommer lad remade this pattern as a Security
Session [23], int ended to prevent a us er to b e r eauthenticated
every time he ac cesses a new object. A pattern wit h a s imilar
objective to the previous one is Abstract Session [21]: When an
object's s ervices are invoked by clients, the s erver object may
have to maintain state for each client. The server creates a session
object that encapsulates s tate inf ormation for the client. The
server returns a pointer to the ses sion object. However, none of
these patterns cons iders limitation of rights . Our p attern is an
extension of those patterns, concentrating all its security functions
and emphasizing the function of a session as a limiter of rights.

3. Session-Based Role-Based Access Control
Allow ac cess to res ources based on the role of the s ubject and
limit the rights that can be applied at a given time bas ed on the
contexts (roles) defined by the access session.

3.1 Example
John is a developer in a proje ct. He is also a project lea der in
another pr oject. As a project leader he can evaluate the
performance of the members of his project. He combi nes his two
roles and adds several flattering evaluations about himself in the
project where he is a developer. Later, his manager thinking that
they came from the proj ect leader of that project, gives John a big
bonus.

3.2 Context
Any environment where we need to control access to computing
resources, where users can be classified according to their jobs or
their tas ks, and wher e we as sign rights to the roles needed to
perform those tasks.

We assume the existence of a Session pattern that can be used for
the solution.

3.3 Problem
In an organization a user may pl ay s everal roles. Howe ver, f or
each access the user must act only within the authorizations of a
single role (i.e. within the context of the role) or combinations of
roles that do not violate ins titution policies . H ow do we f orce
subjects to follow the policies of the institution when using their
roles?

In addition to the forces defined for the Access Session pattern,
the following forces apply to the solution:

• People in institutions have different needs for access to
information, according to their functions. They may
have several roles associated with s pecific functions or
tasks.

• We want to help the institution to define precise access
rights for its members so that the least privilege policy
can be applied when they perform specific tasks..

Figure 3. Sequence diagram for use case ‘Open a session’

• Users may have more than one role and we may want to
enforce policies such as separation of duty, where a user
cannot be in two o r more specific roles in the same
session.

3.4 Solution
A subject may have several roles. Each role collects the rights that
a user can activate at a given moment (execution context), while a
session controls the wa y of using roles and can enforce role
exclusion at execution time.

Structure
The structure of the s ession-based RBAC is shown in the class
diagram giv en in Figure 4 . The class Role is an interm ediary
between s ubject and objec t holding all authorizatio ns a user
possesses while playing the role and a cts here as an exe cution
context. Within a Session, only a subset of the role s assigned to a
Subject may be activated, i.e. only those necessary to perform the
intended task. Roles may be composed according to a Composite
pattern [11], where higher-level roles acquire (inherit) rights from
the lower-level roles.

Dynamics

Figure 5 shows a sequence diagram to request access to an object.
A subject has a lready opene d a s ession (S ee Figure 3) and he
requests access to an object in a specific way (access type). The
session uses the corre sponding Reference M onitor, which in turn
checks if the rights of the session roles allow the access. If so, the
access is permitted.

3.5 Implementation
See Section 5 for an example of a real implementation.

• Determine the ro les the system should contain (role
catalog), according to the user functions or tasks.

• Collect lis ts of incom patible r oles and use these lists
when a session is s tarted (static cons traints). These
constraints can be defined using OCL or some other
formal language as additions to the class diagram of the
pattern.

• Determine the number of roles which may be active
within a session (dynamic constraints).

• When a user opens a s ession s he mus t dec lare what
roles s he int ends to use and the system w ill open the
corresponding s ession or refus e to do so in case of
conflicts.

3.6 Example resolved
When John logs on the project where he is a developer he only
gets the rights for a developer and cannot add evaluations. When
he logs on in the project where he is a project leader he can only
evaluate the members of his group. He c annot combin e his role
rights in the same ses sion and now he only gets legitimate
evaluations.

3.7 Known uses
The structure and dy namics of a s ession-based RBAC are
implemented in the security module CSAP [5] of the Webocrat
system. Webocrat is a porta l supporting E-Democracy which was
developed within the Europ ean Webocracy project (FP5-IST-
1999-20364) between 2000-2003.

Views in relational databases can be us ed to define sets of rights.
Controlling the use of views by roles can control the us e of rights
in sessions. In bo th Ora cle and DB2 SQL can be used to define
restricted views based on roles [6].

3.8 Consequences
In addition to the a dvantages mentioned for the Acc ess Session
pattern, other advantages of this pattern are:

• Sessions may include all needed roles for those subjects
authorized for some task.

Figure 4. Class model for the Session-Based RBAC

Figure 5. Sequence diagram to access an object

• Users can activate more than one session at a tim e for
functional flexibility (some tasks may requir e multiple
roles).

• Fine-grained rights can be assigned to roles to enforce a
need-to-know policy.

• When a s ession is open, we can exclude roles that
violate institution policies.

Possible disadvantages include:

• Additional conceptual complexity to define which roles
can be us ed together and which should be mutually
exclusive.

• User conf usion if they have to use s everal r oles to
perform their work.

3.9 Related Patterns
This pattern is a combinatio n of the Ses sion pa ttern described
earlier a nd the RBAC pattern [23]. As indicated earlier ,
structuring of roles can be represented by a Composite pattern. A
Reference Monitor pattern is needed t o enforce the use of rights
during execution.

4. Session-Based Attribute-Based
Authorization
Allow access to resources based on the attr ibutes of the s ubjects
and the properties of the objects but lim it the right s that c an be
applied at a given time based on the context defined by the access
session.

4.1 Example
Meili is a tee nager who li kes m ovies and s ubscribes to several
movie servic es through the Internet . She logs in a centra l portal
where she can reach a variety of movies. S ometimes she gets
movies that she find s offensive or inappropriate (pornographic,
racist, plain stupid). She doesn’t have much time to read details
about the movies in advance and some of them don’t even have
good descriptions so reading about the movie s is not a good
approach. She would like s ome kind of filter according t o h er
characteristics and her prefer ences. Al so the portal may be
breaking the law in making available to her some of these movies.

4.2 Context
Dynamic systems supporting a large set of objects and subjects in
which the structure of the s ubjects changes rapidly, such as web-
based information sy stems, e-government and e-business portals.
In this e nvironment ther e is the need to control access to
computing resources and the sub jects may not be pre registered.
We want to g ive access to r esources bas ed on characteristics of
the subjects such as groups to which they belong, company for
which they work, biological characteristics such as age or sex, or
on characteristics of the objects , such as ty pe of object, f iltering
rules, or payment requirements.

4.3 Problem
As indicated access may depend on the age or other attributes of a
user. In this case, privilege assignments to the user cannot be done
statically by a s ecurity adm inistrator bu t autom atically b y the

system based on the value of s ome o f the attributes , e.g.
“DateOfBirth” . As t he us er gets older or changes functions his
authorization state changes automatically . Acc ess rights might
even depend on an external attribute, such as “phy sical location”
of a user in a mobile environment. In thi s case the authorization
state changes automatically when the user moves around. At the
object’s s ide, metadata s uch as the s cope of a document, or the
MPAA rating of a movie a re examples of proper ties. A ll thes e
constraints can be applie d through predicates in the rules [8], but
it is difficult to have a variety of prepackaged rules for the typical
cases.

The solution is constrained by the following forces:

• We need to limit the rights of s ubjects that are in a
variety of groups or roles, or have special
characteristics. Unrest ricted ac cess migh t allow pol icy
or law violations.

• This control should not imply a n extra burden for the
security administrator or s ecurity vulnerabili ties may
appear through administration errors.

• This control should not imply a significant performance
overhead, or the system may not be practical to use. .

• The environment is very dynamic and cha nges shou ld
be easy to make. Otherwise, the users will get annoyed
and leave the system.

4.4 Solution
Access righ ts are based on the c omparison of values of s elected
attributes of subjects and properties of objects (so called subject
and object d escriptors). In this pattern descriptors are a construct
to somehow “group” objects and su bjects dy namically, not
explicitly by a n administrator but implicitly by their attribute or
property values. This grouping may result in unpredictable sets of
rights that may violate security policies. A session delimits the
rights that can be applied at a given moment; that is , the subject
attributes define a context for access rights.

Structure
Figure 6 shows the class diagram for the s olution. A Subject
Descriptor is fo rmed by apply ing Qualifiers (>, +,…) to
Attribute Values to define cons traints such as ‘age > 15’ . A
Session selects some specific attribute values as execution context
that defin es the Subject descriptor at this moment. S imilarly,
objects are defined based on the values of selected attributes.

4.5 Implementation
See Section 5 for an example of a real implementation.

1) Select a n a ppropriate pac kage to convey the s ubject’s
credentials including attributes. Examples wou ld be attribute
certificates [15][17] or Kerberos tickets.

2) Select an im plementation to e xpress the object’ s attributes.
Candidates could be s tandards on meta-data res ource discovery ,
such as the Dublin Core Metadata Initiative [DCM].

3) Define an enforce ment mec hanism for the righ ts defined in
contexts. See for example [2].

Figure 6. Class model for the Session-Based ABAC pattern

4.6 Example resolved
The portal implemented an ABAC model. Now when Meili opens
a session she is given access to contexts with sets of preselected
movies according to her pr eferences and restr icted a ccording to
legal aspects and to the services she has paid for.

4.7 Known uses
Session-based ABAC is implemented as a n alternative to RBAC
in the s ecurity m odule CSAP [5] of the W ebocrat system. A
similar patter n is als o us ed in the author ization system of the
.NET component framework [14] and in AAIs (authentication and
authorization infrastructures), such as Permis [1] and Shibboleth
[24].

The XM L s tandard XACML [4][16] uses attributes of s ubjects
and objects for the s pecification of access control policies. As
shown in the UCONABC [18], ABAC may also have potentia l for
digital rights management.

4.8 Consequences
The advantages of this pattern include:

• The rights of subjects that belong to a variety of groups,
roles, or have special attributes can be limited by
restricting them to us e s pecific contexts s elected by
sessions.

• This c ontrol do es not imply an extra burden for the
security admini strator because the contexts can be
defined by applicatio n des igners according to
application policies.

• This control does not imply a significant performance
overhead because changing from o ne context to another
just means changing a set of rights.

• Changes in access r estrictions can be easily
accommodated by defining new contexts or deleting
existing contexts.

Possible disadvantages are:

• Higher complexity. Although the contexts are defined
by others, it is hard for administrators to know who has
access to what.

• There might still be some performance overhead if we
need to switch often between contexts.

4.9 Related Patterns
Figure 1 s hows the relations hip of t his patt ern to other access
control patterns . As indicated credentials such as certif icates are
frequently used to request access [15].

5. Using session-based access control as a
service
In this section we show by means of two sequence diagrams how
the patterns described above can be embedded into a general
authentication, author ization and access control s ervice. Such a
service can be c alled by any application or p rocess having the
need to authenticate the users and to provide session-based access
control. In the foll owing it is ass umed that the service provides

both session-based RBAC and session-based ABAC and the client
application requesting the service must chose between the two.

Figure 7 shows a sequence diagram for the intera ction of a
requesting client process and the s ession-based access contr ol
service. In order to hide the complexity of the subsystems, in the
sequence diagram we use the Facade pattern [1 1] as a uniform
interface for calling applications.

In order to be able to a ccess a resour ce, a valid session object
must be requested by the calling applicatio n (or us er proces s).
This starts w ith some sort of initi alization process during which
the client application first requests from the authentication facade
of the security service an authentication service. In the example of
Figure 7, a password serv ice is returned but also other services
may be available. Second is the request for an authoriz ation
service. In the example, RBAC is returned, and the initialization
phase is f inished. N ext is the actual u ser authentication, role
selection and the s ession es tablishment. During user
authentication the client application provi des to the pas sword
service <user-id, pw d>. The pas sword ser vice interacts w ith a
userDM and in case o f successful log-in a user object is created
and a ref erence to the obj ect (aUser) is retur ned to the calling
client application.

A valid s ession can only be esta blished in the cas e the user
application activates at least one role from the set of possible roles
for the user. This sta rts by calling the method getAssignedRoles
of the user object. In case of a valid userID all available roles for
a p articular us er are determ ined a nd returned by t he r ole data
module (RoleDM) and f or each role a tr ansient r ole object is
created by the RBAC service. Next from the s et of pos sible roles
the user s elects a sub set and the RBAC serv ice calls the
corresponding method to activate the roles.

At this stage the user object is authenticated and ha s a set of
active r oles as signed. These ar e t he o nly prerequisites for
establishing a ses sion. After receiving the r equest the ses sion
service creates a valid session object for which the session-id is
returned as a reference for the calling client process. Under a
valid session-id the client may act under the context of the session
by using the privileges of the selected roles.

Figure 8 shows an attempt of a client process to access a resource
within a valid session. The process starts with calling the method
checkAccess with parameters session-id, object-id, operation, i.e.
a request of a user wishing to access a certain object by using a
predefined operation and this all wit hin the c ontext of an
established session. F irst, the validity of the session is checked,
then the s ession object is used by the RBACService in order to
get the user’ s active ro les w ithin this s ession. N ext, the us er’s
permissions are d etermined by re trieving all the perm issions
assigned to the active rol es. Fi nally, the RBACSer vice c hecks
whether there is a permission for the tuple <object, operation>. In
the case there is one, the access will be granted, otherwise denied.

Figure 7. Session establishment

6. Conclusion
We have shown patterns to des cribe the effect of s essions on
access contr ol models . W e pres ented fir st t he Access Session,
which describes the basic concept of s ession as a limiter of rights.
We then combin ed thi s pattern wit h the patter ns of two access
control models to show its effect on them. Finally we s howed an
example of a system usi ng the las t two pattern s as a wa y to
illustrate a real implementation.

Acknowledgements
We thank our shepherd Michael Weiss for his valuable comments
that contributed to improve this paper. The FAU Secure Systems
Research Group prov ided us eful im provements and corrections .
The gro up a t the P LoP 20 06 Writers Workshop provided very
useful suggestions. The work of E. Fernandez was supported by a
Federal Earmark grant fro m DISA, a dministered by Pragmatics,
Inc. The work of G. Pernul was partly supported by the European
Commission DG INFSO under the IST program, W ebocracy,
contract No. IST-20364.

References
[1] Chadwick, D. W., and Otenko, A. 2003. The PERMIS X.509

role based privilege management infrastructure. Future
Generation Computer Systems. 19, 2 (2003), 277-289.

[2] Corradi, A., Montanari, R., and Tibaldi, D. 2004. Context-
based access control management in ubiquitous
environments. In Proceedings of the third IEEE Int. Symp.
On Network Computing and Applics. NCA’04.

[3] The Dublin Core Metadata Initiative. DOI=
http://www.dublincore.org.

[4] Delessy, N., Fernandez, E. B., and Sorgente, T. 2005.
Patterns for the eXtensible Access Control Markup
Language. In Proceedings of the Pattern Languages of
Programs Conference (Allerton Park, IL, September 2005).
PLoP 2005.

[5] Dridi, F., Fischer, M., and Pernul, G. 2003. CSAP -- an
adaptable security module for the e-government system
Webocrat. In Proceedings of the 18th IFIP International
Information Security Conference (Athens, Greece, 26-28
May 2003). SEC 2003.

Figure 8. Permission approval

[6] Elmasri, R., and Navathe, S. 2003. Fundamentals of database
systems (4th Ed.), Addison-Wesley.

[7] Fernandez, E. B., Summers, R. C., and Coleman, C. B. 1975.
An authorization model for a shared data base. In
Proceedings of the 1975 SIGMOD International Conference
(New York, 23-31).

[8] Fernandez, E. B., Summers, R. C., and Wood, C. 1981.
Database Security and Integrity. Addison-Wesley, Reading,
Massachusetts, Systems Programming Series.

[9] Fernandez, E. B., and Pan, R. 2001. A pattern language for
security models. In Proceedings of PLoP 2001.

[10] Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D.R. and
Chandramouli, R. 2001. Proposed NIST standard for Role-
Based Access Control. ACM Trans. on Information and
System Security. 4, 3 (August 2001), 224-274.

[11] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1994.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Boston, Massachusetts.

[12] Harrison, M., Ruzzo, W., and Ullman, J. 1976. Protection in
Operating Systems. Comm. of the ACM. 19, 8 (August
1976).

[13] Lampson, B. W. 1971. Protection. In Proceedings of the 5th
Princeton Conference on Information Sciences and Systems.
(Princeton, 1971).

[14] LaMacchia, B.A., Lange, S., Lyons, M., Martin, R., and
Price, K.T. 2002. NET framework security. Addison-
Wesley.

[15] Morrison, P., and Fernandez, E.B. 2006. The Credential
Pattern. Pattern Languages of Programs conference
(Portland, Oregon, USA, 2006). PLoP 2006.

[16] eXtensible Access Control Markup Language (XACML),
Version 1.1. OASIS Community Specification, August 2003.
DOI= http://www.oasis-open.org/committees/xacml/

[17] Oppliger, R., Pernul, G., and Strauss, C. 2000. Using
Attribute Certificates to implement Role-Based
Authorization and Access Control. In Proceedings of the 4th
Conference on "Sicherheit in Informationssystemen"
(Zürich, Switzerland, October 5 - 6, 2000). SIS 2000. vdf
Hochschulverlag.

[18] Park, J., and Sandhu, R. 2004. The UCONABC usage
control model, ACM Transactions on Information Systems
Security. 7, 1 (February 2004), 128-174.

[19] Priebe, T., Fernandez, E. B., Mehlau, J. I., and Pernul,
G.2004. A pattern system for access control. In Research
Directions in Data and Applications Security XVIII, C.
Farkas, and P. Samarati, Eds. Proceedings of the 18th.
Annual IFIP WG 11.3 Working Conference on Data and
Applications Security (Sitges, Spain, July 25-28).

[20] Priebe, T., Dobmeier, W., Muschall, B., and Pernul, G. 2005.
ABAC – Ein Referenzmodell für attributbasierte
Zugriffskontrolle. In Proceedings Sicherheit 2005, 2.
Jahrestagung des Fachbereichs Sicherheit der Gesellschaft
für Informatik. (Regensburg, April 2005).

[21] Pryce, N. 1997. Abstract session: An object structural
pattern. In Proceedings of the 4th Conference of Pattern
Languages of Programs. PLoP’97. Also in chapter 7 in
Pattern Languages of Program Design, vol. 4, N. Harrison,
B. Foote, and H. Rohnert, Eds. Addison-Wesley.

[22] Sandhu, R., Coyne, E. J., Feinstein, H. L., and Youman, C.
E. 1996. Role-based access control models. IEEE Computer.
29, 2 (February 1996), 38-47.

[23] Schumacher, M., Fernandez, E.B., Hybertson, D.,
Buschmann, F., and Sommerlad, P. 2006. Security Patterns:
Integrating security and systems engineering. J. Wiley &
Sons.

[24] Shibboleth Project. DOI= http://shibboleth.internet2.edu
[25] Summers, R. C. 1997. Secure Computing: Threats and

Safeguards. McGraw-Hill.
[26] Yoder, J., and Barcalow, J. 2000. Architectural Patterns for

Enabling Application Security. In Proceedings of the 4th
Conference of Pattern Languages of Programs. PLoP’97.
Also in chapter 15 in Pattern Languages of Program Design,
vol. 4, N. Harrison, B. Foote, and H. Rohnert, Eds. Addison-
Wesley.

