
Taxonomy of Architectural Style Usage

Simon Giesecke∗, Wilhelm Hasselbring
Carl von Ossietzky University of Oldenburg

Department of Computing Science
Software Engineering Group
26111 Oldenburg, Germany

{giesecke,hasselbring} @informatik.uni-oldenburg.de

Abstract

A taxonomy of architectural style usage is introduced, which serves to design new (agile or
heavy-weight) software development methods that employ architectural styles. We use the term
“architectural styles” to refer to high-level design patterns. We identified five major usages:
ad-hoc, platform-oriented, customized, pre-modeling and post-documentation/-analysis. In ad-
dition generic and reference architectures are compared to architectural styles based on their
usage. Finally, a classification of these usages is presented that discusses the dimensions com-
positionality, specialization, explication/rigor, conceptual level, relationship to system quality
attributes, and the suitability for architectural design exploration.

1 Introduction
Reuse has long been an important aspect of software engineering, and it comes in many forms, e.g.
code or design reuse (Krueger, 1992). With the rise of software architecture as a discipline (Shaw
and Garlan, 1996), reuse has also been elevated to the level of software architecture: Component-
based software engineering approaches specifically target the reuse of executable units, i.e. software
components. However, interoperability problems may inhibit the composition of components into an
architecture (Compare et al., 1999; Davis et al., 2002). Therefore, other approaches to reuse at the
architectural level are required as a prerequisite for component reuse. One way to explicitly represent
reusable architectural knowledge are architectural styles. An architectural style can be interpreted as
defining a family of software architectures. Their benefits may be exploited by specifically targeted
software design methods. In this paper, we propose a taxonomy of the various modes of using
architectural style that is meant to support future research into such design methods.

Approach and Contribution We developed a taxonomy of architectural styles based on the usage,
i.e. the mode of use, within software engineering. The taxonomy is not intended to directly support
understanding an existing architecture description or designing new systems. It is situated on a
meta-level to the design new systems, i.e. to software design methods. More specifically, it refers
to the development, comparison and discussion of software design methods. Indirectly, however,
knowledge on the mode of using architectural styles that has been applied or is intended to be

∗This work has been partially supported by the German Research Foundation (DFG), grant GRK 1076/1.

1



2 Architectural Styles, Patterns and their Usage

applied helps in understanding the architecture description of a system or in applying some design
method in the design of a new system.

The presented taxonomy is more or less indifferent to the form of representation of architectural
styles (e.g., informally, using an ADL or as graph grammars). However, the specific form of repres-
entation may make the style more or less apt to a specific mode of use. Another aspect of styles,
which might be used for a taxonomy, is their genesis or origin. We will only slightly discuss these
aspects and focus on the usages. This approach will not yield a classification scheme for architectural
styles themselves since any particular style may, in principle, be used in various modes. However,
typical representatives of styles used in each of the modes can be identified.

In our opinion, the work on architectural styles has been focused too exclusively on aspects of rep-
resentation and on particular styles, while the use of these styles has been considered only implicitly.
Our taxonomy contributes to present knowledge in three ways:

1. From a more theoretical point of view, the usages of styles can be better understood by making
them explicit.

2. The existing literature on styles usages is assembled, surveyed, and classified with respect to
the style usage that is promoted, making the current state of knowledge more accessible.

3. The knowledge on current usages can be exploited in designing new ways of using architectural
styles, fixing deficiencies of current usages or combining features of distinct usages.

The latter aspect was our primary motivation for creating the taxonomy, and it lead to the design of
the MIDARCH method for integrating and migrating business software systems on the architectural
level (Giesecke and Bornhold, 2006).

We analyzed the literature on architectural styles and patterns and identified several clusters of
modes of use. We will refer to these clusters simply as usages in the following for better readability.
We first describe and compare these modes of use in a bottom-up manner. As part of this, we provide
references to literature that is relevant to each of the modes of use. Furthermore, we provide typical
examples of architectural styles in each mode of use. Based on interesting characteristics identified
within this phase, we provide a top-down categorization in Section 4.

Based on the study of the available literature, we identified five major modes of using architectural
styles: Ad-hoc, Platform-oriented, Customized, Pre-modeling and Documentation and analysis.

Overview The rest of the paper is structured as follows: First, our understanding of the concepts
of architectural styles and patterns is described in Section 2. In Sections 3.1 to 3.6, each mode of
use is discussed in a bottom-up manner. Afterward, Section 4 provides a classification scheme and
fits the modes of use in this classification scheme. The paper is concluded in Section 5.

2 Architectural Styles, Patterns and their Usage
Architectural knowledge, such as patterns, reference architecture or guidelines, is represented in
forms that are usually more human-oriented at least in some part (documentation), while other
parts (models, specifications, example implementations, etc.) may be written in a formal language
as well. Architectural knowledge may be available only implicitly, or explicitly in either free natural
language or in some codified, i.e. standardized explicit, form. Examples of codification templates
are the various pattern templates (Coplien form (Coplien, 1996), Gang of Four form (Gamma et
al., 1995), etc.), as well as architectural style specifications in ADLs such as ACME (Garlan et al.,
2000).

We regard the notion of architectural styles as one of the most interesting, but perhaps also most
often misinterpreted concepts in the area of codified architectural design knowledge.

The idea of architectural styles more or less developed within the ADL community, which follows a
more formally-oriented perspective on software architecture. In parallel, the idea of design patterns

2



2 Architectural Styles, Patterns and their Usage

Architectural 
Design

Reference 
Architecture 

-oriented 
Arch. Design

Style-
oriented 

Arch. Design

Style 
Description

Reference 
Architecture 
Description

uses uses

produces

Architecture 
Description

Style
describes

Style Usage

conforms to

Figure 1: Major Modes of Using Architectural Styles

(in the following, we will use the term “pattern” in brief) evolved and a pattern community grew.
This community follows a more pragmatic perspective on software architecture and therefore consists
of software development practitioners to a larger degree. The ADL community, on the other hand,
is dominated by academic and industrial software engineering researchers.

Perhaps due to their pragmatic perspective, some proponents of the pattern community claim that
styles may be subsumed by the idea of patterns (Buschmann et al., 1996). This is true to some
degree, as already noted by Monroe et al. (1997), but captures only a specific usage and requires
a very broad interpretation of the pattern concept. Intriguingly, on the one hand, the pattern
community seems to have very specific ideas what patterns are and what role they play in software
development, but on the other hand they are unable to give a rigorous definition of a pattern, which
would enable deciding if a given artifact is a pattern or not (van Emde Boas, 1997). The discussions
reduce to the question of syntactic representation and relationships of patterns. These paths do not
really help in deciding which artifacts are patterns, and which are not: If the descriptions contain
natural language, which is an essential part of the pattern descriptions in many cases, and merely a
coarse-grained structure for the text is prescribed, arbitrary concepts may be put into the form of
a pattern. Thus, the form cannot suffice for deciding whether something is a pattern or not. There
has been some work on the formalization of pattern descriptions (Raje and Chinnasamy, 2001),
but this is somewhat decoupled from the mainstream pattern community.

Since architectural styles and patterns are not usually distinguished consistently, we considered
both as nearly equivalent during creating the taxonomy. In this paper, we will use the terms “design
patterns” for lower-level artifacts, and “architectural styles” for higher-level artifacts, except when
explicitly discussing differences between both concepts. A taxonomy of these concepts and other
types of architectural constraints is presented in Giesecke et al. (2006).

Figure 1 shows an overview of our view of the relationship of architectural styles to other concepts of
software architecture, which applies to all the usages we identified. For simplicity, we have neglected
multiplicities of the associations in the diagram. Style-based architectural design is a special kind of
architectural design, which uses style descriptions in a way determined by the style usage. A style
description is an explicit representation of a style. Any architecture description conforms to some
style; whether it explicitly references a style description is left open in this diagram.

3



3 Taxonomy

Style Usage

Ad-hoc 
Usage

Platform-
oriented 
Usage

Customized 
Usage

Pre-
Modeling 

Usage

Documentation 
& Analysis 

Usage

MIDARCH 
Usage

Figure 2: Major Modes of Using Architectural Styles

3 Taxonomy
Based on the study of the available literature, we identified five major modes of using architectural
styles, which are shown in Figure 2. Also mentioned in the diagram is the MIDARCH Usage of
architectural styles, which is an example of a specific design method exploiting architectural styles
(Giesecke, 2006a; Giesecke et al., 2007).

Additionally, we discuss the relationship of these usages to the use of generic or reference archi-
tectures. These are units of architectural knowledge which are not exactly architectural styles, but
similar artifacts.

3.1 Ad-hoc Use of Styles
As already mentioned above, sometimes the style concept is subsumed under the pattern concept
(see, e.g., Buschmann et al., 1996; Kirchner and Jain, 2004; Schmidt et al., 2000). In this view,
every style may be expressed as a design pattern, but not necessarily vice versa. This view may also
be referred to as the styles-as-patterns view. These authors conceive to an essentially ad-hoc usage of
styles: The consultation of a pattern collection and the selection of a pattern to apply remains at the
discretion of the architects on the basis of their experience. Collections of patterns specify different
kinds of relationships between multiple patterns (see, e.g., Zimmer (1995)), but the relationships
that refer to their usage cannot be made explicit in general. Thus, using patterns/styles in this way
is difficult to teach or convey.

In principle, everything that has been said about using patterns also applies to styles in this view
(Riehle and Züllighoven, 1996; Schmidt et al., 1996). However, since not every design pattern is
viewed as a style even by the proponents of this view, some additional remarks regarding the use of
“typical” styles-as-patterns are necessary. The relatively simplistic general-purpose styles originally
described by Shaw and Garlan (1996), for example, are criticized as being impossible to apply to a
system as a whole (Shaw, 1995). Indeed, this is a reflection and manifestation of the ad-hoc approach
to using styles-as-patterns: styles are not assumed to guide the following architectural development,
but they are reduced to communication styles between two or more system elements. For any
two elements that should communicate with each other, a different communication style might be
chosen. This contradicts the original view of a style as embodying a decomposition principle: the
idea was that different styles led to different system decompositions (Garlan and Shaw, 1993).
On the contrary, the styles-as-patterns view tends to view the decomposition of a software system
to be relatively independent from the styles employed and the style just influences the interaction
between pre-established, i.e. established prior to the selection of the style, elements. While this view

4



3 Taxonomy

masks several aspects of architectural styles deemed relevant by other authors, such as providing
style-specific analyses, the scenario is of major practical relevance when re-engineering an existing
system or building a new system of existing (COTS or not) components. The current state of the
architecture may be very heterogeneous, which is the ultimate reason for re-engineering it. Still, it
may be infeasible as well to provide a coherent target architecture which follows a single architectural
style, e.g. because some components are considered intangible because they embody knowledge that
cannot be safely restored. It is in principle always possible to define an overlay architecture on top
of the implemented architecture that is coherent, but this may not always be worth the effort.

Relationship to other modes of use This usage should not be confused with the usage that regards
a style as defining a pattern language (cf. Monroe et al., 1997), which again puts styles at a level
above patterns. This view is discussed in Section 3.3.

Some “patterns” are actually complete, though very abstract, generic architectures (e.g., the Model-
View-Controller architectural pattern) rather than patterns. They are discussed in Section 3.6.

When re-engineering a software system, the first step may be the re-documentation of the current
architecture (see Documentation and analysis, Section 3.5). For the reasons discussed above, often
the only way to continue using styles is then an ad-hoc usage.

Typical examples Typical examples can be found in the extensive literature on architectural
patterns. Well-known are the POSA books of Buschmann and others, the first of which names
the Layers, Pipes and Filters, Blackboard, Broker, Model-View-Controller (MVC), Presentation-
Abstraction-Control (PAC), Microkernel and Reflection architectural patterns.

3.2 Use as Platform-oriented Styles
At first sight, this usage appears to be tightly bound to the genesis of the architectural styles, namely
their derivation from the platform that shall be used. The term “platform” is used in a very generic
sense here. The discussion of what an (abstract) platform is in the sense of the MDA is related
(cf., e.g., Almeida et al. (2004)). For our purposes, target or implementation platforms must be
distinguished from modeling platforms. A modeling platform is a modeling language or notation, for
example an ADL. There are ADLs that are specifically designed to support a specific architectural
style, e.g. C2SADL (Medvidovic et al., 1999) for the C2 style (Taylor et al., 1996), but even ADLs
that claim to be style-independent are usually biased towards some architectural styles (Di Nitto
and Rosenblum, 1999). Implementation platforms can be distinguished into several types again:

System Software The system software (operating system) and the services it offers to applications
may impose an architectural style. However, in particular for distributed applications the
actual operating system is today often hidden behind an additional software layer referred to
as middleware.

Middleware A middleware layer is some software layer that is found between the operating sys-
tem and application layer. Its particular characteristics depend on the type of application
that is considered. Middleware-induced architectural style have received some attention from
the research community (Baresi et al., 2004; Medvidovic, 2002; Medvidovic et al., 2003;
Di Nitto and Rosenblum, 1999). They are also in the focus of our main research (Giesecke,
2006b).

Programming Paradigm The language constructs (classes, objects, exception, event mechanisms,
etc.) a programming language provides and its implied execution model advocate some pro-
gramming paradigm. For example, the execution model of languages such as Java and C++
promotes the synchronous communication model between objects. The paradigm of the lan-
guage(s) considered for implementing a system may influence the structure of the resulting
system at an architectural level (Mehta et al., 2000a). For relatively low-level languages,

5



3 Taxonomy

such as C, only very few constraints are implied, but for very high-level languages, a very
specific architectural style may result, in particular if the language effectively inhibits access
to lower-level constructs.

Hardware Besides the software artifacts mentioned before, the hardware (or an abstract, virtual
machine) also imposes some style on the software system, if only indirectly through the software
layers in between. For distributed software systems, however, the physical topology and the
properties of physical connections inevitably influence quality properties of the running system,
and must thus be considered in system design.

Organizational Structure The famous Conway’s law already postulated the dependence of system
structure on the structure of the designing or developing organization: “[...] organizations which
design systems [...] are constrained to produce designs which are copies of the communication
structures of these organizations” (Conway, 1968). While the inevitability of this constraint
may be questioned, it is clear that a tendency towards it prevails and it may adversely affect
the structure of the system from a technical point of view without compensating measures.
Similarly, the organizational structure of the target organization may influence the architecture.

All in all, a software system makes use of many platforms that may suggest different architectural
styles. The architecture may be specified independently from the platforms it is implemented on.
However, a trade-off must be made between the platform-independence and the achievable quality
of the mapping to the target platform. One quality characteristic of the mapping is its complexity,
which should be as low as possible. Furthermore, the risk that the mapping will lead to a system with
undesired quality characteristics should be reduced. Such a risk may arise from incongruities between
the structure implied by the architecture and the structural characteristics that are beneficial to the
platform.

It is possible to define a taxonomy of platforms based on the architectural styles they enable
(Di Nitto and Rosenblum, 1999). In defining such a taxonomy, abstract platforms may need to
be introduced in addition to physically existing platforms, which reliefs the tight binding of this
usage to the genesis of the style. Based on a taxonomy, the style may be incrementally refined
from an abstract towards a concrete style in a process based on this usage, yielding a refinement
hierarchy of architectures as well. Unfortunately, only few taxonomies of platform-oriented styles
are available yet Giesecke et al. (2007); Medvidovic (2002); Medvidovic et al. (2003); Di Nitto
and Rosenblum (1999).

Typical examples Di Nitto and Rosenblum consider the styles induced by the (event-based)
JEDI and C2 middleware technologies. C2 is also discussed by Medvidovic et al., as well as its
relationship to COM, CORBA, and Java RMI. In our own work, we currently focus on the styles
imposed by the Apache Merlin and Apache Cocoon middleware frameworks.

3.3 Use as Customized Styles
This is the primary usage intended by the community which focuses on ADLs that support the
definition of architectural styles and conforming architectures, e.g. Rapide (Luckham et al., 1995),
Acme (Garlan et al., 2000) resp. Armani (Monroe, 2000), Wright (Allen and Garlan, 1997),
ArchWare (Balasubramaniam et al., 2004; Oquendo et al., 2004), and Alfa (Mehta and Med-
vidovic, 2002, 2003). There has been important work on formalizing the properties of architectural
styles using specifications in the general-purpose specification language Z (Abowd et al., 1995).

Garlan (1995) discusses several different approaches to the definition and use of architectural
styles, but assumes several common properties of any definition of the architectural style concept:

a. The provision of a “vocabulary of design elements”, which are “component and connector types”.

b. The definition of a “set of configuration rules”.

6



3 Taxonomy

c. The definition of a “semantic interpretation”, which gives some well-defined meaning to all con-
figurations of design elements that satisfy the configuration rules.

d. The definition of “analyses” for configurations of that style. Examples include schedulability
analysis, deadlock analysis, code generation, and conformance checking.

Styles used in this way may be seen as a concept complementary to patterns according to Monroe et
al. (1997), who point out that “for a given style there may exist a set of idiomatic uses. These idioms
act as microarchitectures, or architectural design patterns, designed to work within a specific archi-
tectural style.” The architectural style provides general guidance for the architectural development
process, while architecture-level design patterns solve specific problems within one or multiple styles
(Monroe et al., 1997). As an example, Monroe et al., give the Real-time Producer/Consumer style
with two subordinate architectural design patterns, the Shared-resource and Message-Replications
patterns.

Monroe et al. also point out that an architectural style can be regarded not merely as a form
of pattern, but as defining a whole pattern language. However, the term “pattern language” is
controversial in itself. It is misleading as it may be thought to appeal to the common notion of
a formal language, at least for computer scientists. It was used by Alexander et al. (1977) as a
vague metaphor to natural languages, but the same concept could better be referred to as a pattern
vocabulary (cf. Schmidt et al., 1996).

Typical examples Abowd et al. (1995) discuss different variants of the Pipe-and-Filter and Event-
based architectural styles that are tailored to specific needs.

Additional relevant literature Keshav and Gamble (1998) propose a taxonomy of architectural
integration strategies, among which are both patterns and styles. While the basic elements they
identify—Translators, Controllers, Extenders, and combinations thereof—are more or less patterns
or individual components. In addition, they identify “loosely defined integration strategies”, which
do not fit into their main taxonomy, but may be regarded as architectural styles.

3.4 Style-based Pre-modeling
This usage is tightly bound to a specific type of architectural styles, which is briefly introduced in
the following. Klein and Kazman (1999); Klein et al. (2000) provide a derivative of the original
architectural style concept (as described in Section 3.3) which focuses more explicitly on the quality
characteristics of the resulting architectures. These are referred to as “Attribute-based Architectural
Styles” (ABAS). One ABAS is assumed to address one quality attribute1. A system is modeled
according to several ABASs, addressing the most critical attributes, yielding several architectural
models. Since each model strictly conforms to a style, style-based analyses (cf. Section 3.3) may be
performed on them. When each model is satisfactory in terms of its assigned quality attribute, an
overall system model is synthesized from the individual models.

By this approach, the original idea of different styles leading to different system decompositions is
combined with (some limited form of) heterogeneity of architectural styles within a system. However,
the way the final system is derived from the multiple decompositions is not specified (which is
probably not possible in the generality that the approach targets). Since it is known that many
quality attributes require trade-offs, the properties of the resulting architecture may not conform to
the properties of the individual style-based models. Furthermore, it is unclear where later changes
to the architecture should be performed.

This usage of styles may be referred to as “style and forget”, since after the style-based modeling
has been done initially the benefits of architectural styles are abandoned again. The concept of

1in the ISO 9126 terminology, it is probably more appropriate to speak of a quality (sub-)characteristic

7



3 Taxonomy

ABASs, however, seems promising and might be used in the opposite way, which is described in
Section 3.5.

Typical examples Example ABASs are the Synchronization ABAS for communicating processes
exchanging streams, which allows latency analysis; and the Data Indirection ABAS, which allows
analyses of the degree of coupling. The latter style provides the substyles of an Abstract Data
Repository and the Publish/Subscribe ABAS.

3.5 Style-based Documentation and Analysis
This usage may be regarded the reverse of the previously described usage. Styles are not considered
in the primary development of the architecture, but only applied to intermediate or final results of
defining the architecture. This mode of use is discussed in Clements et al. (2002), for example. They
may serve to document the architecture by interpreting it in terms of a specific architectural style, to
ease understanding of the overall system. Additionally, style-specific analyses may be applied to the
style-based views. An automatic mapping of a generic architecture to a style will not be possible,
but the mapping may be defined once and needs only be adapted, when the generic architecture
changes. Perhaps even dependent refactorings, which are attached to refactorings on the primary
system architecture, might be defined.

Essentially, any approach to software architecture that defines multiple views on the architecture
may be interpreted as this usage. Similarly to generic ADLs, architectural views impose some style
upon the modeled entity, but usually this style is conceptually not very deep.

Typical examples As discussed above, the same architectural styles as considered in pre-modeling
can be used for post-modeling and documentation. In addition, Clements et al. discuss architectural
styles for the following viewtypes: The Decomposition, Uses, Generalization, and Layered styles for
the Module Viewtype; the Pipe-and-Filter, Shared-Data, Publish-Subscribe, Client-Server, Peer-to-
Peer, and Communicating-Processes styles for the Components & Connectors Viewtype; and the
Deployment, Implementation and Work Assignment styles for the Allocation Viewtype.

3.6 Use as Generic Architectures
This usage is not strictly a usage of architectural styles, since the artifacts that are employed in this
usage do not fit the definition of architectural styles, but represent a different type of architectural
constraint, namely generic architectures. A generic architecture is expressed within the same (or
similar) language or notation as a (product) software architecture, but may employ a different
interpretation. A generic architecture may be regarded as a template that is enriched or refined
into a product software architecture. In some cases, a generic architecture can also be interpreted
immediately as the architecture of a product system.

Examples of architectural styles that are essentially generic architectures are the Model-View-
Controller architecture and N -tier architectures (for a given N). These generic architectures can
themselves be explicitly based on an architectural style in another usage. N -tier architectures, for
example, can obviously be regarded as following the Layered style.

Related Concepts Reference architectures are usually generic architectures, see e.g. Grosskurth
and Godfrey (2005). Some approaches to product-line architectures view a product-line architec-
ture as a special kind of reference architecture that is specific to the product line. Such product-line
architectures may also be regarded as generic architectures in our sense. More elaborate product-line
architecture approaches, which automatically derive individual product architectures or implement-
ations, are beyond the scope of our considerations.

8



4 Characteristics of the Modes of Use

Relationship to other modes of use This usage is sometimes regarded a special case of the ad-hoc
use, when only one pattern is used and this pattern has system-wide scope.

4 Characteristics of the Modes of Use
After the individual modes of use have been identified and described, we now devise a set of character-
istics and classify each of the modes of use with respect to these characteristics. The characteristics
describe several requirements on the form of representation of the respective architectural styles. We
thereby establish the link to the typical level of discussion of architectural styles.

We consider the following characteristics:

Compositionality The characteristic “Compositionality” describes whether the composition of indi-
vidual styles into a new style is possible, either manually or automatically.

Specialization The characteristic “Specialization” describes whether specialization relationships between
styles are relevant within the respective usage.

Explication and Rigor The characteristic “Explication and Rigor” describes whether the architec-
tural styles considered in the respective usage need to be explicitly described in what detail
and with what degree of formal rigor.

Conceptual Level The characteristic “Conceptual level” describes whether the architectural styles
considered in this mode of use are (typically) bound to technical concepts (of an existing or
planned technical platform) or if they are more abstract in nature.

Relationship to System Quality Characteristics This characteristic describes which kind of rela-
tionship the styles exhibit to the quality characteristics of the system. Of course, an architec-
tural style always has some implicit relationship to the system quality, but we consider only
explicated relationships here. In our view, system quality comprises external and internal im-
plementation quality as well as architectural quality (cf. realms of software quality discussed in
Bass et al. (1998)). Essentially two types of relationships can be considered here: An explicit
reference to some system quality characteristic that a style addresses, and the reference to
analysis techniques that are enabled by the style (cf. Garlan (1995)).

Suitability for Architectural Design Exploration Architectural design exploration is a design activ-
ity which covers the systematic specification of multiple candidate architectures and their
evaluation with respect to architectural and system quality characteristics. This character-
istic describes which role the respective usage of styles can play in the architectural design
exploration process, i.e. how either different styles or different design based on a style can be
evaluated in that usage. Since the modes of use do not exclude each other, this only refers to
the contribution of the considered usage.

An overview of the classification is given in Table 1, the details are explained for each characteristic
in the following subsections.

4.1 Compositionality
Let S be the set of architectural styles and A the set of architectures. Style composition may be
performed either at the type or instance level.

Style composability at the instance level means the following: Let there be two styles x, y ∈ S.
If an architecture a ∈ A conforms to a style x, it is modified in a way that it conforms to style

9



4 Characteristics of the Modes of Use

Ad-hoc Platform-oriented Customized Pre-modeling Documentation
Compositionality Manual No Manual ? No n.a.
Specialization Yes Yes Yes Yes Yes
Explication &
Rigor

Informal No Formal Formal Informal

Conceptual Level (Abstract)/Technical Technical Abstract/(Technical) Abstract Both
Relationship to
System Quality
Characteristics

No Analyses/Empirical Analyses (Analyses) Analyses

Suitability for Ar-
chitectural Design
Exploration

Limited Yes Partially Yes No

Table 1: Characteristics of the Architectural Style Usages

x and conforms to style y as well. Then x and y are composable for a. Thus, there is a (partial)
composition operator ×̄1 : (A× S)× S → A such that:

(×̄1(a, x, y) = b ⇒ b conforms to y) (1)
∧ (×̄1(a, x, y) defined ⇒ a conforms to x) (2)

Style composability at the type level is in place if a (partial) composition operator ×̄2 : S × S → S
is defined on the set of architectural styles. Composability at the type level does not imply that
two architectures a, b ∈ A in two different styles x, y ∈ S can be meaningfully combined into a new
architecture conforming to a ×̄2 b.

Compositionality can either be impossible resp. undefined, manual, semi-automatic or automatic.
It is automatic if the composition operator is computable. If the composition operator is only
partially computable, or if the determination of the composition is partially supported by an pro-
gram, compositionality is considered semi-automatic. Of course, automatic compositionality is only
conceivable for styles which are formally specified.

Classification The composition of styles used in an ad-hoc manner is expressly manual at the
type level, and semi-automatic on the instance level. On the type level, new styles may be designed
by combining the ideas underlying existing styles, which is a creative process for the most part. On
the instance level, composition is often necessary, as no single style is supposed to be apt to support
the development of a whole architecture. Tools might support the instantiation of new styles into an
existing architecture description, but conflicts may occur, which cannot be resolved automatically.

In general, the composition of platform-oriented styles is considered to be essentially un-
defined. In special cases, composition may be simulated through multiple inheritance of platform-
oriented styles (Giesecke et al., 2007).

Compositionality at the instance level is not applicable in documentation usage, since the derived
views are not meant to be tangible.

4.2 Specialization
Specialization relationships between different styles are conceivable for all of the modes of use, but
play a different role for each of them. Specialization relationships can be distinguished into single
and multiple inheritance. Whether subtyping concepts from type theory can be applied depends on
the degree of formality of style specification.

Classification In the case of ad-hoc usage, specialization is one of many relationships that are
defined between some patterns. It might be exploited in choosing a pattern fitting a problem at
hand in a stepwise process, but no work on such a process has been published. Since specialization

10



4 Characteristics of the Modes of Use

relationships are typically specified informally, multiple inheritance is possible without introducing
additional problems.

For platform-oriented styles, it is possible to exploit specialization relationships in the devel-
opment process. The style may be incrementally refined from an abstract style towards a concrete
style, yielding a parallel hierarchy of middleware platforms. The resulting hierarchy may also make
use of multiple inheritance (Giesecke, 2006b).

When defining customized styles, it is efficient to reuse existing style definitions by defining the
new style as a specialization, which also allow the reuse of analysis and design tools existing for that
style. The same applies to style-based pre-modeling and documentation.

4.3 Explication and Rigor
In principle, the level of explication and rigor is independent from the mode of use. Still, certain
minimal levels that the style specification must fulfill can be determined on the one hand, and typical
levels that can be found can be identified as well.

Classification In an ad-hoc use of styles, the level of rigor is typically informal. Architectural
patterns are only described very vaguely by just giving examples of their instances that do not claim
generality at all.

Platform-oriented styles are seldom described explicitly at all yet, with the exception docu-
mented in Di Nitto and Rosenblum (1999). However, the great variety of existing middleware
platforms has not yet been specified formally. In fact, access to the style description might not be
necessary at all after a taxonomy of platforms has been derived based on formal style modeling.
Exploitation of additional style features still requires the explicit use of formal style specifications.

In customized usage, formal specification of styles is expected in the context of ADL-based
architecture specification. Similarly, since formal analyses are an important aspect in style-based
pre-modeling, thus a formal definition of the style is required.

The required level of rigor depends on the focus in documentation usage. If the focus is on
documentation, informal and vague specification of the style may suffice, but when formal analyses
should be performed, formal style specification is necessary as well.

4.4 Conceptual Level
The characteristic “Conceptual level” describes whether the architectural styles considered in this
usage are (typically) bound to technical concepts (of an existing or planned technical platform) or
if they are more abstract in nature. This distinction corresponds to different conceptual levels at
which software architecture can be specified in general (e.g. conceptual vs. concrete architectures
(Mehta et al., 2000b) or physical vs. logical architecture (Zendler and Schwartzel, 1998)).

Classification For ad-hoc usage, both types are possible. While the old general-purpose archi-
tectural styles (Garlan and Shaw, 1993) are quite generic and abstract, current publications on
architectural patterns are focused towards specific platforms, and are either specifically tailored
towards one platform or provide examples for multiple platforms and are thus more technically
oriented.

Naturally, platform-oriented styles are conceptually close to the platform they intend to sup-
port and are thus technical in nature. However, generalizations made in a taxonomy of platform
styles may introduce concepts that have no direct counterparts in any existing platform.

Customized styles can be both abstract and technical in nature. Due to the fact that the
ADLs used for specification are conceptually quite detached from typical implementation techniques,
abstract styles are more prevalent.

11



5 Conclusion

In pre-modeling usage, architectural styles are used in an early stage of architectural develop-
ment only, before the final architecture of the system to be built is established. Since the link of the
pre-models and the final architecture is quite loose, the styles in this usage are very abstract.

Finally, for documentation usage, both types of styles are conceivable.

4.5 Relationship to System Quality Characteristics
Architectural styles are intended to improve the process quality of software development by acting as
an intellectual tool to the system designers. Additionally, they are intended to improve the product
quality of the product that is the outcome of the development process. The different modes of use
support the product quality improvement in differing ways.

Classification Due to the vague nature of the styles used ad-hoc, a relationship to system quality
characteristics is difficult to establish. The architectural pattern literature lists experience-based
hints on when to use which patterns, but the general applicability of these rules is questionable.

Through defining multiple platform-oriented styles in a commensurable way, styles and sys-
tems based on these styles can be analysed and empirically evaluated to produce a guideline for
choosing a suitable style and platform for a given scenario.

Styles in customized as well as documentation usage often allow style-specific analyses (Gar-
lan, 1995). In pre-modeling, these analyses only establish properties of the pre-models, and the
link to the actual system’s quality is unknown.

4.6 Suitability for Architectural Design Exploration
Architectural design exploration aims to support making trade-offs between system quality charac-
teristics in the development process. This characteristic serves as a summary judgment and combines
the previous characteristic with the possibility to exploit the relationship to the quality character-
istics in the architectural development process.

Classification Due to the ad-hoc nature of using styles, the suitability for systematic architectural
design exploration is very limited.

For platform-oriented style usage, a design method is developed (Giesecke and Bornhold,
2006) that is targeted at supporting the choice of an appropriate style and platform through tools
and the provision of guidelines.

Using styles as customized styles is only partially suited for architectural design exploration.
Many choices must be made in customizing the style, i.e. before the actual modeling is done. A
method for architectural design exploration on this level is conceivable, but has not yet been proposed
and evaluated in detail.

Pre-modeling usage is in fact the most direct correspondence of the idea of architectural design
exploration. The main issue with this usage is the linking of the architectural design exploration
with the actual modeling.

Documentation has a post-mortem relationship to modeling activities, i.e. a modeling phase
has been completed when the documentation is consolidated. Thus, the suitability for architectural
design exploration is very limited. Perhaps well-integrated tool support that enables a frequent
automatic derivation of style-based views would allow for enabling architectural design exploration.

5 Conclusion
A taxonomy of architectural style usages is presented. We identified five major modes of using ar-
chitectural styles, which are discussed in detail, based on the relevant literature. In addition, while
showing some commonalities with architectural styles, generic or reference architectures have been

12



References

distinguished from architectural styles based on their usage. Besides this bottom-up-oriented dis-
cussion, a top-down classification of the identified usages discussing compositionality, specialization,
explication/rigor, conceptual level, relationship to system quality characteristics, and the suitability
for architectural design exploration has been presented.

In our work, this coarse-grained taxonomy is currently used to further explore platform-oriented
usages of architectural styles, especially where the platforms to which the styles are oriented are
middleware platforms in the widest sense. The MIDARCH Design Method exploits architectural
styles for design guidance and knowledge transfer in migration and integration projects (Giesecke,
2006b; Giesecke and Bornhold, 2006; Giesecke et al., 2007). This work will benefit from the
research results presented in this paper, because it provides the basis for incorporating beneficial
features from other modes of use. Similar work on other modes of using architectural styles may be
inspired by our work as well.

References
Abowd, G. D.; Allen, R.; and Garlan, D. (1995); Formalizing style to understand descriptions

of software architecture; ACM Trans. Softw. Eng. Methodol.; 4(4):319–364; doi:10.1145/226241.
226244.

Alexander, C.; Ishikawa, S.; and Silverstein, M. (1977); A pattern language : towns, buildings,
construction; volume 2 of Center for Environmental Structure; Oxford Univ. Press, New York;
ISBN 0-19-501919-9.

Allen, R. and Garlan, D. (1997); A formal basis for architectural connection; ACM Transactions
on Software Engineering and Methodology (TOSEM); 6(3):213–249; doi:10.1145/258077.258078.

Almeida, J. P.; Dijkman, R.; van Sinderen, M.; and Pires, L. F. (2004); On the Notion of
Abstract Platform in MDA Development ; in: EDOC ’04: Proceedings of the Enterprise Distrib-
uted Object Computing Conference, Eighth IEEE International (EDOC’04); pp. 253–263; IEEE
Computer Society, Washington, DC, USA; ISBN 0-7695-2214-9; doi:10.1109/EDOC.2004.16.

Balasubramaniam, D.; Morrison, R.; Kirby, G. N. C.; Mickan, K.; and Norcross, S.
(2004); ArchWare ADL Release 1 User Reference Manual; Technical report D4.3; ArchWare Pro-
ject; URL http://www.dcs.st-and.ac.uk/research/publications/BMK+04.php.

Baresi, L.; Heckel, R.; Thöne, S.; and Varró, D. (2004); Style-Based Refinement of Dynamic
Software Architectures; in: Proceedings of the Fourth Working IEEE/IFIP Conference on Software
Architecture (WICSA’04); p. 155; IEEE Computer Society; ISBN 0-7695-2172-X.

Bass, L.; Clements, P.; and Kazman, R. (1998); Software architecture in practice; Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA; 1. edition; ISBN 0-201-19930-0.

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; and Stal, M. (1996); Pattern-
Oriented Software Architecture: A System of Patterns; John Wiley & Sons.

Clements, P.; Garlan, D.; Bass, L.; Stafford, J.; Nord, R.; Ivers, J.; and Little,
R. (2002); Documenting Software Architectures: Views and Beyond; Pearson Education; ISBN
0201703726.

Compare, D.; Inverardi, P.; and Wolf, A. (1999); Uncovering architectural mismatch in com-
ponent behavior ; Science of Computer Programming; 33(2):101–131; doi:10.1016/S0167-6423(98)
00006-9.

Conway, M. E. (1968 April); How Do Committees Invent? ; Datamation.

13

http://www.dcs.st-and.ac.uk/research/publications/BMK+04.php


References

Coplien, J. (1996); Software Patterns; SIGS, New York; ISBN 1-88484-250-X.

Davis, L.; Gamble, R. F.; and Payton, J. (2002); The impact of component architectures on
interoperability ; J. Syst. Softw.; 61(1):31–45; doi:10.1016/S0164-1212(01)00112-1.

Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. (1995); Design patterns: elements of
reusable object-oriented software; Addison-Wesley Longman Publishing Co., Inc.; ISBN 0-201-
63361-2.

Garlan, D. (1995 February); What is Style? ; in: Software architectures (edited by Garlan, D.);
volume 106 of Dagstuhl-Seminar-Report ; Saarbrücken, Germany. Proceedings of the Dagstuhl
Workshop on Software Architecture.

Garlan, D. and Shaw, M. (1993); An Introduction to Software Architecture; in: Advances in
Software Engineering and Knowledge Engineering (edited by Ambriola, V. and Tortora, G.);
pp. 1–39; World Scientific Publishing Company, Singapore.

Garlan, D.; Monroe, R. T.; and Wile, D. (2000); Acme: architectural description of component-
based systems; in: Foundations of component-based systems; pp. 47–67; Cambridge University
Press, New York, NY, USA; ISBN 0-521-77164-1.

Giesecke, S. (2006a); Middleware-induced Styles for Enterprise Application Integration; in: Proc.
10th European Conference on Software Maintenance and Reengineering (CSMR06), Bari, Italy;
pp. 334–340; IEEE Comp. Soc.; doi:10.1109/CSMR.2006.33.

—— (2006b); A Method for Integrating Enterprise Information Systems based on Middleware Styles;
in: International Conference on Enterprise Information Systems (ICEIS’06) Doctoral Symposium,
Paphos, Cyprus (edited by Papadopoulos, G. A. and Filipe, J.); pp. 24–37; INSTICC Press,
Portugal; ISBN 972-8865-58-9.

Giesecke, S. and Bornhold, J. (2006); Style-based Architectural Analysis for Migrating a Web-
based Regional Trade Information System; in: First International Workshop on Web Maintenance
and Reengineering (WMR 2006) in conj. with CSMR 2006, Bari, Italy (edited by Trentini, A.;
Marchetto, A.; and Bellettini, C.); volume 193 of CEUR Workshop Proceedings; pp. 15–
23; URL http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-193/paper2.
pdf.

Giesecke, S.; Hasselbring, W.; and Riebisch, M. (2006); Classifying Architectural Constraints
as a basis for Software Quality Assessment ; Advanced Engineering Informatics. Special Issue
on Ontology and Epistemology of Systems and Software Engineering. Conditionally accepted for
publication.

Giesecke, S.; Bornhold, J.; and Hasselbring, W. (2007); Middleware-induced Architectural
Style Modelling for Architecture Exploration; in: Working IEEE/IFIP Conference on Software
Architecture, January 2007, Mumbai, India. Accepted.

Grosskurth, A. and Godfrey, M. W. (2005); A Reference Architecture for Web Browsers;
in: ICSM ’05: Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM’05); pp. 661–664; IEEE Computer Society, Washington, DC, USA; ISBN 0-7695-2368-4;
doi:10.1109/ICSM.2005.13.

Keshav, R. and Gamble, R. (1998); Towards a taxonomy of architecture integration strategies; in:
ISAW ’98: Proceedings of the third international workshop on Software architecture; pp. 89–92;
ACM Press, New York, NY, USA; ISBN 1-58113-081-3; doi:10.1145/288408.288431.

14

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-193/paper2.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-193/paper2.pdf


References

Kirchner, M. and Jain, P. (2004); Pattern-oriented software architecture, vol. 3: Patterns for
resource management; Wiley series in software design patterns; Wiley, Chichester; ISBN 0-470-
84525-2.

Klein, M. and Kazman, R. (1999); Attribute-Based Architectural Styles; Technical report
CMU/SEI-99-TR-022; Software Engineering Institute, Carnegie Mellon University.

Klein, M.; Kazman, R.; and Nord, R. (2000); A BASis (or ABASs) for Reasoning About Software
Architectures. Software Engineering Institute.

Krueger, C. W. (1992); Software reuse; ACM Comput. Surv.; 24(2):131–183; doi:10.1145/130844.
130856.

Luckham, D. C.; Kenney, J. J.; Augustin, L. M.; Vera, J.; Bryan, D.; and Mann, W.
(1995); Specification and Analysis of System Architecture Using Rapide; IEEE Trans. Softw. Eng.;
21(4):336–355; doi:10.1109/32.385971.

Medvidovic, N. (2002); On the role of middleware in architecture-based software development ; in:
Proceedings of the 14th international conference on Software engineering and knowledge engineer-
ing; pp. 299–306; ACM Press; ISBN 1-58113-556-4; doi:10.1145/568760.568814.

Medvidovic, N.; Rosenblum, D. S.; and Taylor, R. N. (1999); A language and environment
for architecture-based software development and evolution; in: ICSE ’99: Proceedings of the 21st
international conference on Software engineering; pp. 44–53; IEEE Computer Society Press, Los
Alamitos, CA, USA; ISBN 1-58113-074-0.

Medvidovic, N.; Dashofy, E. M.; and Taylor, R. N. (2003); The Role of Middleware in
Architecture-based Software Development ; International Journal of Software Engineering and
Knowledge Engineering; 13(4):367–393.

Mehta, N.; Medvidoviç, N.; and Rakiç, M. (2000a); Why Consider Implementation-Level De-
cisions in Software Architectures?; Technical report USC-CSE-2000-500; University of South-
ern California, Computer Science Department; URL http://sunset.usc.edu/publications/
TECHRPTS/2000/usccse2000-500/usccse2000-500.pdf.

Mehta, N. R. and Medvidovic, N. (2002); Distilling Software Architecture Primitives from
Architectural Styles; Technical report USC-CSE-2002-509; University of Southern California,
Computer Science Department; URL http://sunset.usc.edu/publications/TECHRPTS/2002/
usccse2002-509/usccse2002-509.pdf.

—— (2003); Composing architectural styles from architectural primitives; in: Proceedings of the 9th
European software engineering conference held jointly with 10th ACM SIGSOFT international
symposium on Foundations of software engineering; pp. 347–350; ACM Press; ISBN 1-58113-743-
5; doi:10.1145/940071.940118.

Mehta, N. R.; Medvidovic, N.; and Phadke, S. (2000b); Towards a taxonomy of software con-
nectors; in: ICSE ’00: Proceedings of the 22nd international conference on Software engineering;
pp. 178–187; ACM Press, New York, NY, USA; ISBN 1-58113-206-9; doi:10.1145/337180.337201.

Monroe, R. T. (2000 September); Capturing Software Architecture Design Expertise with Armani;
Technical report CMU-CS-98-163; Carnegie Mellon University, School of Computer Science. Ver-
sion 2.3.

Monroe, R. T.; Kompanek, A.; Melton, R.; and Garlan, D. (1997 January); Architectural
Styles, Design Patterns, and Objects; IEEE Software; 14(1):43–52; doi:10.1109/52.566427.

15

http://sunset.usc.edu/publications/TECHRPTS/2000/usccse2000-500/usccse2000-500.pdf
http://sunset.usc.edu/publications/TECHRPTS/2000/usccse2000-500/usccse2000-500.pdf
http://sunset.usc.edu/publications/TECHRPTS/2002/usccse2002-509/usccse2002-509.pdf
http://sunset.usc.edu/publications/TECHRPTS/2002/usccse2002-509/usccse2002-509.pdf


References

Di Nitto, E. and Rosenblum, D. (1999); Exploiting ADLs to specify architectural styles induced
by middleware infrastructures; in: Proceedings of the 21st international conference on Software
engineering; pp. 13–22; IEEE Computer Society Press; ISBN 1-58113-074-0.

Oquendo, F.; Warboys, B.; Morrison, R.; Dindeleux, R.; Gallo, F.; Garavel, H.; and
Occhipinti, C. (2004); ArchWare: Architecting Evolvable Software.; in: Software Architecture,
First European Workshop, EWSA 2004, St Andrews, UK, May 21-22, 2004, Proceedings (edited
by Oquendo, F.; Warboys, B.; and Morrison, R.); volume 3047 of Lecture Notes in Computer
Science; pp. 257–271; Springer; ISBN 3-540-22000-3.

Raje, R. R. and Chinnasamy, S. (2001); eLeLePUS – a language for specification of software
design patterns; in: SAC ’01: Proceedings of the 2001 ACM symposium on Applied computing;
pp. 600–604; ACM Press, New York, NY, USA; ISBN 1-58113-287-5; doi:10.1145/372202.372480.

Riehle, D. and Züllighoven, H. (1996); Understanding and Using Patterns in Software Devel-
opment ; Theory and Practice of Object Systems; 2(1):3–13.

Schmidt, D. C.; Johnson, R. E.; and Fayad, M. (1996 October); Software Patterns; Commu-
nications of the ACM; 39(10):37–39; doi:10.1145/236156.236164. Special Issue on Patterns and
Pattern Languages.

Schmidt, D. C.; Stal, M.; Rohnert, H.; and Buschmann, F. (2000); Pattern-oriented software
architecture, vol. 2: Patterns for concurrent and networked objects; Wiley series in software design
patterns; Wiley, Chichester; ISBN 0-471-60695-2.

Shaw, M. (1995); Architectural issues in software reuse: it’s not just the functionality, it’s the
packaging ; SIGSOFT Softw. Eng. Notes; 20(SI):3–6; doi:10.1145/223427.211783.

Shaw, M. and Garlan, D. (1996); Software architecture: perspectives on an emerging discipline;
Prentice-Hall, Inc.; ISBN 0-13-182957-2.

Taylor, R. N.; Medvidovic, N.; Anderson, K. M.; E. James Whitehead, J.; Robbins,
J. E.; Nies, K. A.; Oreizy, P.; and Dubrow, D. L. (1996); A Component- and Message-Based
Architectural Style for GUI Software; IEEE Trans. Softw. Eng.; 22(6):390–406; doi:10.1109/32.
508313.

van Emde Boas, P. (1997 February); Resistance is Futile; Formal linguistic observations on design
patterns; Technical report ILLC-CT-97-02; ILLC, FWINS, Universiteit van Amsterdam; URL
http://www.wins.uva.nl/research/illc/ResearchReports/CT97-02.text.ps.gz.

Zendler, A. and Schwartzel, H. G. (1998); From logical to physical software architectures; IETE
technical review; 15(5):355–369.

Zimmer, W. (1995); Relationships between Design Patterns; in: Pattern languages of program
design (edited by Coplien, J. O. and Schmidt, D. C.); pp. 345–364; Addison-Wesley, Reading;
ISBN 0201607344. Proc. PLoP’94.

16

http://www.wins.uva.nl/research/illc/ResearchReports/CT97-02.text.ps.gz

	Introduction
	Architectural Styles, Patterns and their Usage
	Taxonomy
	Ad-hoc Use of Styles
	Use as Platform-oriented Styles
	Use as Customized Styles
	Style-based Pre-modeling
	Style-based Documentation and Analysis
	Use as Generic Architectures

	Characteristics of the Modes of Use
	Compositionality
	Specialization
	Explication and Rigor
	Conceptual Level
	Relationship to System Quality Characteristics
	Suitability for Architectural Design Exploration

	Conclusion

