Patternsfor Service-Oriented
| nfor mation Exchange Requirements

Ayman Mahfouz, Leonor Barroca, Robin Laney, Bashar ese
Department of Computing,
The Open University,
Walton Hall, Milton Keynes, MK7 6AA, UK
amahfouz@gmail.com, {L.Barroca, R.C.Laney, B.Nuseibeh} @open.ac.uk

Abstract
Service-Oriented Computing (SOC) is an emerging computing paradigm that
supports loosely-coupled inter-enterprise interactions. SOC interactions are
predominantly specified in a procedural manner that defines message
sequences intermixing implementation with business requirements. In this
paper we present a set of patterns concerning requirements of information
exchange between participants engaging in service-oriented interactions. The
patterns aim at explicating and elaborating the business requirements driving
the interaction and separating them from implementation concerns.

1. Introduction

Service-Oriented Computing (SOC) is a software developpemadigm that adopts the notion of a
“service” as the fundamental unit of building and compoajmgiications. A service is a self-
describing high-level abstraction of coarse-grained busgasability. Services hide the complexity of
the IT infrastructure and the heterogeneity of platfob®hind standards-based interfaces.

Services can be published to registries where they cdisd®@vered by potential service consumers,
therefore SOC promotes loose coupling between intagpparticipants. SOC has enabled the creation
of electronic marketplaces where enterprises can corfgredeBusiness opportunities and collaborate
electronically via autonomous agents.

Service-oriented interactions are complex in natuheyTcross the borders of the enterprise and span
multiple independent organizations, each of which lsagvin processes and internal systems
independent from other organizations. Each participant imteeaction has its own logical state, such
as data in a database or a legacy system, and phstsitsatomprised of business resources as well as
humans involved in the interaction. Furthermore, sereigented interactions are often asynchronous
and long-running, thus over the duration of an interactierstate of each participant may change.

Process-oriented languages, such as BPEL[1], are the damiag of describing multi-party SOC
interactions. Such languages have been criticized timmixing the business rules driving the
interaction with implementation-specific messaginghamisms in one description[2]. The business
requirements of the interaction are concerned only thi¢ content of the information (what), the
purpose it is needed for (why), the participant providingfreguit (who), and possibly the time it is
needed/used (when). Business requirements do not normatifydpe exact messaging sequence by
which information is exchanged (how), which is an impletagon concern usually driven by
architectural constraints.

Separating out the business requirements from impleti@ntncerns is important because it allows
us to focus on elaborating and structuring the busings@reenents without having to make early
decisions about implementation of these requiremertexrims of messaging sequences. Furthermore,
by establishing a mapping between certain classes of eeggmts and their typical implementation

1

mechanisms we can derive an implementation givenaf §eisiness requirements and verify that the
implementation satisfies the requirements.

In this paper we captured a set of patterns concerning eeggrits on information exchange between
participants involved in service-oriented interactionse patterns were gathered by examining several
examples from the SOC literature as well as some &aplications. The patterns place the emphasis
on the problems and the requirements rather than ofelel/messaging aspects of SOC interactions
and as such they do not fall under the “design” pattetegory. It also follows that our patterns do

not address SOC realization concerns. Specifically,ovaotl make the explicit distinction between
services in the general SOC sense and Web Servicestf#] emalization of SOC on the internet using
XML technologies.

The patterns presented are intended to assist inrgiSGOC requirements in a semi-structured
manner. Each pattern encapsulates a “piece” of agmoalong with the relevant considerations for
this type of problem. The considerations associatedeaitfn pattern in the catalogue assist the user of
the pattern when applying it to a problem at hand in askegelevant questions to elicit the business
requirements. Moreover, we take a step towards buildpajtarn language by explicating relations
that connect the patterns. These relations provide geadan traversing the requirements space and
uncovering more patterns that can be used in elaboratieg jparts of the requirements.

The paper is organized as follows: In the next sectiogiveean overview of the patterns and their
interrelations. Section 3 discusses related worket¢tien 4 we introduce an example to motivate the
work. Section 5 details the patterns catalogue. We teéhisiexemplar to demonstrate the application
of the patterns in section 6. We conclude the paper aodsd future work in section 7.

2. Overview of the Patterns

Having surveyed several exemplars from the SOC literategaoticed the recurrence of certain
patterns of business requirements involving the informa&xmhange between participants in SOC
interactions. The main concern of each pattern efdxtiin table 1. We make no claim about the
completeness of the set of patterns, which will undiedlip be refined and expanded as we survey
more exemplars.

Pattern Main Concern
Barrier Guards an action and specifies (pre)conditions on its émecut
Co-location Two or more resources are to be co-located at amceitae and place for a specified duration.
Correspondence | Relating two pieces of information each owned by a diffeparticipant
Deadline Some information is required for an action beforertagetime after which an alternate action is taken
Expiration Some information will become invalid at a certain painime (not shown in figure)
Notification On-state-change “pushing” of information to enfoBmerespondence.
Query On-demand periodic polling of information to enfofee respondence
Retry Retrying an action a number of times before resortirantalternate action
Selection Choosing from among similar service offerings fromtipld participants according to some criteria
Solicitation Gathering information about service offerings from iggsants
Token Issuing a permission for executing an action to other jaatits

Table 1. Brief description of each of the patterns

Figure 1 depicts the patterns and the relations between The patterns are shown in boxes with
labeled directed links between them while related coscat shown without boxes. The relations

2

between patterns are intended to assist in traversingobdem space. An example of how to interpret
and use the diagram goes as followsSePection may requireSolicitation of multiple participants,

each of which may requireTaken to participate, where the token impliésrrespondence between

the copy that resides within the solicitor and the thia¢ resides within the solicited participants, so the
solicited participants may getNotification that the token they possess is no longer valid.

expires -
Tokeh f —-———————(—(—(—(—(—(—(—(—(—(— — — — — — — — — — — — — — — = Deadline
ST e~ may require has T
- _ -
N ~—— R S
| S e, Solicitation |- — . |
I ™ L= — — — — — — | Selection / |
| “ e, rmay reguire K |
. . . HH £
: implies S Sa : / :
| ray tarmpose ~ ... required for | ha/é/alternate | may specify
e
: \\ M““x fnlln:uwen:li by ;f :
- -
A - e, I / I
Correspondence Barrier e | ; |
- £
I 5 . N q__,__q__q__q_hguards HH'&_ : / :
HHHHH ~ /
| \‘\ Treferences —— o W t W
| ~, - \‘\ Action et Retry
- o Thdion &~ __
| ™, . i -
| i dh ™ M“,\L ™ s
achieved Y sehisyved by . ~ references o
| , - \\ -
"~ rd
: \‘\ ™ chanoes
N ~ 4
‘-,'ll,-" \\H& x\ \\ r
-
Notification | & IMYONe. ouery AN L
—————— 1 State

Figure 1. The patterns and relations between them

3. Related Work

Previous attempts to catalogue service-oriented pattevesiteused on low-level aspects of service-
oriented interactions such as the number of participitresijumber of messages exchanged, and the
direction of message flow [4], which capture interggtietails about the interaction but do not address
the business problem driving the choice of an interactittena

The same goes for the integration patterns in [5] waiehintended to provide a vocabulary and a
visual notation framework to describe integration sohgiol he patterns address aspects of a
messaging system such as connecting an applicatioméssaging system, routing messages, and
health monitoring. Although the catalogue encompassegtansive set of patterns, it does not go
beyond implementation and design levels.

Property specification patterns (PSP) [6] were used toifgmnd validate web service interactions in
[7]. The patterns specify constraints on the occurrandeordering of web service operations in a
declarative manner amenable to composition. To this Bad? $P patterns aim to replace the typical
procedural description of business process languages tiagnezlevate the description to the level of
the requirements behind the process or provide guidancecameglsuch requirements.

There is a void in the literature of patterns that eslthe business requirements of the information
exchanged between participants in SOC interactionsefréthn on the design and implementation of
the messaging that satisfies these requirements). @arrsaare an attempt to fill part of this void.

3

4. Motivating Example

The main exemplar that will be used in illustrating plagterns involves a medical provider (MP)
which operates a number of hospitals and medicaltfesiht various locations. Here are some
snippets of the business requirements:

* The MP partners with an ambulatory service that traggfatients to the medical facilities. To
optimize their service, the ambulatory service hadrdexiom to choose which medical facility
to transfer a patient to depending on the patient logatisrcondition, among other factors.

* The hospital purchases medical supplies from sevendiore most of which provide
periodically updated price lists.

* Some patients have medical insurance that covero#tettheir treatment. For some types of
insurance, a treatment authorization has to be pre-etdt&iom the insurance company
providing the coverage for a patient.

These high level business requirements need to be dlathdosa much greater detail before even
thinking about the sequence of messages to be exchangextbehe participants. For instance, there
are numerous questions that have to be asked (and ansalsvatjhe “treatment authorization”
including: What distinguishes one treatment authorizatiom faother? How does the authorization
identify the patient? Can the authorization be usegkri@t once (to treat the same patient from the
same ailment, for instance)? Does the authorizatipme? Can the insurance company cancel the
authorization? What if the authorization has alreadynhesed to prescribe some medication for the
patient?

As can be seen, coming up with these questions is gtask a&ven for such a small requirement
snippet. Our patterns and the relations between themtargled to assist in evoking such questions
thereby improving the process of navigating and elaborategukiness requirements of SOC
interactions. We will refer to the exemplar as ‘" example thereafter.

5. The Pattern Catalogue

Due to the lack of space, the catalogue presented herks detgifive of the patterns we have
identified: Token, Correspondence, Selection, Solicitation, andDeadline. Our catalogue roughly
follows the Alexandrian form as well as other poptanplate forms [8]. The template comprises
context, problem, forces, solution, resulting conteahgequences), examples, and related patterns.
We illustrate the structure of each pattern using edh@rnceptual class diagram or an object diagram
where it helps distinguish between multiple instandeeesame concept. Most importantly, the
“Considerations and Variants” section has the bulitedils about the pattern and is intended to be
used in generating questions about the fragment of requitsrnbés applied to.

Since we are presenting patterns about interactierpdtticipants are part of the “structure” of the
pattern and hence we did not include a “participants” echlso, the “solution” embodied in each
pattern is a high level prescription, rather than aiBpation of an implementation that details a
sequence of message exchanges and hence we did not ea¢hetevior” or “collaborations” section.

5.1. Token Pattern

Context

In a multi-party interaction each participant haoits system that is logically and geographically
separate from the other. Certain business rules meateihat one party should not attempt to
undertake a certain action in the course of a busine=siction unless some explicit permission is
obtained from another party. In a traditional non-etadc business interaction the permission would
typically be a signed paper document.

Problem
How should the permission be represented, enforced, araged®

Forces
- The business rule stipulating that “a permission h&e tobtained for the action to be
performed” must be enforced.
- The permission has to be conveyed from the issutietparty that needs it.

Solution

The permission is represented as an electronic “toKéwe.availability of such a token to the party
wishing to execute the action means that the party maygad and do so, whereas the lack thereof
means that the party should not.

Structure
The class diagram in Figure 2 depicts the structure ofdken pattern. The participant providing the
permission issues a token that enables the actiontakée by the second participant.

issuer:Participant authorized:Participant action:Action
takes
provides recuires
needs
permission;Permission token:Token

represented by

Figure 2. Object diagram showing the Token pattern strictu

Considerations and Variants

- ldentities: The token typically has information that uniquely idies it from all other tokens
of the same type in a certain usage context. The tdkendentifies the action it is required for
as well as the specific instance of the action. Clemsa vendor that issues a “Merchandise
Return Authorization” (MRA) so that a buyer can shipkoa defective item. The MRA has a
unique number that identifies it from any other MRA thada@ issues. The MRA enables the
action “return merchandise” which is instantiated f@agticular product returned from a
particular buyer.

- Multiple Required Tokens: An action may require more than one token. For elanifp
several parties have to vote to allow the requestor tornpetfee action or where the requestor
is required to request the permission of more than o pageneralization of the “multiple
required tokens” is where a number of instances of difitetypes of tokens are required.

- Multiple-Usage: A batch of tokens may be obtained and stored by the regdessubsequent
use. Consider the example where a wireless provisiegessa signing key to a software
development company. The key is to be used by the softwaeéogewent company in signing
code to be delivered over the wireless network operateaebyiteless provider. The wireless
provider will typically limit the number of times the kean be used to sign code. The software
company will have to purchase another key after the tmsigning attempts has been
reached. This can be viewed as obtaining multiple tokemscat or as obtaining a token that
can be reused for a specified maximum number of times.

- Recyclable Token: In some cases a token may be reusable over and o\ tmlimited
number of times. A special case of this is wheredker usage lasts for some amount of time
during which the token is “locked” and can not be used otkerWwihe token can only be used

5

again after it has been “released”. An example is@&heservice (or a web site) allows only a
single session for a particular user. Another examgplenere a software company sells
“concurrent user licenses” for their software.

- Action consuming the token: The action that requires the token may itself constnaéoken
when it executes or an additional action may be needeah8ume it. An example of the
former is where the token gets consumed when an insthaceoncurrent license is “checked
out” of the repository. An example of the lattemisere the MRA is a token that allows the
buyer to take the action “return item”, the MRA i4 actually consumed until it is entered into
the vendor system when the returned item is unpacked.

Consequences
- A Participant can grant another participant a permidsyoissuing a token.
- The token becomes a representation of the permidsidmets transferred electronically
between the participants.
- The token and the permission remain two separate amactihings. The lifecycle of the
permission may not exactly coincide with that oftiieen. For example, the token could be
created after the permission is issued.

Examples
- Inthe MP example the “treatment authorizationd igermission required for performing the
action “administer patient treatment”. The insuranm@gany provides an electronic form of
the permission that can be used by the MP.

Related Patterns

- A Token may often be obtainable throughlicitation.

- Correspondence between the state of the token representationepribvider side and on the
requestor side may have to be maintained. For exampihe [frovider is allowed to cancel the
token this state change has to be relayed to the requestor

- Atoken is often associated with Bmpiration. For instance, an MRA is only valid for a certain
number of weeks from issuance. A software license nsaylad time-limited and has to be
renewed.

- Tokens are central concept in (Colored) Petri Nets [9]

- Atoken may serve a similar purpose as a “guard” in theoaaation pattern [10].

5.2. Correspondence Pattern

Context

In long-running interactions information is exchanged asyncusig between multiple parties over a
relatively long period of time. Each participant ha®iis internal process and internal state
independent from other participants. However, the progriesse participant’s internal process may
cause state changes that should have an effect on iapattieipant’s process.

Problem
When each participant has its own internal processtatd, how do we relate one participant’s
process to the process of other participants and detetin@redfects it has on those processes?

Forces
- Each of the participants has their own internal preegsind state that are not shared with other
participants.
- The internal process of one participant may causegesato information that is of importance
to another participant.

The state of a participant comprises both logical and ghilysiate. Therefore, state changes
that happen within the realm of one participant may edtmediately available to other
participants.

Solution

Establish pair-wise correspondence between the infavmafiinterest (information A) at participant

A and related information (information B) on the papanit’s B end. Determine the state changes in
information A that are of interest to participant Rlamould have an effect on the state of information
B. The business events that cause changes in th@ttatermation A need to become “shared”
events that B gets to know about.

Structure
Figure 3 depicts the concept©@brrespondence between two pieces of information each of which
owned by a different participant.

participant A:Participant participant B:Participant
s S
info A Correspondence info B

Figure 3. Object diagram showing the Correspondencepatieicture

Considerations and Variants

Propagating changes: The Correspondence pattern only deals with establishengetations
between the information and determining the required dffi@ttone participant’s internal
process should have on the other. The actual mechanigmspaigating the changes are the
concern of the lower level patterNstification andQuery.

States and Transitions. Conceptually, this pattern is concerned with tying tweestaachines
together by defining “shared” transitions. In other words;espondence is established
between a transition in the state machine represeoti@garticipant’s process and a related
transition that should take place simultaneously irother participant’s state machine. The
transitions result in the change of the state of médron held at each participant.

Partial Correspondence and Thresholds: Often only certain changes in the state of an object
are of interest to another participant and only thos@@bs need to be shared. For instance,
there may be no state on the MP side corresponditigetstate where the treatment
authorization is “in process” at the insurance compaaynbmeric state “thresholds” may
determine whether a state change is to be shared dtanaxample, a stock broker may need
to know when the price of a certain stock rises abaseaified threshold.

Multiple copies: The simplest form of this pattern is where eachigpent keeps his own copy
of an object that is being exchanged. For example, erlwijl have a representation of a
“purchase order” which assumes states such as: “creésedt”, “confirmed”, etc. and a seller
will have a corresponding concept of a purchase ordeafisatmes states such as: “received”,
“processed”, “fulfilled”, etc. Correspondence betweearsthstates can be established
depending on the specific requirements of the situations.

Clock: The state of each participant consists of both &giad physical state. The physical
state involves objects from the real world including pale®muments, vehicles, humans, etc.
Additionally, systems are geographically distributed and/oeks introduce delays. Therefore,
state changes are not instantaneous and informatian gigonew state may not be

7

immediately available to other participants. In otherdspthe participants do not share the
same clock and the state changes do not happen simultpr@obsth sides.

Out-of-date view: It follows from the above that each participant rhaye out of date
information about the rest of the world. Thereforicams taken based on assumptions about
other participant’s state may later be found to be idv&lie have developed a set of strategies
for dealing with this situation that are out of the scopthis paper.

Chaining: If A corresponds to B and B corresponds to C themdirectly) corresponds to C.
Determining the effect of A on C can be determined bylinimg the effect of A on B and the
effect of B on C. In other words, correspondence is itre@s

Consequences

The internal state of a participant can be sharedamtther participant.

Each participant can assess the impact of other partisigaocess on their own.

Changes to logical and physical state involved in a corregmae has to be tracked in order to
maintain consistency between the states of partitspatrruntime.

Examples

There are two corresponding representations of ariegatauthorization; one resides within
the insurance company while the other resides within theTW® cancellation of the treatment
authorization at the insurance company means that thereatiion held by the MP is no
longer valid.

The ambulatory service maintains a “preferred meduzdtion” list which maps each Zip code
to the location of the medical facility to be cho$ena patient transferred from that Zip code.
There is an indirect correspondence between the pedfaredical facility and the current
workload (number of patients relative to number of dsjtat that facility. For example, the
workload at a given facility may become temporarily taghhio the extent that another facility
should be designated the preferred location.

Related Patterns

5.3.

The Notification pattern and th@uery pattern are concerned with the mechanisms for
enforcing theCorrespondence.

The GoFObserver pattern [11] is typically used to enforCerrespondence by Naotification.

In the problem frames framework [12] the “Informatiorsitlay Frame” deals with the
correspondence of real time information and its physiisplay.

Part of what WSCDL [13] deals with is interaction-basdgdrmation alignment between state
that resides in one “role” with corresponding state thsides in another.

Selection Pattern

Context

Service-oriented software allowed the creation of apemarketplaces where potential participants in
service interactions present competing service offeri@tser participants can then pick and choose
from among competing service offerings that match the=das.

Problem
How does a participant take advantage of the availabilityultiple potential participants that present
competing offerings?

Forces

Offerings provided by the competing participants are fonetly similar or the same.
Choosing one participant over another may optimizataioequality while compromising on
another.

The potential participants and their offerings may gleafinom one interaction to the next.

8

Solution
A participant selects among multiple candidate providezsrding to one or more criterion that
optimizes certain qualities of the interaction.

Structure

Figure 4 depicts the structure of tBaection pattern. Several participants can be candidates for
selection, from which some may get selected accordimgé or more criterion each of which may
have an associated weight relative to the otherteatecriteria.

specified by
El 1]
Criterion Selection - Participant
1 * candidates
n.*
zelected

Weight

Figure 4. Class diagram showing the Selection pattasotsre

Considerations and Variations

Criteria: The criteria on which the selection is made magtee of several typical criteria:

o0 The provider with the most cost effective offering.

0 Inthe cases where the offers were solicited thectsd participant may simply be that
whose offer is received first.

o Where a provider “rating” history is available, the providdth the best ratings score is
selected.

Weights on criteria: The selection may be made based on more than aesariat once. For
example, the criteria could be a composite that teitesaccount both the cost of the service
and its reliability. In such a case weights shoulésgned to the criteria in order to make the
selection objectively.

Select more than one: Depending on the nature of interaction, it may lgired that multiple
participants get selected.

o If the goal of the selection can be decomposed thertigipant can be independently
selected to fulfill part of the goal. For examplethi# goal is to minimize the total price
of a list of items being purchased, then each item regyubchased from the participant
that provides the lowest price for that item.

0 Selecting more than one participant may be a fornfeafit‘tolerance”. One participant
is designated to be the main participants and one or anergelected as backup. In case
the first selected participant fails to fulfill thegsponsibility, the “runner-up” is tapped
instead.

Phases. The selection could be a process that goes throughssice phases before a final
participant is selected. The candidates are filteredhcesich phase where each phase may have
different (or additional) criteria. This is typical solicitation-driven selection were the selected
providers in one phase become solicited providers in tlewiolg phase.

Finding candidates. The selection pattern does not address how the panidipds the
candidates from which to select. Often times the ppatits will be located via one or more of
the following ways:

o0 Found via a lookup in a public registry.

0 Retrieved from a “preferred vendor” list or a “trustedtpar” list.

o Tapping registered members of an e-business commuratyrading network.

9

Consequences

- A participant is able to select objectively among sinvliferings.

- A participant can optimize some desired quality of theradtion by varying the selection
criteria to match some requirements.

- The choice of participant may change from one intevadb the next if the offerings and/or
the selection criteria change.

- Keeping a history of the interactions with previously sield partners informs and improves
future selection process.

Examples

The MP keeps a list of vendors from which supplies arehaserd. Each vendor periodically updates
the published price list, minimum order quantities, and tfezexl service quality such as delivery
time. The MP also keeps a record of previous delivemiésrms of how timely they were and the
guality of delivered items. When it is time to order neyies, suppliers that currently have
“reasonable” prices and had provided reliable deliveriéisenmecent past are selected.

Related Patterns
- TheSelection pattern is typically, but not necessarily, associatitll a Solicitation pattern.
Participants are solicited for their “offer” theretbelection process selects among the
submitted offers.
- In the catalogue of workflow patterns [14] “Multiple Cbei patterns and “N-out-of-M”
represent possible workflow implementations of the $eleattern.

5.4. Solicitation Pattern

Context

Some essential information is needed by a party to mdkeision that will affect the flow of some
interaction that is yet to start. In particular, mf@tion about the characteristics of other participants
service offerings is critical to making a decisiort@sgvhich participant is to be selected for the
interaction. The information may not be immediamypublicly available and it can reside completely
within the other participant’s domains.

Problem
How can the information about the other participantsiade available so that the decision can be
made in a timely manner?

Forces

- The service offering of the candidate participantssgmrigal information without which the
participant wishing to make a decision can not progress.

- The service offering of each participant may change foome point in time to another and from
one interaction to the next depending on the specifieadf interaction.

- Information about offerings from solicited participantaymmot be immediately available to the
participant that needs to make a decision.

- The solicitor may need to take the action by some spddime in the future

Solution

The candidate participants are solicited to providermé&tion about their offerings. The soliciting
party defines a set of criteria with respect to whichatfierings shall be assessed. The solicitor also
specifies a deadline for submitting the offerings.

Structure

10

Figure 5 depicts the structure of the Solicitation patf€he soliciting participant may involve one or
more participants in the solicitation to get the sendgtfering of each. The soliciting party also
specifies the criterion of acceptance/assessmeritesing and a deadline for submission.

Participant 1 izsues Solicitation Deadline
solicitor
1.* responds to ends by
] solicited
. 1.* —
Offering Criterion
offers n=

Figure 5. Class diagram showing the Solicitation pats&ucture

Considerations and Variants

- Multiple solicited participants: The solicitor typically solicits more than one ptial
participant for their offerings. A selection will sebsequently made from among the submitted
offerings. To optimize the selection process, the goticnay include information about the
selection criteria in the solicitation so that g#wdicited participants can customize their
offerings. The solicitation should also include any infation that may be needed by the
candidates to propose their offerings.

- Public or private: The solicitor typically informs a selected set ahdidates directly (e.g. by
sending them a message) about the solicitation anddgenough information for them to
present their offerings. In certain situations the caneglare not pre-determined and the
solicitation is available to the public. For exampiesauld be more effective for a huge
corporation that has thousands of suppliers to exposwiaesthat allows suppliers to check
for upcoming solicitations.

- Interaction-specific information: The solicited information may be specific to theteahand
content of the interaction and needs to be re-salié@eanother interaction of the same type.
For example, a vendor solicited for pricing may provide ispedscounts for large orders.

- Adapting to solicited participantsinterfaces: The solicitor will need to comply with each
solicited participant service interfaces to send theisation to each of them. This will be
painful unless all the participants comply with somad#ad interface as in the case of a
trading network. This adaptation is not an issue if thieisor merely exposes his own service
that allows interested participants to check for salicns.

- Asynchrony: Response to the solicitation is typically not reediimmediately. Creating an
offering may require customization for the particuldicgor and the specifics of the upcoming
interaction which may require some human decision-nga&lement. In this case, the solicitor
will have to specify a callback interface for solicifgatticipants to submit their offerings.

Consequences
- A participant looking for service offerings can find offegs that it needs to progress.
- A participant wishing to make a decision is able to basedéhision on up-to-date information.
- The solicitor is able to proceed in a timely mannedevsiill giving solicited participants some
time to “prepare” their offerings.

Examples

Before the MP purchases new supplies the available psteeiom vendors are consulted. If some of
the price lists have expired the vendors are solit@quovide their updated lists. Additionally, the MP
provides a service where upcoming requisitions are publishea@tseetidors that are not registered

11

with the MP may submit their offerings. Each requisitgpecifies the items to be purchased, the
desired quantities, quality specifications for each it#snyell as the date the requisition closes.

Related Patterns
- If multiple offerings are solicited &election process usually follows tHsolicitation.
- A Deadlineis usually set after which no more offers are accefaeconsideration.
- A Token may be required for the solicited party to submit aarofg.
- The “One-to-many send” pattern in the service intevagbiatterns catalogue [4] is a possible
implementation of &olicitation.

5.5. Deadline Pattern

Context

Service-oriented collaborations involve long-running irdBoms where asynchronous information
exchange takes place between participants. Hours or eyemadg separate a request for information
from the response that provides that information. Thastfucture that relays the messages
exchanged between participants will not always be reliabtl there could be no direct way of telling
whether an expected reply has never been sent semadbut was lost on the way over.

Problem
How does a party progress in a controlled timely mawimen another participant will be providing
information asynchronously?

Forces
- The party requiring information cannot wait forever toe bther participant to provide the
required information.
- There is no guarantee that the required information withymilable at a specific time.
- The communication medium may be an unreliable netwwkdoes not support “guaranteed
message delivery”.

Solution
The party requiring the information sets a deadline aftech he no longer waits for the required
information and an alternate course of action istiak

Structure
Figure 6 depicts the structure of theadline pattern. A participant specifies a deadline after wHich i
the information required is not available an alterraten shall be taken.

Information Participant
) reguired hefore
required for sets
Action Deadline
alternate

Figure 6. Class diagram showing the Deadline patteuatstie

Considerations and Variants
- Retry: A common action to take when a deadline is reachtmristry requesting the required
information again. The assumption in this case thagesioing went wrong with the
transmission and another attempt to get the informatiay succeed. Usually the requestor

12

retries for some maximum number of times before givingfugatry will be tricky if the
request has side effects. In other words, retries ayestmalightforward if the request is
idempotent.

- Wait anyway: If the required information is received before thediiea is reached then the
party requiring the information will typically move fward. However, in some cases the party
requiring the information will wait till the deadline ieached anyway. A typical example of
this is where &olicitation has been published and made available to an unknown number of
participants then the soliciting party will wait tilleldeadline before concluding that no more
participants will submit an offering.

- Absolute or Relative: The deadline may be specified as an absolute tinteifuture or
relative to some event. For instance, when a sdimitas sent to multiple participants at
slightly different times the requesting party may g@aeh solicited participant a number of
days to respond from the time they received the sdlmita

- Postponement: In some cases a participant that is not able tdl fallfthe requested
information before the deadline may submit partial imfation or no information at all but
request an extension to the deadline.

- Expiration: Closely related to a deadline is the concept of axipin. A party that provides
information to another participant may attach an extjpin date to the information after which
the information is deemed to be invalid. A typical exasriplwhere a party specifies that an
offer is not valid after a certain date.

Consequences
- The party requiring information has some control overgitogress of the interaction and does
not have to wait forever for the information to beeoavailable.
- The interaction becomes tolerant to unreliable commtiorcanedia.

Examples

When the MP solicits offers from vendors it speciBedate after which no more offers are accepted.
The MP waits till the deadline is reached before isigud selection between the vendors who have
submitted offers.

An example of Expiration with a relative deadline: &dtthe insurance company issues a treatment
authorization it specifies that the authorization tiealse used within two weeks from issuance after
which it will become void.

Related Patterns
- A Solicitation is usually associated withDzeadline for submitting offers.
- A Token may have an expiration date.
- The concept of a timeout in the constructs of many languiagdosely related. An example is
the timeout that can be specified when waiting forfisation on a monitor in the Java
language.

6. Revisiting the Example

To demonstrate and validate the patterns and the reddietween them we will apply them to part of
the MP example:

We start by the requirements fragment involving treatraattiorization (TA). By realizing that the
TA is a form of permission that the insurance companggjihe MP we can apply theken pattern
to the requirements snippet resulting in the following qoest
* ldentities: What identifies each TA? Does each TA have a dipbaique ID? Or is the ID
unique within the MP/insurance company? What instance ait“pratient” action does the

13

token enable? Does it enable the “treat patient” adtioa certain patient from a specific
aillment at a certain date by a certain MP?

* Multiple-Usage: Is the MP allowed to reuse the same TA to treatah@egpatient more than
once from the same ailment?

» Action consuming the token: When is the TA considered “consumed”? Does the ddtating
the patient submit some report indicating the treatmbetpatient, as well as the TA number?

Having applied the Token pattern we consult the diagramlations between the patterns for what
pattern can be potentially applied next which yield$ltbéDeadline (Expiration) and the
Correspondence patterns. Applying th®eadline pattern we get to ask:

» Expiration: Does the TA ever expire?

* Absolute or Relative: How long after issuance does the TA expire?

* Postponement: Is the MP allowed to postpone the TA?

Applying theCorrespondence pattern we get to ask:

» Satesand Trangitions: What transitions happen to the state of the TAairturance company
that are of interest to the MP? For instance, barnrisurance company cancel the TA after it
has issued it to the MP?

* Clock: How long after the TA is cancelled does the MP getkabout the cancellation?

» Out-of-date view. What should happen if the MP gets to know about theeti@tion of the TA
after it has been used to prescribe a treatment faienp&a

» Chaining: Any other correspondence between the state of thatTiie MP and some other
participant? For instance, if based on the TA specimentaken from the patient and sent to
an external lab, should the state of the lab tesesfflected by the cancellation of the TA? (for
instance, does the lab test get cancelled if it haddbiretarted, etc.)

Having applied th€orrespondence pattern we again consult the diagram of relations &etvpatterns
to find that we can potentially apply thtification pattern, and so on.

We now tackle the requirements fragments concerngdpurchasing supplies. Realizing that the MP
selects among multiple vendors when purchasing supplieanvepply theSelection pattern to yield
these questions:
» Criteria: What are the criteria for selecting among vendors®i(fy;i reliability in the past,
payment terms, the time it takes to deliver, etc.)
* Weightson Criteria: What is the weight on each criterion? Does a vendar ddtivers
merchandise of variable quality get selected if he sféeconsiderably lower pricing?
» Select more than one: Can a single requisition order be filled from muéipendors? Do some
vendors allow for “tentative orders” (so that they barselected as “backup”)?
» Finding candidates: What public listings for vendors are available to the?NIfi®es the MP
keep a list of vendors dealt with in the past?

Having applied th&election pattern we refer to the diagram of relations betwssterns to find that a
Selection may require &olicitation. Applying theSolicitation pattern yields the questions:

» Multiple solicited participants: Does the MP solicit multiple vendors? (Obviously,ye&sper
applying theSelection pattern). What information does the solicitation uiale ?

* Public or private: What is the means by which the MP solicits the ver®iDi@es the MP make
the solicitation publicly available?

* Interaction-specific information: Do vendors provide quantity discounts? Do delivery terms
differ depending on the requisition?

At this point we can also apply tieeadline pattern associated with the solicitation.
14

As can be seen, the application of the approach ké&iey a useful set of questions even for such
small exemplar fragments.

7. Conclusions and Future Work

In this paper we have attempted to capture a set of commocilyring patterns in service-oriented
interactions involving exchange of information betweeritiple participants. The focus of the patterns
is mainly the requirements of the information exchangete interaction rather than the messaging
sequence implementing these requirements. The ultimalasgto elicit and specify the requirements
on the interaction in a messaging-sequence-agnostinenand defer the choice of implementation
thereby increasing the flexibility of business “process” dpton.

Beyond mining for more patterns (e.g. to cover infornmasiecurity aspects), the patterns and their
interrelations need much refinement and structuring.

We would like to refine the catalogue to separate pattbatsare solely concerned with the
requirements of the interaction in termsatt information is required anghy such information is
needed. These patterns can then be layered on toptbkaset of design patterns whose concern is
how the information is exchanged. As an example, thisegine manifested in the relation between
the Correspondence pattern and thBlotification pattern. This layering will provide guidance on how
to proceed from the requirements of SOC interactiammtonplementation.

A highly desirable goal is to develop a mechanism for comggsatterns into larger patterns that may
have more specific semantics. Such patterns will hedpmposing requirements and asking richer
guestions. For example Negotiation pattern composes multip®vlicitation andSelection instance,
which can be further composed withlautermediary pattern to yield 8rokerage pattern. Moreover,
we would like to investigate how pattern layering and pattemposition can be combined in one
coherent pattern language.

Finally, it is yet to be determined if guidance on applylmgpatterns can be provided. For instance, a
few guidelines on how to match certain bits of requeats to the patterns should make the process of
applying the patterns more effective. When the set oéqet and the relations between them become
mature it may then be possible to provide some critefjiadige whether all possible steps of applying
patterns to a given set of requirements have been &aikall the relevant questions have been asked.

References

1. Andrews, T., et alBusiness Process Execution Language for Web Services Version 1.1. 2003.

2. Charfi, A. and M. MeziniHybrid Web Service Composition: Business Processes Meet
Business Rules. in the 2nd international conference on Service oriented computing. 2004. New

York, NY, USA.

3. Christensen, E., et alMeb Services Description Language (WSDL) 1.1. 2001, W3C.

4. Barros, A. and M. DumaSegrvice Interaction Patterns. Towards a Reference Framework for
Service-Based Business Process I nterconnection. 2005, Faculty of IT, Queensland University
of Technology.

Hohpe, G. and B. WoolEnterprise Integration Patterns. 2004: Addison-Wesley.

Dwyer, M.B., G.S. Avrunin, and J.C. Corb@atternsin Property Specifications for Finite-

state Verification. in International Conference on Software Engineering (ICSE). 1999. Los

Angeles, CA, USA.

7. Li, Z., J. Han, and Y. JifRattern-Based Specification and Validation of Web Services
Interaction Properties. in International Conference on Service-Oriented Computing (ICSOC
2005). 2005. Amsterdam, The Netherlands: Springer.

8. The Patterns Homepage.

o o

15

10.
11.

12.

13.

14.

Mulyar, N.A. and W.M.P.v.d. AalsPatternsin Colored Petri Nets. in Sxth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools. 2005. Aarhus C,
Denmark.

Fernandez, E.B. and R. PArPattern Language for security models. in PLoP 2001. 2001.
Gamma, E., et aDesign Patterns. Elements of Reusable Object-Oriented Software. 1994:
Addison-Wesley.

Jackson, MProblem Frames - Analyzing and structuring software devel opment problems.
2001: Addison-Wesley.

Kavantzas, N., et allyeb Services Choreography Description Language Version 1.0. 2005,
W3C.

Aalst, W.M.P.v.d., et aMJorkflow Patterns. Distributed and Parallel Databases, 20B§3):
p. 5-51.

16

