Even more patter nsfor secure oper ating systems

Eduardo B. Fernandez, Tami Sorgente, and Maria M Larr&atioe
Dept. of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL
{ed tami, maria@cse.fau.eglu

Abstract

An operating system (OS) interacts with the hardwai@ supports the execution of all the
applications. As a result, its security is very catidVlany of the reported attacks to Internet-
based systems have occurred through the OS (kernel angg)tilThe security of individual
execution time actions such as process creation, mepnotgction, and the general architecture
of the OS are very important and we have previously ptedepatterns for these functions. We
present here patterns for the representation of pracassethreads, emphasizing their security
aspects. Another pattern considers the selection tfaVviaddress space structure. We finally
present a pattern to control the power of administsatbcommon source of security problems.

1 Introduction

The operating system (OS) acts as an intermedianyelet the user of a computer and the
hardware. Its main purpose is to provide an environmenhioh users can execute programs in
convenient and efficient manner, i.e. a high-level ralbst machine. OSs also control and
coordinate the available resources. Clearly, the sgafr@perating systems is very critical since
the OS supports the execution of all the applicatisnsell as access to persistent data.

We have presented several patterns for different aspédte security of operating systems
[Fer02, Fer03, Fer05, FerO6a, Sch06]. These are patterndadtéor designers of such systems.
OS designers are usually experts on systems programmitkgdtlittle about security, the use
of patterns may help them build secure systems. Thdsernmmare also useful for teaching
security, we use them in our security courses and in angotextbook [FerO6b]. Our previous
patterns covered a range of security problems but #rerestill some aspects that we did not
consider and we present here security patterns for slsididonal aspects. We assume the reader
to be familiar with operating systems and with baseusty concepts [Fer06b, Gol06, PflO3].
Figure 1 shows the relationships of the new patterrts iggpect to each other and with respect
to some of our previous patterns (the patterns presentediteshown with double lines). Their
thumbnail descriptions are given below, starting withttinee new patterns:

Secure Process /Thread. How do we make sure that a process does not interfitheother
processes or misuse shared resources? A process igramprio execution, a secure process is
also a unit of execution isolation as well as a holderights to access resources. A secure
process has a separate virtual address space and aightsofa access resources. A thread is a
lightweight process. A variant, called secure thread ishread with controlled access to
resources.

Virtual Address Space Structure Selection. How do we select the virtual address space for
OSs that have special security needs? Some systepisasize isolation, others information
sharing, others good performance. The organization offgackss’ virtual address space (VAS)
is defined by the hardware architecture and has an effquréormance and security. Consider
all the hardware possibilities and select according to need.

Administrator Hierarchy. Many attacks come from the unlimited power of adnmatsts.
How do we limit the power of administrators? Defaéierarchy of system administrators with
rights controlled using a Role-Based Access ControlA&Bmodel and assign rights according
to their functions.

Virtual Address Space
Structure Selection

uses Controlled
Virtual Address Space

executes in

defines access

Administrator

ﬁ:onten switch Hi erarchy

Secure Thread

Secure Process

authorized by

created by

RBAC

(Role Based Access Control)

Controlled Process define rights

Creator
Reference
Monitor

Figure 1. Pattern diagram for the patterns discussed harblédmed) and their relationship to
past patterns

specializes

Authorization

enforced by

Controlled Virtual Address Space [Fer02]. How to control access by processes to specific
areas of their virtual address space (VAS) according et @f predefined rightsPivide the
VAS into segments that correspond to logical units in phegrams. Use special words
(descriptor$ to represent access rights for these segments.

Controlled-Process Creator [Fer03]. How to define the rights to be given to a n@acess?
Define rights as part of its creation and give it alpfmed subset of its parent’s rights.

Authorization [SchO6]. How do we describe who is authorized to acg@ssific resources in a
system? Keep a list of authorization rules describing ds access to what and how.

Role-Based Access Control [Sch06]. How do we assign rights to people based on their
functions or tasks? Assign people to roles and ggresito these roles so they can perform their
tasks.

Reference Monitor [Sch06]. How to enforce authorizations when a procegsests access to
an object? Define an abstract process that interediptequests for resources from processes
and checks them for compliance with authorizationstule

Section 2 presents the Secure Process pattern andidtstthe Secure Thread. Virtual Address
Space Structure Selection is described in Section 3, whikeifistrator Hierarchy is presented
in Section 4. We end with some conclusions.

2 Secure Process/Thread

How do we make sure that a process does not interféheothier processes or misuse shared
resources? A process is a program in execution, a securespris also a unit of execution
isolation as well as a holder of rights to accessueces. A secure process has a separate virtual
address space and a set of rights to access rescditbesad is a lightweight process. A variant,
called secure thread is a thread with controlled acoegsources.

21 Example

A group of designers in Company X built an operating systesndad not put any mechanisms

to control the actions of processes. This resulted acgsses being able to access the address
space and other resources of the other processes. lanfirenment we cannot protect the
shared information nor assure the correct executiomypeocess (their code and stack sections
may be corrupted by other processes). While performaasegood, once its poor security was
known nobody wanted to use this operating system.

2.2 Context

Typically, OSs support a multiprogramming environment witves# user-defined and system
processes active at a given time. During executios éssential to maintain all information
regarding the process, including its currstattus(the value of the program counter), the contents
of the processor's registers, and the process stantainmg temporary data (subroutine
parameters, return addresses, temporary variables, andgolvece recursive calls). All this
information is called th@rocess contextWhen a process needs to wait, the OS must save the
context of the first process and load the next profmssxecution, this is a context switch. The
saved process context is brought back when the prosesseas execution.

2.3 Problem

We need to control the resources accessed by a procasg tisirexecution and protect its
context from other processes. The resources that eaacbesses by a process define its
execution domaimnd the process should not break the boundaries afdhsin. The integrity

of a process’ context is essential not only for cxinsevitching but also for security (so it cannot
be controlled by another process) and for reliabilitptevent a rogue process from interfering
with other processes.

A possible solution to this problem is constrained by thleviing forces:

» If processes have unrestricted access to resourcgsdheinterfere with the execution of
other processes and misuse shared resources. We needrtd wbat resources they can
access.

* Processes should be given only the rights they need tripettieir functions (need to know
or least privilege principle [Gol06, FerO6b]).

* The rights assigned to a process should be fine-grairiedr&se we cannot apply the least
privilege principle.

» [Each process requires some data, a stack, space foréeynpariables, keeping status of its
devices and other information. All this information residle its address space and needs to
be protected.

2.4 Solution

Assign to each process a set of authorization righé&tess the resources they need. Assign also
to the process a unique address space to store its castewll as its needed execution-time
data. This protects processes from interference frenotier processes, assuring confidentiality
and integrity of the shared data and proper use of sham@arces. In thd’rocessDescriptor, a
data structure containing all the information a procegsis for its execution, add rights to make
access to any resource explicitly authorized. Every sscte a resource is intercepted and
checked for authorization. It may also be possibledd @@source quotas to avoid denial of
service problems but this requires some global resourge psdicies.

Structure

Figure 2 eaclProcessDescriptor hasProcessRights for specificResour ces. Additional security
information indicates the Owner of the process. Tmecess rights are defined by the
Authorization pattern (the Process Descriptor acsuagect in this pattern) and are enforced by
the Reference Monitor pattern, which intercepts requastrdsources and checks them for
authorization. More than one ProcessDescriptor carcrbated, corresponding to multiple
executions of ProgramCode, and describing different processes. A separate
VirtualAddressSpace is associated with each process (defined by the Caadrofirtual
Address Space pattern). The process context is storkd WirtualAddressSpaag the process,
while the ProgramCode can be shared by several processes

Dynamics

Figure 3 shows a sequence diagram for the use case $Aacessource”. A requestResource
operation from a process includes the process ID anthtdreded type of access. The request is
intercepted by the Reference Monitor which determinest ifs iauthorized (checkAccess
operation in the Right). If it is, the access prasee

Other related use cases (not shown) include “Assigght to a process” and “Remove a right
from a process”.

2.5 Implementation

The Process Descriptor is typically called Processti©@bBlock (PCB), or Task Control Block
(TCB), and includes references (pointers) to its codeiosecits stack, and other needed
information. There are different alternatives t@lement data structures in general [NyhO5].
Records (structs in C) are typically used for the Esedescriptor. The Process Descriptors of

the processes in the same state are usually linked togethelouble-linked list. The hardware

may include registers for some of the attributes ofRfeessDescriptor; for example, the Intel
X86 Series includes registers for typical attributesr&lage different ways to associate a virtual
address space to a process [FerO6b]. There are alsewliffeays to associate rights with a new
process, see the Controlled Process Creator in [Fel®®. hardware architecture normally

implements the virtual address space and restricts atc#ss sections (segments) allocated to
each process using appropriate mechanisms.

The pattern models as shown describe models where subgae rights described by an Access
Matrix or according to Role-Based Access Control [FeBrh06]. Some operating systems use
Multilevel (typically mandatory) models where the @ss of a process is decided by its level
with respect to the accessed resource [Sch06]. In ttex lzdse, the process instead of being
given a right has a tag or label that indicatesai®ll Resources have similar tags and the
Reference Monitor compares both tags.

Authorization

pattern
,/
/, 1 \\
,/’ I| e
enforces - ol 1 Resource

T Subject 1
n 1
id]
ReferenceMonitor |

pattern 4% 0 *
v

ProcessDescriptor -
s ProcessRight

id

program_counter (pc)
data

open_files

registers

stack
child_processes

pending_events

accounting_info -
security_info VirtualAddressSpace

state

checkAccess

I

boundaries

G * Controlled
353@ shares Virtual
save il Address
resume S CYERIES 1| ProgramCode Space pattern
AssignRight from
removeRight

Figure 2.Class diagram for Secure Process

26 Exampleresolved

Company X solved its problem by adding rights to a procgsssentation. Now each process is
constrained to access only those resources for whibhsitrights. This protects each process
from each other as well as the confidentiality andgnty of shared data and other resources.
While other security problems may still persist, the gansecurity of the OS increased
significantly.

<<actor>> ‘ReferenceMonitor :ProcessRight :Resource
aProcess:

requestResource()

checkAccess()

yes

<
<

requestResource()

Figure 3. Sequence diagram for use case “Access a resource

2.7 Variant

Secure ThreadBecause of the slow context switching of processest apesating systems use
threads, which have a smaller context. How do we nth&eexecution of a thread secure? A
secure thread is a thread with controlled access toanes Figure 4 represents the addition of
the ThreadDescriptor to the secure process. One Process may have muttipdads of
execution. Each thread is represented BheeadDescriptor. A uniqueVirtualAddressSpace

is associated with a process and shared by peer thidagsdRights define access rights to the
VAS.

Thread status includes typically a stack, a program cguatel some status bits. There are
different ways to associate threads with a procef35]STypically, several threads are collected
into a process. Threads can be created with special gegka.g., PTHREADS in Unix, or
through the language, as in Java or Ada. Rights can bel agdicitly or we can use the
hardware architecture enforcement of the proper useegdrtitess areas (see Known Uses).

2.8 Known uses

* Linux uses records for process descriptors. One ddritvées defines the process credentials
(rights) that define its access to resources [NutOB855iOther entries describe its owner
(subject) and process id. A more elaborated approach usemytedn domains is used in
Selinux, a secure version of Linux [Sell.

* Windows NT and 2000. Resources are defined as objects (reallgsses). The process id is
used to decide access to objects [Sil05]. Each file obggta security descriptor which
indicates the owner of the file and an access cofstolhat describes the access rights for
the processes to access the file.

Solaris threads have controlled access to resourceedeffii the application, e.g. when using
the POSIX standard [Sil05].

Operating systems running on Intel architectures can proireetd stacks, data, and code by
placing them in special segments of the shared address (spdt hardware-controlled
access).

2.9 Consequences
This pattern has the following advantages:.

It is possible to give specific rights for resourcesstémh process which restricts them to
access only authorized resources.

It is possible to apply the least privilege principle éaecution.

The process’ contexts can be protected from other esebecause they are restricted to
access only authorized resources.

The virtual address space of a process can be protectee Ihartiware and its memory
manager.

This pattern has the following disadvantages:

There is some overhead in using a Reference Monitor twaen&ccesses.

It may not be clear what rights to assign to each gsce

Having a separate address space implies a slow contigh,swhich affects performance.

Because of this, kernel processes usually share an adpeess

There are other security problems not controlled thig way., denial of service, users taking
control in administrator mode, virus propagation. Thosdlprs require complementary
security mechanisms, some of which are described by pétearns [Sch06].

2.10 Related patterns

Controlled Process Creator [Fer03]. At process crediior, rights are assigned to the
process.

Controlled Virtual Address Space [Fer02]. A VAS is assigte each process that can be
accessed according to the rights of the process.

Authorization [Sch06]. Defines the rights to acceseus=es.

The Reference Monitor pattern, used to enforced the defiglets [Sch06].

Resource

ProcessDescriptor

data | = =--7
« | open_files

ProcessRight

child_processes *

pending_events VirtualAddressSpace
accounting_info & 2 _

security_info boundaries

!

ThreadDescriptor

""" ThreadRight

id 2

pc ProgramCode
registers

stack

executes from

Figure 4. Class diagram for Secure Thread

3 Virtual Address Space Structure Selection

How do we select the virtual address space for OSs that &pecial security needs? Some
systems emphasize isolation, others information sharbthers good performance. The
organization of each process’ virtual address space (VASyefined by the hardware
architecture and has an effect on performance and secui@gnsider all the hardware
possibilities and select according to need.

3.1 Example

We have a system running applications using images requliairgge graphic files. The
application also has stringent security requiremeetalise some of the images are sensitive and
should be only accessed by authorized users. We need to de@deappropriate VAS structure

3.2 Context

Virtual memory allows the total size of the memorydudy processes to exceed the size of
physical memory. Upon use, the virtual address is traaslay the Address Translation Unit
(usually Memory Management Unit (MMU) in microprocessdospbtain a physical address
that is used to access physical memory. As indicateéeread execute a process, the kernel
creates a per-process virtual address space. We haveigraguhmming system with a variety
of users and applications. Processes execute on bébgkrs and at times must be able to share
memory areas, other times must be isolated, and iasdiscwe need access control. Performance
may also be an issue.

3.3 Problem

We need to select the virtual address space for procdspesiding on the majority of the
applications we intend to execute. Otherwise, we @@ Imismatches that may result in poor
security or performance.

The possible solution is constrained by the followingdsrc

» [Each process needs to be assigned a relatively lar@tv'/Aold its data, stack, space for
temporary variables, variables to keep the status ofvisake and other information.

* In multiprogramming environments processes have diversereeggnts; some require
isolation, others information sharing, others good perfoo@a

» Data typing is useful to prevent errors and improve sgcuBieveral attacks occur by
executing data and modifying code [Gol06].

» Sharing between address spaces should be convenient. B¢éhpenformance may suffer.

3.4 Solution

Select from four basic approaches that differ in teeaurity features:

One address space per procgBgyure 5). The supervisor (kernel plus utilities) and easdr
process get their own address spaces. Use of one VASquerss has the following tradeoffs:
* Good process isolation

* Some protection against the OS

» Simplicity

» Sharing is complex (special instructions to cross spaeasegded).

kernel users

a) ldea
User 1 1 Supervisor
@ — A — @
Process Descriptor Process Descriptor
b) UML

Figure 5. One address space per process

Two address spaces per procgfsgure 6). Each process gets a data and a code (program)
virtual address space. Use of two VASS per process héslitwing tradeoffs:

* Good process isolation

* Some protection against the OS

» Data and instructions can be separated for better pangsibme attacks take advantage of
execution of data or modification of code). Data typsglso good for reliability.
» Adisadvantage is complex sharing plus rather poor addpas® utilization.

program data progral
kernel
user data

a) ldea
code
1| VAS |1
User Supervisor
Process Descriptor 1 data |1 Process Descriptor
VAS
b) UML

Figure 6. Two address spaces per process

One address space per user process, all of them shared with one aqufessfar theOS
(Figure 7). The OS (supervisor) can be shared betwepnoaksses. Use of one address space
per user process, all of them shared with one address $patche OShas the following
tradeoffs:

* Good process isolation
» Good sharing of resources and services (browsers, megerg).

* This is not the best with respect to security (the supariias complete access to the user
processes and it must be trusted).

* Another disadvantage is that the address space avadaedeh user process has now been
halved

A single-level address spagigure 8). Everything, including files, is mapped to this mgmo

space. Use of a single-level address space has theifadl tradeoffs:

* Good process isolation

* Logical simplicity

» Uniform protection (all I/0 is mapped to memory)

* This is the most elegant solution (only one mechanismprotect memory and files), and
potentially the most secure if capabilities are also used.

» Itis hard to implement in hardware due to the largeestdspace required.

10

] users [
VAX/VMS

Intel 286...486

kernel
a) ldea
Process Descriptor . {1/2 size}
VAS

User ‘ ‘Supervisor

b) UML

Figure 7. One address space per user process, all of hhesd svith one address space for the
oS

Single level Space

Process Descriptor ‘— VAS
T 1
w User Supervisor T*

Resource

a) ldea b) UML

Figure 8. A single-level address space

3.5 Implementation

The VAS is implemented by the hardware architecture. TBal€signer can choose one of the
architectures based on the requirements of the apphsaticcording to the tradeoffs discussed
above. In a particular case, the choice may be infeatnby company policies, cost,
performance, and other factors as well as security.

11

3.6 Known uses

* One address space per proce3he NS32000, WE32100, and Clipper microprocessors
[Fer85]. Several versions of Unix were implemented is¢h@ocessors.

* Two address spaces per proceBhis is used in the Motorola 68000 series. The Minix 2 OS
uses this approach [Tan06].

* One address space per user process, all of them shared with one agjthessor theDS.
This is used in the VAX series and in the Intel processbypically, Windows run in this
type of address space.

* A single-level address spaddultics, IBM's S/38, IBM’s S/6000, and HP’s PA-RISC use
this approach. Multics had its own operating system. BBMX ran in S/6000 [Cam90]. The
PA-RISC architectures ran a version of Unix.

3.7 Consequences

In addition to the specific consequences described agfidme solution (tradeoffs) we have the

following general consequences:

* Without hardware support it is not feasible to separagevitiual address spaces of the
processes. Most processors use register pairs or desiipat indicate the base (start) of a
memory unit (segment) and its length or limit. [Sil05].

* If the mix of applications is not well defined, it ierd to select the best solution. Then
considerations other than security become more important

3.8 Related patterns

» Secure Process/Thread. The interaction between pescgspends strongly on the virtual
address space configuration, which can affect securitygnpesihce, and sharing properties
of the processes.

« Controlled Virtual Address Space [Fer02, Sch06]. A VAS sgmed to each process that
can be accessed according to the rights of the protiess/irtual Address Space Structure is
applied first to select the appropriate structure. Onlgetsel, the VAS is secured using the approach
of the Controlled Virtual Space pattern.

4. Administrator Hierarchy

Many attacks come from the unlimited power of administsa How do we limit the power of
administrators? Define a hierarchy of system admatists with rights controlled using a Role-
Based Access Control (RBAC) model and assign righgsrdang to their functions.

4.1 Example

Unix defines a superuser who has all possible rights. Thexpgdient; for example, when
somebody forgets a password, but allows hackers toytatatitrol the system through a variety
of implementation flaws. Through gaining access toAtministrator rights, an individual can
create new Administrator and User accounts, redinir privileges and quotas, access their
protected areas, and remove their accounts.

4.2 Context

An operating system with a variety of users, conneci¢de Internet. There are commands and
data that are used for system administration and atzéssir use needs to be protected. This

12

control is usually applied through special interfacelBer@& are at least two roles required to
properly manage privilegeddministratorandUser.

4.3 Problem

Usually, the administrator has rights such as crgatincounts and passwords, installing
programs, etc. This brings upon a series of security @nal A rogue administrator can do all
the usual functions and even erase the log to hide higstrac hacker that takes over
administrative power can do similar things. How do wetall the excessive power of
administrators to control rogue administrators or haékers

The possible solution is constrained by the followingdsrc

* Administrators need to use commands that permit managertdre system, e.g., define
passwords for files, define quotas for files, and create arcounts. We cannot eliminate
these functions.

* Administrators need to be able to delegate some resjlaiesitand privileges to manage
large domains. They also need the right to take bacle thelegations. Otherwise, the
system is too rigid.

* Administrators should have no control of system logs@ valid auditing would be
possible.

» Administrators should have no access to the operéatitana in the users’ applications. If
they do, their accesses should be logged.

4.4 Solution

Separate the different administrative rights inteesal hierarchical roles. The rights for these
roles allow the administrators to perform their agistrative functions and no more. Critical
functions may require more than one administratide to participate. Use the principle of
separation of duty [FerO6b, Summ97], where a user cannfoiripecritical functions unless in
conjunction with others.

Structure

Figure 9 shows a hierarchy for administration roles. Tbi®ws the Composite pattern

[Gam95], i.e., a role can be simple or composed aofrotbles, defining a tree hierarchy. The
top-level administrator can add or remove administraibesy type and initialize the system but
should have no other functions. After that, administiain the second level control different
aspects, e.g. security or use of resources. Administraem further delegate their functions to
lower-level administrators. Some functions may regtwo administrators to collaborate.

4.5 Implementation

Define a top administrative role with the only functionsefting up and initializing the system.
This includes definition of administrative roles, assimgnt of rights to roles, and assignment of
users to roles. Separate the main administrative ianxtof the system and define an
administrative role for each one of them. Thesengetine second level of the hierarchy. Define
further levels to accommodate administrative units igdaystems or for braking down rights
into functional sets. Figure 10 shows a typical hierartlgre the system administrator starts the
system and does not perform later actions, the secoatladministrator can perform set up and

13

other functions, the security administrator defines sgcurights. Security Domain
administrators define security in their domains. Othexmples are shown in Section 4.7.

Administrator

addAdministrator %
removeAdministrator

CompositeAdministrator

SimpleAdministrator

init
addAdministrator *

removeAdministrator

Figure 9. Class diagram for Administrator Structure

4.6 Example resolved

Some secure Unix versions such as Trusted Solaris use th@aelppNow the superuser only
starts the system. During normal operation the admadst have restricted powers. If a hacker
takes over their functions he can do only limited damage.

4.7 Known uses

* AIX [Cam90] reduces the privileges of the system admiritrdy defining five
partially-ordered roles: Superuser, Security Administratgkuditor, Resource
Administrator, and Operator.

* Windows Windows NT uses four roles for administrativevifgges: standard,
administrator, guest, and operator. A User Manager haseguoes for managing user
accounts, groups, and authorization rules.

» Trusted Solaris [Sun04] This OS is an extension of So&ri They use the concept of
Trusted Roles with limited powers.

* Argus Pitbull[Arg] Least privilege is applied to all processes, includimg superuser.
The superuser is implemented using three roles: SystemuitgeOfficer, System
Administrator, and System Operator.

4.8 Consequences

The Administrator Hierarchy pattern has the followattyantages:

* If an administrative role is compromised, the attagjets only limited privileges. The
potential damage is limited.

* The reduced rights also reduce the possibility of misugsbdgdministrators.

* The hierarchical structure allows taking back control cb@promised administrative
function.

14

» The advantages of the RBAC model apply: simpler and fewdorization rules, flexibility
for changes, etc. [Sch06].

» This structure is useful not only for operating systemsalsat for servers, databases systems,
or any systems that require administration.

Possible disadvantages include:

» Extra complexity for the administrative structure.

» Less expediency. Performing some functions may involgee than one administrator.

* Many attacks are still possible; if someone misusedamnastrative right this pattern only
limits the damage. Logging can help misuse detection.

4.9 Related Patterns

This pattern applies the principles of least privilege separation of duty (some people consider
them patterns also). Each administrator role isrgmaly the rights it needs to perform its duties
and some functions may require collaboration.

Administrative rights are usually organized according RBAC model, a pattern for this model
is given in [Fer01, SchO6].

SystemAdministrator
init
addSecurityAdmin
addResourceAdmin
addOperator
removeSecurityAdmin

removeResourceAdmin
removeOperator

!

SecurityAdministrator ResourceAdministrator Operator
addSecurityDomainAdministrator
remove SecurityDomainAdministrator

!

SecurityDomainAdministrator

Figure 10. A typical administration hierarchy.

5. Conclusions

These patterns add three more solutions to help make iogesgstems secure. The security of
complex systems such as OSs is a difficult problemramiie patterns are needed. A catalog of
these patterns would be useful to operating system desigoafronted with balancing the

15

increasing functionality of these systems and the he@dake them secure. Taken together, our
four papers on operating system security patterns can faipasis of such a catalog. A related
aspect is the security of the OS utilities and sinpktterns may apply [Haf06].

Acknowledgements

Our shepherd Juha Parssinen, Sami Lehtonen, Ralph JolarsbrRaris Avgeriou provided
valuable suggestions that considerably improved this papeallysicomments from our Secure
Systems Research Group were of great value.

This work was supported through a Federal Earmark grant d®A, administered by
Pragmatics, Inc.

References
[Arg] Argus Systems Group, “Trusted OS security: Principled practice”,
http://www.argus-systems.com/products/white_paper/pitbull

[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sotachevl. Stal. Pattern-
Oriented Software Architecture: A System of Pattevitdume 1. J. Wiley, 1996.

[Cam90] N.A.Camillone , D.H.Steves, and K.C.Witte, “Aterating system: A trustworthy
computing system”, ilBM RISC System/6000 Technolp§A23-2619, IBM Corp., 1990, 168-
172.

[Fer85] E.B.Fernandez, “Microprocessor architecture: Ihbit generation”VLSI Systems
Design,October 1985, 34-44.

[Fer02] E.B.Fernandez, "Patterns for operating systesesa control'Procs. of PLoP
2002 http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

[Fer03] E. B. Fernandez and J. C. Sinibaldi, “More pastéor operating system access
control”, Proc. of the 8 European conference on Pattern Languages of Programs, EuroPLoP
2003 http://hillside.net/europlop381-398.

[Fer05] E.B.Fernandez and T. Sorgente, "A pattern languagedure operating system
architectures” Procs. of thésth Latin American Conference on Pattern Languages of Programs,
Campos do Jordao, Brazil, August 16-19, 2005.

[FerO6a] E.B.Fernandez, “Operating system accessatri@hapter 10 in [Sch06].

[Fer06b] E.B.Fernandez, E. Gudes, and M. Olivigre design of secure systenasbe
published by Addison-Wesley.

[Fri98] A. Frisch,Essential Windows NT System AdministratiofReilly and Associates, Inc.,
Sebastopol, California, 1998.

[Gam95] E. Gamma, R. Helm,R. Johnson, and J. Vlissidlesign patterns —Elements of

16

reusable object-orientesbftware Addison-Wesley 1995.
[Gol06] D. GollmannComputer security?™ Ed., Wiley, 2006.

[Haf06] M.Hafiz and R. Johnson, “Security architectureqofail and Postfix”, to appear in
Software—Practice and Experience, 2006.

[Nut03] G. Nutt,Operating system& Ed.), Addison-Wesley, 2003.
[NyhO5] L. Nyhoff, C++: An introduction to data structures T2Ed.), Prentice-Hall 2005.

[PfI03] C.P.PfleegerSecurity in computingjsrd Ed., Prentice-Hall, 2003.
http://www.prenhall.com

[Sch00] D. Schmidt, M. Stal, H. Rohnert, and F. BuschmBattern-oriented software
architecture,vol. 2, Patterns for concurrent and networked objedtsyiley & Sons, 2000.

[Sch06] M. Schumacher, E.B. Fernandez, D. HybertSsorBuschmann, and P.
Sommerlad,Security Patterns: Integrating security and systems engineelingiley & Sons,
2006.

[Sel] Security Enhanced Linuxitp://www.nsa.gov/selinux

[Sil05] A. Silberschatz, P. Galvin, G. Gagr@perating System Conceptd' [#d.),John Wiley
& Sons, 2005

[Sun04] Trusted Solaris Operating Systéip://www.sun.com/software/solaris/trustedsolaris/

[SymO01] http://www.symbian.com/developer/

[Tan06] A.S.Tannenbaum, J.N. Herder, and H. Bos, “Camale operating systems reliable
and secure?Computer|EEE, May 2006, 44-51.

17

