
Programmers are from Mars, Customers are from Venus:
A practical guide for customers on XP Projects
Angela Martin

Computer Science
Victoria University of Wellington

New Zealand
+64 4 463 5666

angela@mcs.vuw.ac.nz

James Noble
Computer Science

Victoria University of Wellington
New Zealand

+64 4 463 6736
kjx@mcs.vuw.ac.nz

Robert Biddle
Human-Oriented Technology Lab

Carleton University
Canada

+1 613 520 2600 x6317
robert_biddle@carleton.ca

ABSTRACT
Extreme Programming and other Agile methods have a dedicated
customer role that acts as the interface between development
teams and their clients, sponsors, and end-users. The customer is
critical to agile projects, but there is little research, experience, or
advice about effective practices required to fill that role. We
present a set of patterns describing the key roles on a customer
team, and the practices that enable customers to fill those roles.
By adopting these roles and practices, customers and development
teams can increase the velocity and reliability of their projects,
and ensure all participants in a project, not just the developers, can
work at a sustainable pace.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

General Terms
Management, Design, Economics, Human Factors.

Keywords
Agile Methods, XP, Extreme Programming, Customer.

1. INTRODUCTION
This paper introduces patterns for roles and practices that can
increase the effectiveness of the customer on an Extreme
Programming (XP) project. Customers have one of the most
complex and difficult roles on a project, yet XP includes very few
practices that support the customer in their role — the aim of this
paper is to change that. Over the last three years, we have
investigated many projects around the world to identify how
customers succeed in this complex and difficult task —
discovering not what people think should have happened, but
what really happened and what actually worked.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PLoP '06, October 21–23, 2006, Portland, OR, USA.
Copyright 2006 ACM 978-1-60558-151-4/06/10…$5.00.

This paper distils this research, grounded in practical experience,
into a number of patterns:

• Covering key roles required on a customer team, both
what they are and why they matter.

• Covering practices that enable customers to sustainably
drive XP projects to successful completion – similar to
“XP practices” but for customers.

We use a number of quotes from the interviews we have
conducted during the last three years to illustrate our findings in
this paper; names have been avoided or invented to preserve
anonymity.

2. CUSTOMER TEAM ROLES
The XP customer is typically a team of people; as there is too
much work for one person:

 “We probably needed about three of me … it’s
been my life for about a year … look at these grey
hairs”
— Customer, KiwiCorp

“I’ve always worked at least 70 [or] 80 [hrs a
week] I don’t even mind it, its like what I do”
— Customer, RavenCorp

Lest these quotes be taken out of context, we should introduce the
important finding that practitioners are excited about the changes
introduced by XP to the dynamic between the customers and
programmers:

“Overall – I love this approach to development and I’d
certainly like to use it again in any future projects I am
involved in”
— Customer, KiwiCorp

In the successful project teams that we have studied [8, 9], each
one had a customer team, and although each of the teams had an
identified “customer”, there were nine key roles being performed
on these successful customer teams:

• Geek Interpreter
• Technical Liaison
• Political Advisor
• Acceptance Tester
• User Interface Designer
• Technical Writer
• Diplomat

• Super-Secretary
• Negotiator

Each of these roles directly supports the success of the “customer
role” in some aspect, but which roles are needed will depend on
the nature of the project. More than one role can be played by one
person, and more than one person might combine to play a role.
How these roles are established is also a matter for context:
someone in the “customer role” may informally create the roles to
provide the support they need, or the roles may be created as part
of a more formal management process.

2.1 Pattern: Geek Interpreter

Problem

“H3Y D00DZ, L3TZ C0D3 UP SUM ST0R1Z”
— Geek, 2005

Programmers and customers do not always speak quite the same
language, even when the both speak English (or French, or …). It
is easy for a customer to become baffled by a programmer; did
they actually answer my question, what did the answer actually
mean to me, will it fix my problem?

Forces
• Programmers say “it will take fifteen days as we will

need to introduce [xxx]”
• Customers think “but I just want to do this simple thing,

do I really need [xxx]”
• Programmers explain why [xxx] is needed, but

Customer does not fully understand, but after a few
attempts is unable to find a way to communicate further
with the programmer, and is worried that they have been
misunderstood.

Solution
We have found that customers who are not themselves (ex-)
programmers often lack expertise in programmer jargon, and need
a geek interpreter, a person who helps the customer understand
and talk to the programmers.

Forces Resolved
The Geek Interpreter generally does not talk to these programmers
directly but instead provides a sounding board and coaches the
customer in G33k 5p34k (Geek Speak). The Geek Interpreter role
is never an official team role / position on the team. Often the
Geek Interpreter has the official role of a Business Analyst, Tester
or project manager and is a recent ex-programmer. However, the
Geek Interpreter can also be a programmer (on either the same or
different project) whom the customer trusts.

It is also interesting to notice that in all cases we have studied, the
customer has been very careful with the use of the Geek
Interpreter role and never plays the Geek Interpreter against
another programmer directly. If a customer were to play the Geek
Interpreter off against the programmers then the customer could
(a) damage their relationship with the programmers who may feel
that the customer no longer trusts them and/or (b) the customer
could damage their relationship with the Geek Interpreter, who
might no longer feel comfortable providing assistance to the
customer. Additionally the Geek Interpreter’s relationship with
the programmers could be damaged, and this could be significant

depending on their role on, or relationship with, the programmer
team.

2.2 Pattern: Technical Liaison

Problem
Most projects don’t exist in isolation; they have to deal with
existing organisation technical infrastructures. Customers who
attempt to deal with the entire technical liaison quickly become
overloaded. Programmers will tend to focus on getting their
stories completed, and will also become overloaded if attempting
to undertake this task. Additionally although programmers may
have the technical expertise, they do not always have the same
perspective as technical infrastructure specialists. For example,
technical support people can find it difficult to deal with
programmers, who sometimes don’t understand why they cannot
rebuild the organisation’s entire database so that the simplest
thing might possibly work.

Forces
• We need someone who is able to interact with the

existing technical infrastructure and the
organisation/departments that are in place to support it.

Solution
We have found that a person on the team picks up the Technical
Liaison role, removing this communication “overhead” from both
the programmers and the rest of the customer team.

Forces Resolved
This role can sometimes be a formal role on the team, particularly
in organisations with large IT departments or in organisations
where their operational facilities have been outsourced. In
situations where the IT departments are smaller and operational
facilities are in-house, then this may be a part-time role that is
picked up by a member of the project team.

We have also found that this person may be able to support the
programmers find answers to the legacy system queries, and at
times even code, although typically this person is post-technical
but with a strong technical knowledge base.

It is important to ensure that this person remains a part of the team
and does not go native (get captured by the larger IT
organisation). They need to obtain support from the team because
they will be facing a lot of pressure externally and can easily
become battered and bruised.

2.3 Pattern: Political Advisor

Problem
Every organisation of more than two people has politics.
Customers are – by their nature – involved intimately and
continuously in a development project. This means they cannot –
by themselves – keep up with organisation’s politics and power
structure.

Forces
• Customers need help to identify the players and the

rules:
o Who needs to say “yes!”?

o Who needs to say “no!”?
o Which rules to follow?
o Which rules to break?

• Note, this is different from XP’s Goal Owner & Gold
Donor, as organisations are much more complex than
this, with many stakeholders at different levels.

• We may need multiple political advisors, depending on
the size and complexity of the organisation and its
political by-plays.

Solution
We have found that a wise customer recruits one or more political
advisors whom they can (hopefully) trust.

Forces Resolved
The political advisor will help the customer work out who the
political players actually are. There are always both official and
the unofficial players, and both need to be identified and
understood. A strategy is then needed for how to work with
them, both in the short term and long term. A wise customer is
aware that they need to not only see this project succeed but will
also set up their political network for the next project to succeed
as well.

It is important to ensure that one is constantly assessing the advice
and guidance of your political advisors, that one is really plugged
into all of the political dimensions necessary. For example, in one
project, it became painfully aware to the project team that one
political player had been overlooked, in this case, operations. The
project was delayed and portrayed within the larger IT
organisation as a failure due to the delay, despite the fact that the
project team delivered working software that added business
value, and all much quicker than originally expected; all that was
remembered was that the team was a month late. The customer
had missed a key political player within the organisation and the
long-term perceived success of the project was compromised.

2.4 Pattern: Acceptance Tester

Problem
Classic, or first edition, XP [2] had programmers seconded to the
customer to help the customer test the application that can leave
programmers politically conflicted and customers without the
specific skill set to thoroughly test the application.

So, how do you ensure that there is a focus on quality, from the
customer’s perspective rather than the programmers?

Forces
• We want to ensure the customer’s perspective is

represented when the application is tested: a focus on
how the customer and/or end-users will use the software
to achieve their business goals, rather than how they get
a story signed-off.

• We want to ensure that the testing is structured and
prioritised so that the most important tests (from the
customers perspective) are undertaken and not simply
the easiest tests. A constant cost/benefit analysis of
when to test, always considering the impact to the
quality of the application versus the ability to add new
functionality.

Solution
We need to ensure that someone on the customer team has testing
experience and is prepared to take on the role of acceptance tester
on the project.

Forces Resolved
We found acceptance testers as assistants to customers on almost
all large standard contemporary XP projects. Real testers
understand testing, are good at it, and take the customer’s side!

The role of acceptance tester may or may not be a full-time role
on the project, but we have found that it tends to be a full-time
and recognised role on the project team. It is essential the
acceptance tester role is perceived both by themselves and by the
rest of the team as belonging to the customer team, otherwise we
can end up with technology-focused testing occurring, and no
business-focused testing.

2.5 Pattern: User Interface Designer

Problem
Programmers are famous for not being able to design User
Interfaces, at least as far as UI designers are concerned – not to
mention users!

Forces
• We want an application that end-users will be able to

use effectively to perform their tasks, UI design is more
than just “looking good”, it is all about interactions.

• Requirements for the system can be introduced from the
UI Designer, which is another reason for the UI
Designer to be in the customer team.

Solution
In the situations where the User Interface of the project is
considered critical to the application, then it is essential that we
hire a user interface designer. In other situations (i.e. the User
Interface is not seen as critical) then it is still recommended that
someone with user interface development experience is assigned
to the customer team, as designing an application that meets the
essential interactions for the end-user is an important part of any
application.

Forces Resolved
We found UI Designers end up on the customer team, providing
UI designs to the programmers. In the first case (UI is seen as
critical), this role is likely to be a full-time recognised role on the
project team. In the second case (all other situations), this role is
likely to be performed in conjunction with another role on the
project team, although it is highly recommended this role is not
performed in conjunction with the role of programmer. One
especially important reason that UI work be aligned with the
customer is that UI design, in order to provide usability, may lead
to new requirements.

Often the User Interface Design appears to be Big Design Up-
Front (BDUF), because the UI designers do their own iterative
design and evaluation for usability. We are finding that UI
designers. in conjunction with the programmers, are learning
together how to make this work in the incremental fashion of agile
iterations.

2.6 Pattern: Technical Writer

Problem
XP downplays technical documentation but user documentation is
still important. Programmers do not tend to have the technical
writing skill-set required to write effective user guides.

Forces
• We want to deliver support documentation (e.g. user

guides) to end-users so that they can use the application
effectively.

• We do not want to interrupt delivery, or pay the cost of
expensive programmers to write the documentation,
poorly.

Solution
In the situations where end-user documentation is to be produced,
it is essential that someone on the customer team has technical
writing skills.

Forces Resolved
We have found that real technical writers often end up on
customer teams, particularly when the application is a software
product. Typically technical writers are assigned to the customer
team on a part-time basis, and will often be assigned to multiple
projects as a technical writer. The good news is that technical
writers love agile development:

“At least I’ve got something to write about from
the start”
— Technical Writer, EagleCorp

In traditional software development the technical writers often
start writing the user guides from the requirements specification,
only to find when the software product is delivered a few days
before shipping, that the requirements specification does not
reflect the software product’s functionality, many long and intense
hours are then spent re-writing the user guides to match the
software delivered. the technical writer to spread their load, as the
software changes

So, while agile software development allows and evolves during
the process the technical writer will be required to evolve their
technical documentation regularly. We must beware that this
situation could quickly become frustrating for the technical writer
and may result in them pushing for a more defined specification
up-front, in order to better balance the amount of work and re-
writes over time.

2.7 Pattern: Diplomat

Problem
Customer teams require organisational representative(s),
including:

• Subject matter experts
• End users
• Senior stakeholders and decision makers
• Architects

They are responsible for representing their organisational area or
perspective on the project. A project typically will involve many
departments within an organisation, and will require multiple
perspectives, which will not always see “eye-to-eye” as each area

will have competing goals priorities and requirements. It is
important to ensure each organisational area is represented, and
one person cannot do that alone.

Forces
• We want to ensure that all of the organisation’s

requirements are brought into the project, not just the
end-user requirements, or the senior stakeholders, or the
architects, or the sales department or the production
department and so on; but all of these different
perspectives.

Solution
We have found that projects must ensure diplomats are identified
from each organisational area and represent the views of this area
for the project.

Forces Resolved
We have found that the people fulfilling this role may be full-time
or part-time. To work successfully the Diplomats must have the
time to participate in the project. Their role is significant and
includes not only representing their requirements into the project
team and working directly with programmers, but also finding out
and representing the diverse views of the people they have been
chosen to represent. Finally the people in this role must be open
to negotiation and be able to understand other department’s/area’s
perspectives and needs.

2.8 Pattern: Super-Secretary

Problem
Within the customer team there are many administration and
organisational tasks that need to occur in order for the customer
team to be effective in their interactions with both the business
and the programmers. Overloaded customer team members find it
easy to either let these tasks “slip” or become a burden that results
in them either not being as effective (e.g. stories get lost) or
working even more hours in a day.

Forces
• We want to ensure that customer team members are not

distracted from their core roles by administration and
organisational tasks.

• We want to ensure that the organisational tasks occur or
stories might get lost, cards run out, and so on.

Solution
We have found that typically one person on the team will surface
to pick up the administrivia load from the rest of the team; we
have called that role the super-secretary.

We have recently identified that the name of this pattern causes
some perception issues, and are considering renaming this pattern
to “Steward” (based on the analogy of a King’s Steward), which
perhaps better illustrates the importance and significance of this
pattern. Additionally it helps illustrate the role this person plays
when the customer lead is unavailable.

Forces Resolved
We have found that the super-secretary always has another formal
role on the customer team, so this role is always “part-time”,
despite the sometimes very large amount of work in the role. The
super-secretary will typically always write down the stories, and

keep them organised as well as track them through their lifecycle,
often with a sticker system with different colours representing
each stage. The super-secretary also undertakes other tasks such
as:

• Following up the story status with the programmers
• Ordering stationery, including cards and marker pens
• Printing cards or tracking cards on the wiki, as required

by the programmers or business
• Organising meeting rooms for iteration kick-offs or

planning meetings
One thing to be aware of with this role, particularly given that it is
always a secondary role, and often unrecognised role, is that the
person performing this role can become very overloaded, and
while we have named the role “super-secretary”, it is fair to say
that there is often a limit to this person’s “super” powers. In one
case we investigated, the super-secretary had become too
overloaded and had recently left the project. The team was
feeling the ramifications of her departure and perhaps becoming
aware of the true load she had been shouldering for the best part
of the year-long project. It is important to keep an eye on this
person’s load and consider ways to mitigate the overload they will
experience.

2.9 Pattern: Negotiator

Problem
While the roles above are helpful, we need an on-site customer,
someone who decides what to build when and talks to the
programmers. None of the other roles do this, so where has the
on-site customer gone?

Forces
• Programmers need to know who to talk to concerning

their story, and they need to be confident that it is the
“right” person, someone who has the confidence of both
the person paying the bills and the end-user of the
system; and who can talk to the programmer in a way
the programmer can understand.

• Business people need someone to help them clarify their
vision and ensure that an application gets built that will
meet their competing needs, and will be accepted by
both stakeholders and end-users as achieving the
business goals/vision.

Solution
DeMarco [7, p5] suggested that negotiating “with a whole
community of heterogeneous and conflicting users is a gargantuan
task”; he goes on to liken the diplomatic skills required to “the
skills of a Kissinger negotiating for peace in the Middle East.”
Like DeMarco we also noticed this negotiation role as essential,
one of the key functions of this role is to negotiate or facilitate
communication and agreement amongst all of the Diplomats, in
order to provide a “single voice” of requirements to the
programmers.

We also noticed that an onsite-customer is clearly identified on
the team and is the single-point of contact for all initial
programmer queries and decisions. Finally, like with DeMarco’s
initial writing, this role facilitates direct communication between
the Diplomats and Programmers.

Forces Resolved
On every project we studied, everyone in the team (and typically
outside of the team) could clearly identify the on-site customer.
We have found that to be effective, customers must be able to be:

• Good (active) listeners
• Confident & decisive
• Comfortable working at the “big picture” and detailed

levels
• Know their limitations and work with a customer team
• Handle intense pressure … workaholics should apply!
• Recognise multiple perspectives exist … and help them

see each other’s world
Despite the fact that there is a customer team, on most projects we
have studied the person performing this role has clearly been
overloaded, often leading to burn-out, or the person performing
this role leaving the organisation after the project completes. The
organisation looses this person’s valuable knowledge and the
application may suffer once the strong identified vision-holder is
changed.

Interestingly, by clearly separating the responsibilities of the
customer (team) from the programmer (team) we have also
noticed a tendency for programmers to simply say “it’s not my
problem: that is for the customer to solve”. We very much doubt
that was Beck’s intent with XP, to create a division, instead we
believe his intent was very much to improve the communication
between the customer and the programmers and have a whole
project team approach. We believe that some of the practices we
outline next directly help to remove some of the divisions created
between the customer and the programmers.

3. CUSTOMER PRACTICES
This section outlines nine practices that enable customers to
sustainably drive XP projects to successful completion – similar
to “XP practices” but for customers:

• Programmer On-Site
• Customer’s Apprentice
• Programmer Holiday
• Story Standards
• Show & Tell
• Customer Pairing
• Customer Counselor
• Look Before You Leap
• Three-month Calibration

While this list is not complete, it provides the initial core patterns
that we have seen working on real projects that allow customers to
do their jobs effectively. Later papers will extend and explore
these practices further. Like the roles described above, these
practices exist to support the customer role, but may be
established with lesser or greater formality, as a situation requires.

3.1 Pattern: Programmer On-Site

Problem
The onsite customer can create a number of problems:

• If the customer needs to move physical location to
become the “onsite” customer then there is a risk that
they will become isolated from the business

organisation, and can also become prone to the
Stockholm Syndrome.

• Programmers do not get to understand and respect the
end-users of their application, as they have no
knowledge of their world.

Forces
• The customer representative needs to remain grounded

in their organisation and connected to all of the end-
users, business stakeholders and political advisors.

• Programmers need to better understand and respect the
end-users and other stakeholders.

Solution
We should re-tune our advice, and as well as an “on-site
customer” and “programmer” roles, we should have “customer”
and “on-site programmer” roles.

Forces Resolved
This advice of getting programmers into the field is not new. The
pattern resembles Constantine’s advice for office visits [6], and the
old story that aircraft manufacturers offer their avionics
programmers seats on early test flights.

Programmers need to understand the rhythm and flow of users
jobs and experiences – who they are, what they do, why they do it,
why they will ignore the software. This practice is not about
making decisions but instead it is about understanding the end
user and context of use, and gaining enough information to
making helpful suggestions.

“I worked with a social worker, doing a death
review. This is what she does every day, it helps
put the importance of the system we are
developing in perspective, while it might be the
most important thing for me as I am 100%
assigned to it and have deadlines, is it more
important for her to help us or do her day job?”
— Business Analyst, 2005

Consider a comparison and contrast of the two versions of the
practice that results in customers and programmers being co-
located:

Customer On-Site Programmer On-Site

Good for programmers Good for users … if a
nuisance!

Makes customer aware of
programmer’s jobs and issues

Makes programmers aware of
the user’s job and local issues

Incorporates customer into
programmers culture

Incorporates the programmers
into the user’s culture

Customer capture is a “bad”
thing.

But programmer capture is a
“good” thing

However, it is important to emphasise that a little knowledge can
be dangerous: programmers may end up believing that they
“know best” based on their limited knowledge. Programmers
need to understand that while they are gaining an appreciation and
understanding of the end-users world they will never know it to

the extent that the customer does, they will never have the
customer’s overall view.

3.2 Pattern: Customer’s Apprentice

Problem
The previous practice helps bring the programmers into the world
of the end-users, but they still lack an understanding of the world
of their projects customer. We have found many situations where
programmers see the customer as the bottle-neck and have no
understanding why the customer cannot pump out stories to keep
up with them.

Forces
• Programmers need to understand and respect their

customer.
• The customer needs to manage their excessive work-

load.

Solution

“To understand someone, walk a mile in their
shoes”
– Old Saying

So, rotate programmers to act as the Customer’s Apprentice:

• Attending meetings with users and stakeholders
• Writing stories and being secretary

Forces Resolved
We have found in all cases where this practice has been used that
the programmers quickly change their tune, their complaints
rapidly diminish and they become aware of the true load the
customer carries on the project; they quickly gain a deep respect
for the person playing the customer role. This practice tends to
work best when the programmer acts as the Customers Apprentice
for at least one iteration, otherwise the programmers do not truly
get to see all of the demands on a customer’s time. Programmers
who have played the role of the Customer’s Apprentice are more
likely to see the team as a whole team and will step in to help the
customer out when the customer becomes overloaded, and will
also “defend” the customer within the programmer team, helping
other programmers become aware of the true demands on the
customer.

However, convincing programmers can sometimes be
problematic. In our experience, this practice works best when the
programmers suggest it themselves. But it is possible to head-
hunt a good programmer candidate for this role when the
customer becomes aware of the programmer “grumbles” at
delays, or, more helpfully, realises the customer is overloaded and
needs extra help.

3.3 Pattern: Programmer Holiday

Problem
XP is intense; thinking about the requirements of the new system
is hard and sometimes Customers just need more time to get
ahead of programmers, as the “stay ahead” dynamic is really
important.

Forces
• A balance is needed between the need to deliver

working software with ensuring the customer does not
burn out and that the project delivers what the business
truly needs.

Solution
Customers need to “send the programmers on holiday” when they
need time to focus on communication with stakeholders, and
cannot commit to new stories or priorities.

Forces Resolved
A “programmer holiday” is not often an actual holiday (although
there maybe times when that is indeed appropriate), but mostly
the customer will choose to prioritise technical debt, lower
priority bugs, technical system upgrades and such above stories.
Other wise and long-term effective strategies include
implementing the “Programmer’s On-Site Day” and “Customer’s
Apprentice”.

3.4 Pattern: Story Standards

Problem
How do you break a problem down into stories that are both
meaningful to the business and at the right level of detail for the
programmers: how big should a story really be?

Forces
• We need to provide a consistent way of writing stories
• We need to find a way to break problems down, to

ensure that we understand the context of a story so that
it can be effectively prioritised. For example, in one
project we are aware of, the business prioritised their
stories, and these stories were built and released. The
problem is that no end-user could perform any task with
the software, because sometimes lower priority stories
need to be implemented in order to deliver software that
provides value to an end-user.

Solution
We need to provide a common template for every story. The most
effective template we have seen in use is the form “as a persona I
want something so that goal is achieved” [4].

However, that is not enough. We also need to provide a larger
“container” in order to effectively prioritise development work so
that it provides value to the business, one method of for this is use
case identification [3] and yet another is user-centered design task
analysis [5].

Forces Resolved
Customers need to take time to get stories right; story
decomposition and prioritisation is difficult. Story standards and
ways to organise the stories so that the business can prioritise at a
higher level of granularity are essential (e.g. use cases), but we
need to be very careful so that stories do not simply become
specifications and the importance of a conversation between
programmers and customers is lost!

3.5 Pattern: Show & Tell

Problem
Middle level bosses need to be convinced the software is making
progress, programmers need hard milestones, and in the case of
product development, Sales and Marketing need software to
demonstrate to clients in order to solicit their feedback.

Forces
• We rely on demonstrating progress with working

software rather than Gantt charts, so we need to actually
demonstrate working software to the people interested
in our progress!

Solution
Schedule regular demonstrations of the working software to those
internal or external parties that are interested in (or need to
provide feedback into) the project/application being developed.

Forces Resolved
We have found that demonstrations are one of the most effective
ways to:

• Gain the trust of senior and middle management, once
they see progress and are assured it is not “smoke and
mirrors” they become more confident that the project
will meet its deadlines. It is often worthwhile retaining
status quo reporting and demonstrations until such time
as management become comfortable enough with the
demonstrations to remove the need for the overhead of
MS Project and all that it entails.

• Obtain regular feedback from the larger external
population who will be end-users of the system [8],
either internal users in the case of in-house business
applications or external clients in the case of product
development. In many cases, sales and marketing
departments are able to leverage this opportunity to not
only inform the direction of the application but also to
provide confidence to this community that this project
will deliver value, that it is not simply vapour-ware.

Demonstrations can also be useful internally within the project
team, however one essential for internal demonstrations is that
they need to add value. Often, with the programmers and
customers working closely together, the demonstration of
functionality is not the thing that will add value, rather it is more
likely about the environment, and issues of integration or stability.
On one project we investigated weekly internal demonstrations
were the norm. Programmers could not see the value to
themselves but thought they added value to the customer, and
customers could not see the value to themselves but thought they
added value to the programmers. No-one commented on the
valueless practice during retrospectives as each group believed the
practice added value to the other group. In the end, we discovered
demonstrations were instigated at the start of the project when
there were a number of environment problems and no-one had re-
questioned their use since then. So, whether it is an internal or
external demonstration, always confirm that a demonstration adds
true value to the participants.

3.6 Pattern: Customer Pairing

Problem
The on-site customer is overloaded and many are suffering burn-
out despite being in a customer team. One of the significant parts
of the problem is “being alone”, making hard decisions alone.

Forces
• We need to find a way to provide effective support to

On-site customers so they do not feel alone
• Customers need to discuss issues that do not relate

directly to their stakeholders nor the developers, but to
the decision-making process itself

• Stakeholders and developers cannot be expected to
discuss the process itself dispassionately with the
customer, as they are affected, and have their own
concerns.

Solution
If Pair programming is good – pair customering must be good!

Forces Resolved
It works for the customer, in every case we’ve found. It is
important to consider the most effective technique for managing
customer pairs for your project; the solutions we have seen
include:

• Divide by functional area
o “Along the grain of the domain” (Brian Foote)

• Divide geographically
o Distributed projects

• Inward/outward division
o One customer works with the programmers
o Another works with stakeholders & users

• Visionary & Detail
o One has the Visions! Goals! Plans! Dreams!
o Another does the work

• Most extreme: like pair programming – don’t divide.

• Close working relationships are key to any division of

the customer role
However, programmers can find it difficult to work with a
customer pair, as at times the different pair members will provide
different directions. Additionally in some situations we have seen
the programmers have played the customers like divorced parents,
to obtain the decision they preferred or thought was the “right
decision”. From the perspective of this paper, that’s not nearly as
large a problem as the customer overload leading to potential
burn-out which has been identified as part of this research,
because a burnt-out customer will take down the whole project!

3.7 Pattern: Customer Counsellor

Problem
The customer role is a lonely and intense role that we know has
“caused” burn-out. Programmers get a coach, and customers need
someone too.

Forces
• The customer needs someone to talk to, to help them

resolve their issues, ensure they realise they are “not

alone” and to mitigate the risk of customer burn-out. To
be effective this person should:

o Not be on the project
o Not be a manager
o Have enough IT & business experience to

provide effective and pragmatic support
o Will not try to solve their problems
o Is someone the customer can trust

Solution
We need to provide professional support to customers, a Customer
Counsellor (think Deanna Troi from Star Trek: The Next
Generation). This practice combines the patterns Mentor and
Shoulder to Cry On [9] outlined by Mary Lynn Manns and Linda
Rising.

Forces Resolved
We have found that the Customer Counsellor practice makes a
difference to the well-being and effectiveness of the customer. To
be effective the Customer Counsellor meets the customer
regularly in a private place that is completely confidential. If the
customer gets stuck they can call the Counsellor straight away

The Coach and Customer Counsellor could be the same person as
there is no intrinsic conflict of interest, but more realistically they
will be separate people as the skill sets are different.

3.8 Pattern: Look Before You Leap

Problem
Software projects, even small ones, cost money (e.g. 10
programmers for 6 months can cost upwards of $1M) and
someone needs to decide if that investment is worthwhile before
the project begins.

Forces
• We will need to prepare a business case, a requirements

document and some kind of scope before organisations
authorise projects.

Solution
The customer should lead initial analysis and design workshops
for a short period, typically 2-4 weeks, before coding begins.
These sessions are release planning and scoping sessions, working
out at a high level what to include in each release. We need to do
some “pre-thinking” about what we are going to build and why,
and ensure that this project adds value to the business. In many
cases we need to provide the information that will allow senior
executives to decide which projects to invest in (i.e. prioritise the
projects within an organisation).

A number of case studies [1, 12] show aspects of this pattern in
their day-to-day use of agile.

Forces Resolved
To be effective the (small) up-front analysis should be:

• Led by the customers,
• Involve end-users, stakeholders (across multiple

departments where appropriate), to ensure that a shared
understanding of the problem and solution is developed
that takes into account the multiple perspectives of the
project within the organisation.

• Sympathetic programmers should observe so that they
can gain an understanding of the business and be able to
more effectively estimate during release planning
sessions.

It is important to put a reasonable time-box on this “research”
activity. Analysis (or problem definition and solution
clarification) will not be complete at the end of this process, only
enough to make a decision as to whether the project is worth
taking further. Too large a time-box could put us back into the
same place we have been with traditional Big Up-Front Analysis,
too small a time-box will mean we could attempt to start a project
that is not the most important to the business, or just as easily the
reverse, miss a project that would have added significant value to
the business. Our research tends to indicate that the 2-4 week
time-box is about right for most projects.

3.9 Pattern: Three-month Calibration

Problem
After three months, many teams realise that “their eyes were
bigger than their stomachs”, and they aren’t going to deliver
everything they promised. At this point in the project the customer
typically feels absolutely betrayed!

Programmers have insisted on ruthless prioritisation, so the spec is
the absolute minimum the business can accept, or perhaps the
customer believed they would get the medium-priority stuff. Even
if customer has been on a project before, they believe XP will
deliver (that’s why they picked it). Interestingly enough, the
customer’s sense of betrayal is larger than on traditional projects,
perhaps because XP and Agile emphasise prioritisation or perhaps
because the customer believed XP/Agile was a silver bullet.
Whatever the cause, we should be aware that the backlash is
strong, and a pat answer of “well XP/Agile let you know this
sooner than traditional software development” is often not well
received.
During the crisis period, XP projects

• Typically stop doing iterations and development
• Have lots of meetings with stakeholders & bosses
• Re-plan the release
• Redo budget and scope
• The customer has to do lots of selling to the

organisation; programmers don’t often realise just how
serious the situation is.

• The customer finds it hard to come up with stories as
they are even more overloaded, and is unsure what to
prioritise given the project may be doomed.

• Morale low throughout whole team

Forces
• We need to find a way to ensure that the business is

prepared for this event, as it has happened on all of the
projects we have studied.

• We also need to find a way to ensure that the
programming team are also prepared for this event and
they realise the seriousness of the situation.

Solution
We recommend customers understand this event is a possibility,
be ready to recognise it when it occurs, and be prepared to address
it on its own terms, rather than with outrage or denial.

Forces Resolved
We recommend that we consider doing this every season (about
every 3 months). In some ways this is nothing new, it is just XP
release planning: but it is essential to do it and set customer
expectations that it will need to occur.

We must manage customer expectations concerning this event; we
must be more upfront that customer won’t get everything. They
will get something but there is no guarantee that it will be enough!

4. REFERENCES
[1] Armitage, A., Wisniewski, P., de-Ste-Croix, A. Proceedings

of Agile 2007. Greater Successes by Using Agile
Techniques Closer to the Light Bulb Moment. Pages 181 –
186. Washington D.C. IEEE Computer Society.

[2] Beck, K. eXtreme Programming Explained: Embrace
Change, Addison Wesley, 2000.

[3] Cockburn, A. Writing Effective Use Cases. Addison-
Wesley. 2000.

[4] Cohn, M. User Stories Applied: For agile software
development. Addison-Wesley. 2004.

[5] Constantine, L., Lockwood, L. Software For Use: A
Practical Guide to the Models and Methods of Usage-
Centered Design. Addison-Wesley. 1999.

[6] Constantine, L. The Peopleware Papers: Notes on the
Human Side of Software. Yourdon Press. 2001.

[7] DeMarco, T. Structured Analysis and System Specification.
Yourdon Press. 1979.

[8] Gatz, S., Benefield, G. Proceedings of Agile 2007. Less,
Never More: Launching a Product with Critical Features and
Nothing More. Pages 324 – 327. Washington D.C. IEEE
Computer Society.

[9] Manns, M-L., Rising, L. Fearless Change: Patterns for
Introducing New Ideas. Addison-Wesley. 2005.

[10] Martin, A., Biddle, R., and Noble, J., Proceedings of the
Second Agile Development Conference, Sherman Alpert
(Ed.), The XP Customer Role in Practice: Three Case
Studies. Pages 42-54, Salt Lake City, USA, 2004. ACM
SIGSOFT.

[11] Martin, A., Biddle, R., and Noble, J., Proceedings of the
Fifth International Conference on eXtreme Programming and
Agile Processes in Software Engineering, Jutta Eckstein &
Hubert Baumeister (Ed.), When XP Met Outsourcing,
Lecture notes in Computer Science 3092, Springer-Verlag,
2004.

[12] Takats, A, Brewer, N. Proceedings of Agile 2005.
Improving communication between Customers and
Developers. Pages 243 – 252. Denver, Colorado. IEEE
Computer Society.

