
Patterns for Refactoring to Aspects:

An Incipient Pattern Language
Miguel P. Monteiro

Departamento de Informática
Faculdade de Ciência e Tecnologia

Universidade Nova de Lisboa
Tel +351-21 294 8536 ext: 0708

Ademar Aguiar
INESC Porto

Faculdade de Engenharia
Universidade do Porto

Tel. +351-22 508 1518 ext: 3212

ABSTRACT

Aspect-Oriented Programming is an emerging programming

paradigm providing novel constructs that eliminate code

scattering and tangling by modularizing crosscutting concerns in

their own aspect modules. Many current aspect-oriented

languages are backwards compatible extensions to existing

popular languages, which opens the way to aspectize systems

written in those languages. This paper contributes with the

beginnings of a pattern language for refactoring existing systems

into aspect-oriented versions of those systems. The pattern

language covers the early assessment and decision stages:

identifying latent aspects in existing systems, knowing when it is

feasible to refactor to aspects and assessment of the necessary

prerequisites for the refactoring process.

Categories and Subject Descriptors

D.2.7 [Sotware Engineering]: Distribution, Maintenance, and

Enhancement; D.3.3 [Programming Languages]: Language

Contructs and Features – patterns.

General Terms

Design, Human Factors, Languages.

Keywords

Software refactoring, Aspect-oriented programming.

1. INTRODUCTION
When developing modern complex software, good design and

coding style are necessary but not sufficient prerequisites for

yielding optimal separation of concerns. Modern software often

includes concerns that cannot be modularized with the traditional

mechanisms of object-oriented (OO) languages such as Java. Such

concerns are usually called crosscutting concerns (CCCs) [6].

Examples include systems that use the services provided by

middleware and the implementation of various well-known design

patterns (e.g. Observer and Visitor) [11]. The source code related

to CCCs takes the form of multiple, duplicated code fragments

that are scattered throughout the modules of the system (e.g.,

methods, classes and packages), a phenomenon known as code

scattering [17]. In addition, CCCs give rise to code tangling, i.e.,

the scattered code fragments tend to be intertwined with the code

related to the primary functionality of the system, harming the

comprehensibility and ease of evolution of all concerns present in

the affected modules.

Aspect-Oriented Programming (AOP) [17] is an emergent

programming paradigm providing novel constructs that are

capable of eliminating code scattering and tangling by

modularizing CCCs in their own modules – called aspects [17].

Currently, many aspect-oriented languages are backwards

compatible extensions to existing languages. Of those, the most

mature is AspectJ [18][19][7], an extension to Java. Many design

dimensions of many of the more recent AOP tools betray a strong

influence from AspectJ. In addition to programming languages,

there are other kinds of tools, namely frameworks for middleware

services that use AOP technology [16]. Many of these tools use

plain Java and compose their services by way of XML files and

Java 5 annotations.

The availability of aspect-oriented extensions to existing

languages opens the way to refactor existing systems into aspect-

oriented versions of those systems. This paper contributes with

the beginnings of a pattern language for refactoring [3][10]

existing OO systems into AOP. To this purpose, the paper

proposes three patterns (Detect Crosscutting Concerns, Decide to

Refactor to Aspects, and Refactor Towards Aspect-Friendly

Code) that are intended to focus on the initial issues that arise

when considering the option to refactor an existing OO system to

AOP.

The rest of the paper is structured as follows. Section 2 overviews

the proposed pattern language, section 3 surveys the main

concepts of AOP and section 4 describes three of the patterns.

2. The Pattern Language
The pattern language – outlined in Figure 1 – comprises a set of

interdependent patterns that aim to help people developing and/or

maintaining software systems become aware of the problems they

will typically face when considering the possibility using AOP in

the future evolution of their systems. The patterns originate from

reading the existing literature, experience gained by the authors

and ongoing experiments.

Preliminary versions of these papers were workshopped at Pattern

Languages of Programming (PLoP) ’07 September 5–8, 2007,

Monticello, IL, USA. Permission to make digital or hard copies of all or

part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first

page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission. Copyright is held by the

authors. ISBN: 978-1-60558-411-9.

Figure 1. Relationships between the patterns.

To describe the patterns, we use the tried-and-tested format of

Name-Context-Problem-Forces-Solution-Examples. Prior to

describing the three patterns documented in this paper we start by

presenting an overview of the envisioned pattern language by

summarizing the intent of each pattern (Figure 1). Note that what

follows is a conservative estimation of the patterns, as it is likely

that more patterns will emerge from the ongoing process of

characterizing them.

Detect Crosscutting Concerns helps developers in diagnosing the

presence of CCCs in their systems, by describing the symptoms

and characteristics in source code that can serve as indicators for

the developer.

Decide to Refactor to Aspects helps developers to make an

informed decision about whether to use or not AOP refactoring to

extract aspects identified through Detect Crosscutting Concerns,

on the basis of the rough category of the detected CCC and the

capabilities of the available AOL. It calls into attention some

situations where it is advisable to avoid such a course of action.

Refactor Towards Aspect-friendly Code helps developers to

decide if they should first perform some preparatory, traditional

OO refactorings or if they can jump straight into AOP refactoring.

Refactoring Strategy helps developers to plan the refactoring

process, by pointing out the most typical phases and by providing

information about each phase. Refactoring Strategy is motivated

by the insight that modularity is a prerequisite for performing

certain kinds of code transformations, namely those that target

AOP specific constructs that compose aspect functionality to

multiple modules. It is significantly harder (or even impossible) to

perform certain kinds of “tidying up” transformations before the

modularization phase, i.e., while the implementation elements are

scattered throughout multiple modules. Thus, Refactoring

Strategy proposes that priority be given to the extraction of all

elements of the target CCC to a new aspect module – using

Extract CCC to an Aspect – after which it becomes feasible to use

Tidy Up Aspect Internals to perform a comprehensive tidying up

of the of the extracted aspect by focusing on improving its internal

structure.

As regards Extract CCC to an Aspect, It is important to keep in

mind that the first phase of refactoring to AOP is always one of

extraction, i.e., moving all elements of the target CCC to a new

aspect module. Extract CCC to an Aspect focuses on the specific

details of the aspect extraction process and provides tips on what

should be the order with which code fragments and class members

should be moved. The stress is on safety, i.e., on minimizing the

chances that existing behaviour is broken during the process.

Thus, Extract CCC to an Aspect follows the principles and spirit

advocated in Fowler’s book [10]. The refactoring process

proposed by Extract CCC to an Aspect was first proposed in [28].

A detailed example is described in [26].

Tidy Up Aspect Internals gives tips on dealing with potential

inadequacies in the internal structure of the aspect obtained

through Extract CCC to an Aspect. Tidy Up Aspect Internals is

motivated by the insight that the internal structure of extracted

aspects still corresponds to the original design of the CCC (e.g.,

the same class member duplicated in multiple classes). Such

designs tend to be strongly influenced by the original presence of

the scattering and tangling phenomena and may no longer make

sense after the CCC is modularized. Tidy Up Aspect Internals

calls into attention some symptoms that indicate that a

restructuring of the new module is desirable and provides tips on

what such restructurings should strive for.

3. CONCEPTS OF AOP
In this section, we provide an overview of the main concepts of

AOP. Code examples in AspectJ are used to illustrate.

3.1 Joinpoint
A joinpoint is a well-defined event in the execution of a program,

such as the call to a method, the access to an object field, the

execution of constructor, or the throwing of an exception. The

execution trace of a program can be approached as a sequence of

such events (see Figure 2).

pointcut accessX(): get(int Point.x);

Execution trace

joinpoint

Figure 2. Execution trace as a sequence of joinpoints,

some selected by a pointcut.

Some joinpoints are atomic in that no other joinpoint can

originate between the beginning of the joinpoint and its

conclusion. Examples include joinpoints “field get” and “field

set”. Other joinpoints have nested joinpoints, e.g., “method call”

and “method execution” joinpoints. Method call joinpoints are

different from method execution joinpoints, due to polymorphism

and dynamic method dispatch: the former are associated to the

points where calls are made, the later relate to the instruction

blocks that actually execute. Joinpoints are always properly

nested: two joinpoints are either disjoint or one is included in the

other. One of dimensions through which aspect-oriented

Detect Crosscutting

Concerns (CCC) Decide

to Refactor

to Aspects

is-related-to

patterns

Refactor Towards

Aspect-Friendly

Code

Refactoring

Strategy

Extract CCC

to Aspect

Tidy Up

Aspect Internals

extract it

be sure prepare first

tidy up

plan how to do

repeat

make sure there still are CCCs

languages (AOLs) are characterized is its joinpoint model, i.e., the

set of joinpoints it supports. AOLs strive to support joinpoints

that are relatively robust, i.e., joinpoints that do not break with

trivial editing operations on the source code. The kinds of

joinpoints supported by a given AOL comprise an open set, in the

sense that one can always discover one more kind – devising new,

more high-level and robust joinpoints is currently the subject of

research.

3.2 Pointcut
A pointcut is a declarative clause that specifies sets of joinpoints

(Figure 2). A pointcut can, for instance, specify all calls to public

methods, or the execution of methods that belong to a given class

and whose name starts with “set”. The following example shows a

pointcut capturing all calls to the public methods of

java.io.PrintStream having any number of arguments, void as

return type, and a name starting with “print”:

public pointcut allCalls2SystemOutPrints():
 call(public void java.io.PrintStream.print*(..));

As the places in the source code relating to the specified

joinpoints are non-contiguous, the set of captured joinpoints cuts

across the system’s structure. Pointcuts can be composed like

predicates, using operators &&, || and !, which express

(joinpoint) set union, set intersection and set complement

respectively. Some pointcuts serve to capture useful values from

the context of the joinpoint, such as method arguments, the

reference to the currently executing object, or the target of a

method call (see section 3.3 for an example).

In addition, many AOLs also provide to restrict the set of

joinpoints captured by other pointcuts, rather than specifying sets

of their own. The following example shows a pointcut similar to

the one above, but complemented with a within pointcut that

restricts captured calls to those that originate within the lexical

boundary of class Capsule.

public pointcut callsFromCapsule2SystemOutPrints():

 call(public void java.io.PrintStream.print*(..)) &&

 within(Capsule);

3.3 Advice
AOLs have the ability to execute additional behaviour before,

after, and, in some cases, instead of the captured joinpoints

(Figure 3). In some AOLs, the construct specifying the additional

behaviour is called advice. In AspectJ, advices are nameless

blocks of code, with the consequence that AspectJ advices are not

true first-class entities. In AspectJ, an around advice executes

instead of the captured joinpoint and can optionally execute the

original joinpoint by means of a call to proceed(). Next follows

the example of an around advice that executes instead of each

method call captured:

void around(): allCalls2SystemOutPrints() {
 System.out.println("message printed.");
}

To illustrate how context from the joinpoints can be captured and

used, we next show a pointcut similar to the first one but that also

captures the argument to the print method. In doing so, it also

restricts the set of captured joinpoints to those calls that receive

one argument of the specified type.

public pointcut messagesFromSystemOutPrint(Object message):

 allCalls2SystemOutPrints() && args(message);

before(): accessX() {

//do something…

}

joinpoint

Execution trace

Figure 3. Before advice executes

before each captured joinpoint.

The advice shown next adds square brackets to the beginning and

end of the messages originally sent to the console:

void around(Object msg): msgsFromSystemOutPrint(msg) {

 proceed("[" + msg.toString() + "]");

}

3.4 Aspect
In AOP, the term aspect is used to refer to the modular

implementation of a concern whose implementation would

otherwise cut across multiple modules. Often, aspect can be used

to refer to a concern that does not make sense to consider by

itself. Examples of such concerns include persistence,

synchronization, and indeed the most or all of the services

provided by middleware.

3.5 Dynamic and static crosscutting
One well-known characteristic definition of objects is that objects

encapsulate state and behaviour, both of which take the form of

class members, typically fields and methods. Often, the presence a

CCC gives rise to duplication and scattering of such members

throughout multiple classes. A distinction between static structure

and dynamic behaviour is often applied to the elements that an

aspect composes to the remaining modules of a system. The

ability of aspects to compose crosscutting behaviour to a given

system, e.g., by means of pointcuts and advices, is called dynamic

crosscutting. This ability is about composing behaviour. In

addition, many AOLs also have the ability to change or extend the

existing static structure of target classes, by declaring additional

fields and methods, or modifying subtype relationships (e.g., by

making a class to implement an extra interface). These

mechanisms to modify the static structure of existing modules are

called static crosscutting. In AspectJ, static crosscutting is mostly

supported by inter-type declarations, which provide aspects with

the ability to introduce additional members to a set of target

classes. Though the declarations are placed within the aspects, the

target classes are the owners of the introduced members. For

instance, the inter-type declaration shown next introduces to every

instance of class Server an additional field disabled, of type

boolean, initialized to false. Similar declarations can be made of

methods.

 private boolean Server.disabled = false;

The visibility of inter-type members is relative to the aspect, not

to target classes. When an AspectJ aspect declares an inter-type

member as private, only code within the aspect can use those

members, further reinforcing information hiding on the aspect

side. More detailed information about AOP concepts and AspectJ

can be found in the literature, namely in [27][17][18][19][7].

3.6 Weaving
Weaving is the name given to the phase in which aspect

functionality is composed with the remaining modules of the

system. The concrete stage when composition takes place (e.g.,

compile-time, load-time, runtime) and how that impacts on

language mechanisms depend on the language/tool design and the

implementation technologies. Some AOLs, including AspectJ,

were designed so that weaving is orthogonal to other facets of the

language. In AspectJ, weaving takes place at static time, which

can be compile time or class load time. On the other hand, the

weaving of Spring AOP is based on dynamic proxies and occurs

at runtime [12]. In addition, some AOLs provide specific

mechanisms for aspect instantiation (e.g., through the new

keyword), which entails some form of dynamic weaving and

enables programmers to control the concrete phases when aspects

are active. Other AOLs (AspectJ included) support implicit

instantiation, in which case aspects are always active by default

and finer control must be supported programmatically. Figure 4

shows the weaving process of AspectJ.

Java source Aspects source

Java bytecode Aspects bytecode

Java

Library

Aspects

LibraryAspectJ compiler

Weaver

Woven program

Figure 4. Compilation process with aspect weaving

4. THE PATTERNS
This section proposes the patterns Detect Crosscutting Concerns,

Decide to Refactor to Aspects and Refactor Towards Aspect-

Friendly Code.

4.1 Detect Crosscutting Concerns

4.1.1 Context
You are evolving an existing OO system. You notice symptoms in

the system that may be indicative of the presence of CCCs.

4.1.2 Problem
You want to assess if the symptoms do correspond to a CCC. In

addition, you want to be certain that a given concern, feature or

functionality comprises a CCC that is amenable to modularization

using the available AOL.

How does one recognize a CCC from hints and symptoms in the

source code?

How does one know that the CCC is of a kind that can be

effectively handled by the available AOL?

4.1.3 Forces
Paradigm shift. It may be hard for people not familiar with AOP

to recognize that a given concern can be further modularized

using aspects, even when she is facing problems of software

evolution caused by the presence of CCCs.

Confusion with bad style. Some of the symptoms that indicate

the presence of a CCC (e.g., code duplication) can also be

observed in code written in bad style or corresponding to a bad

design. In such cases, the right approach is to perform traditional

refactoring. In many situations, improving the design and

structure of the system exactly corresponds to Refactor Towards

Aspect-Friendly Code. In general, it is counter-productive to

attempt to extract aspects from systems before they are properly

refactored and decomposed.

Tool (im)maturity. The activity of discovering latent aspects in

existing systems is named aspect mining. Though aspect mining is

a vibrant research area, there are currently no mature tools to

discover aspect candidates, or such tools are not currently

integrated into existing development environments.

4.1.4 Solution
Ensure that the system is well decomposed. Start by making

sure that the system is written in good style and its design is sound

and clean not, Refactor Towards Aspect-Friendly Code before

considering extracting CCCs from it. This may amount to simply

applying traditional refactoring [10] to the system in order to

make it better decomposed, as there is a fortunate alignment

between good OO style and aspect-friendliness. If, however, the

system is already well decomposed or it keeps showing the

symptoms of crosscutting after using Refactor Towards Aspect-

Friendly Code, you most likely detected a CCC waiting to be

extracted to an aspect.

Duplication. See if the system has multiple snippets of boiler-

plate code scattered throughout multiple methods that are clearly

related to the same concern (e.g., writing the object states on the

database, registering the event on the logger or interfacing with

some middleware). If the code snippets are all similar or identical,

you are in the presence of a homogeneous CCC, the most

straightforward example of a CCC.

Product Line Feature. If, on the other hand, the concern

comprises multiple code fragments that are all related but

dissimilar, you may be in the presence of a heterogeneous CCC

(most likely a product line feature). Not all AOLs handle that

kind of concern effectively. Before refactoring, be sure that your

AOL is one that does. If it isn’t, don’t Decide to Refactor to

Aspects.

Code smells. Two of the code smells proposed in Fowler’s book

on refactoring [10] are indicative of the presence of CCCs:

Divergent Change (a class or method that suffers many kinds of

changes) is indicative of code tangling, while Shotgun Surgery

(one change that alters many classes) is indicative of code

scattering. In [15], Kerievsky proposes a variant of Shotgun

Surgery that he calls Solution Sprawl, noting that they are similar

but sensed differently: “we become aware of Solution Sprawl by

observing it, while we detect Shogun Surgery by doing it”.

Though these smells can also be the result of bad style in design

and programming, it is worth checking whether they are indicative

of a CCC.

Role based collaborations. Role-based collaborations between

objects, such as those that usually result from the implementation

of some well-known design patterns [11], may be also CCCs. If

you notice that several classes contain code that is not related to

their core functionality (e.g., they also notify observer objects of

changes in state or also send messages to a mediator object),

check whether the code associated with the secondary role relates

to a CCC.

4.1.5 Examples

4.1.5.1 Duplicated boiler-plate code
In the past, it was suggested that middleware provides “the killer

application” of AOP, since most or all of the services provided by

middleware are crosscutting by nature. Probably as a

consequence, some of the most widely adopted AOP tools are

frameworks for middleware services, namely JBoss AOP1,

Aspectwerkz2, and Spring3. Already in her seminal work,

Lopes [21] uses the examples of synchronization and distribution

to illustrate the causes of code tangling.

public String businessMethod(String input) {
 //Logging
 System.out.println(
 "Logging: entering business method with:" + input);

 //Authorization:
 //Security check for authorization of business-method)

 //transactionality
 try {
 System.out.println(
 "Transactionality: Start new session and transaction");

 System.out.println("\nSome business logic\n");

 System.out.println(
 "Transactionality: Commit transaction");
 } catch (Exception e) {
 System.err.println(
 "Transactionality: Rollback transaction");
 } finally {
 System.out.println("Transactionality: Close session");
 }
 //Logging
 System.out.println(
 "Logging: exiting business method with:" + input);
 return input;
}

Listing 1. Method with CCCs security, logging and

transactionality.

1 http://labs.jboss.com/jbossaop/
2 http://aspectwerkz.codehaus.org/
3 http://www.springframework.org/

In Listing 1, a simple code sketch of a CCC is shown, comprising

a method with three typical CCCs – security, logging and

transactionality – in which code related to CCCs is shaded. The

example is taken from an online article by Ghag [12], which

shows how the Spring 2.0 framework can be used to modularize

the three CCCs involved. The example is here adapted to AspectJ.

The method from Listing 1 illustrates the typical CCCs that early

AOLs such as AspectJ are very effective in modularizing –

fragments of boiler-plate code tangled with the core (business)

logic of the method. To get an idea of the full impact of the CCCs

across the whole system, picture many such fragments duplicated

in many methods of the class, and the same scenario taking place

in many of the other classes of the system. An important point to

be taken is that such phenomena of tangling and scattering are

observable even in systems that are well decomposed (e.g.

according to the style proposed by Fowler et al [10]).

public aspect Logging {
 pointcut operations():
 execution(* com.myorg.framework.MyServices.*(..));
 //Logging
 before(String input): operations() && args(input) {
 System.out.println("Logging: enter business method with:"
 + input);
 }
 after(String input): operations() && args(input) {
 System.out.println("Logging: exit business method with:"
 + input);
 }
}

Listing 2. Logging aspect for the example of Listing 1.

public aspect Authorization {
 pointcut operations():
 execution(* com.myorg.springaop.examples.MyServices.*(..));
 void around(): operations() {
 boolean permissionGranted;
 //Authorization:
 //Security check for authorization of business-method
 if(permissionGranted)
 proceed(); //proceed with the operation
 else
 //notify that permission is denied
 }}

Listing 3. Authorization aspect for the example of Listing 1.

public aspect Transactionality {
 pointcut operations():
 execution(* com.myorg.framework.MyServices.*(..));
 void around(): operations() {
 //transactionality
 try {
 System.out.println("Transaction: Start new transaction");
 proceed(); //carry out the core logic
 System.out.println("Transactionality: Commit");
 }
 catch(Exception e) {
 System.err.println("Transactionality: Rollback");
 }
 finally { System.out.println("Transactionality: Close session"); }
 return result;
 }
}

Listing 4. Transactionality aspect for the example of Listing 1.

Listings 2–4 show each of the CCCs modularized into its own

AspectJ module. Listing 5 shows the Java method with the core

logic, after the extraction of the CCCs.

 public String businessMethod(String input) {
 System.out.println("\nSome business logic\n");
 return input;
 }

Listing 5. Method clean of CCCs.

Finally, there remains the issue of dealing with the order with

which aspects compose their functionality (briefly mentioned but

not considered in [12]). The AspectJ solution uses the declare

precedence mechanism shown in Listing 6. In order to further

ensure good separation of concerns, it is placed in a separate

aspect in this case.

public aspect AspectPrecedence {
 declare precedence: Logging, Authorization, Transactionality;
}

Listing 6. Specifying precedence of aspects.

4.1.5.2 Duplicated boiler plate code
Bruntink et al [4] report on the use of the technique of clone

detection to automatically identify and locate CCCs in source

code. The reported case study is an industrial C system. The

authors conclude that looking for boiler plate code is indeed a

promising approach to detect latent aspects in existing systems.

4.1.5.3 Role-based collaborations
One hint on the existence of secondary roles is provided by the

implementation of Java interfaces. Java programmers often use

interfaces to model secondary roles played by objects. Such

secondary roles are generally hard-wired to the core concern and

cannot be unplugged from it. Often, more than one class

implements the interface, in which case the implementation of the

interface is crosscutting [30].

4.1.5.4 OO implementation of design patterns
The traditional OO implementations of several design patterns are

also CCCs [14][24]. The benefits brought from enhanced

modularity tend to be felt most strongly in patterns whose solution

gives rise to crosscutting of some form, including one object

playing multiple roles, many objects playing one role, or an object

playing roles in multiple pattern instances. Thus, the

implementations of some patterns comprise examples of role-

based collaborations.

Observer [11] is among the most often cited examples, as it

defines two different roles, typically assigned to different classes.

Observer models a collaboration between objects playing one of

two roles, subject and observer. Aspects can effectively

modularize such collaborations [14]. Other patterns also derive

similar benefits, namely Chain of Responsibility and Mediator. In

some cases, the implementation of the pattern completely

“disappears”, as the language mechanisms can directly implement

the intended functionality. Decorator, Strategy and Visitor are

examples to some extent. However, it is important to note that the

derived benefit from implementing the pattern with AOP may

depend on the particular requirements and circumstances of the

instance of the pattern [25].

4.1.6 Consequences
By being aware of the CCC, developers are in a better position to

handle it in a suitable manner throughout the future evolution of

the system, independently of whether they Decide to Refactor to

Aspects (or not).

4.1.7 Known uses
The original paper that proposes AOP [17], Kiczales et al

describes several instances of code tangling, identifying CCCs as

their root cause. They distinguish between components and

aspects. In this context, components are the units of modularity

supported by the base language, such as objects, procedures and

APIs; and (latent) aspects are concerns that tend not to be units of

modularity in the system’s functional decomposition, but rather be

properties that affect the performance or semantics of the

components in systemic ways. In their seminal paper, Kiczales et

al [17] propose the examples shown in Table 1. Note that not all

the examples of CCCs from Table 1 could be suitably

implemented with a language such as AspectJ (e.g., loop fusion).

The purpose of the examples is to provide a broad idea of what

can be a CCC.

Table 1. Examples of crosscutting concerns proposed in [17]

application
component

language
component aspects

image

processing
procedural filters

loop fusion,

result sharing,

compile-time

memory

allocation

digital

library
OO

repositories,

printers,

services

minimizing

network traffic,

synchronization,

failure handling

matrix

algorithms
procedural

linear

algebra

operations

matrix

representation,

permutation,

floating point

error

4.2 Decide to refactor to aspects

4.2.1 Context
You are evolving an existing OO system in which you detected

the presence of CCCs.

4.2.2 Problem
You would like to know whether the combination of your system

and the available AOL make for a good candidate for resorting to

aspect-oriented refactoring.

What are the conditions that a given system must meet to be a

good refactoring candidate?

Do the available tools make it feasible to undertake a refactoring

to aspects?

4.2.3 Forces
Availability of an AOP extension. Refactoring to aspects

requires the availability of an aspect-oriented extension of the

original OO language in which the system is written.

Maturity of the tool used. Many AOLs are proof-of-concept

tools developed in the context of academic and research projects.

In most cases, it is not practical to rely on such immature and

untested tools. One possible exception to this rule is when the

team developing the application is also developing the language

or has a close relationship with the developers of the AOL.

Skills of the team members. Using AOP technology requires

specialized skills that cannot be taken for granted on the part of

the majority of programmers. Acquiring AOP skills is a time-

consuming task that involves a paradigm shift and requires a non-

trivial effort. The upfront cost may not warrant the switch to AOP

in some cases.

Cost. Refactoring takes time and effort to perform.

Assessment issues. The first phase of refactoring an existing OO

system to AOP is not about changing the existing decomposition,

but merely about extracting code that relates to the target CCC. If

you feel that a first phase entails more than mere extraction, this

may be a sign that Refactor Towards Aspect-friendly Code should

be used first. Prior to extraction, the team must precisely identify

and locate all elements relating to a given CCC, or be confident

that they can be easily detected was the team goes along with the

refactoring process. Only after making a thorough assessment of

the target CCC is the team in a position to make a reasonably

accurate estimate of how much effort and cost it takes to perform

the extraction.

Flexibility of the refactoring process. There is no need to

perform a large refactoring at one go. Often, a large and complex

refactoring can be performed as a series of small contributions

possibly spanning many weeks or months. This provides the

opportunity to perform the refactorings when time is more readily

available.

(lack of) Tool support. Presently, there is no tool support for

AOP refactoring, be they aspect-aware versions of traditional

refactorings [10] or AOP-specific refactorings [28][20][13].

Though developers can still use present tools to perform

traditional OO refactorings, that is unsafe and developers will

need to check whether the logic of existing aspects was affected in

each case. In practice, refactoring to aspects presently entails

performing the refactorings manually, without the support from

tools or with only limited and unsafe support.

Test coverage. Good test coverage is a prerequisite for all

refactoring processes and AOP does not change this. In the case

of legacy systems that are not covered by tests, developers face a

chicken-and-egg problem, as experience shows that code not

covered by tests is often not as amenable to unit-testing, and it

usually requires preparatory refactorings. The need for such

refactorings is another case for using Refactor Towards Aspect-

friendly Code. See also [8] for techniques to deal with code

devoid of unit tests.

Compositional power of the available AOL. CCCs can be

classified into two broad categories: homogeneous and

heterogeneous CCCs [22]. A homogeneous CCC is a concern in

which the same or very similar behaviour needs to occur at

multiple points in the control flow of a software system. A

heterogeneous CCC is a concern that impacts multiple points in a

software system, but where the behaviour that needs to occur at

each of those points is different. This distinction is important,

because early AOLs (including AspectJ) do not modularize

heterogeneous CCCs as effectively as homogeneous CCCs. One

reason for this is that the mechanisms for static crosscutting of

those AOLs are not as powerful or expressive as their mechanisms

for dynamic crosscutting. Therefore developers must assess

whether the available AOL can effectively handle the CCCs

discovered from applying Detect Crosscutting Concerns, lest they

fall into the trap of trying to extract a kind of CCC that is not

handled effectively by the AOL at hand.

Legal issues. Though aspects modularize CCCs at the conceptual

and source code levels, this is often not the case at the binary

level, depending on the weaving technology used. In many cases,

the weaving phase inserts new sections of code into the binary

representations of the modules affected by the aspect. For this

reason, weaving a third-party component often violates the license

under which the component is provided. Though many such legal

hurdles can be solved by technical solutions (for instance, by

judiciously selecting pointcuts that affect only code to which the

team is legally entitled to change), there are cases in which easy

turnarounds are awkward or unavailable, making it impractical to

perform the refactoring.

Enhanced flexibilty of evolution and maintenance. A system

with CCCs localized within aspects has an improved modularity

and is devoid of the scattering and tangling effects. The number of

modules is likely to increase, as more concerns are placed in their

own modules and representation of the concerns as first-class

entities is enriched. Duplication is often reduced or eliminated.

All this has positive consequences to the evolution and

maintenance of both the core concerns and CCCs.

4.2.4 Solution
Assess whether all conditions to make a refactoring feasible are

met and be aware of its positive and negative consequences. Then

make a decision, and, if yes, proceed with the refactoring process.

Your OOP system is a good candidate for refactoring to AOP if

the members of your team are aware of the presence of CCCs in

your system, whose evolution is proving costly and/or

troublesome.

If no AOP extension to the language in which your system is

written is available, don’t Decide to Refactor to Aspects. If an

AOP extension is available, the option of going ahead can be

justified if the following conditions apply:

 The AOP extension to the language in which your system is

written to is considered mature enough for your purposes.

 Your system is already well-decomposed according to the

design principles and style proposed in [10]. If it is not, first

Refactor Towards Aspect-Friendly Code.

 Your team identified and located precisely the various

scattered elements that relate to the CCC, or is confident that

they can be located in a straightforward manner as the team

goes along with the process.

 There is good coverage of unit tests, at least in the areas of

functionality affected by the CCC.

Most CCCs lie between the two extremes of a continuum between

entirely homogeneous CCCs and entirely heterogeneous

CCCs [22]. The developer team must decide whether, in their

particular case, the CCC warrants its extraction to an aspect. As a

rule, CCCs that require mostly dynamic crosscutting are handled

effectively by most AOLs.

4.2.5 Examples
Monteiro describes a CCC that proved to be inadequate for

refactoring to AspectJ [23]. Some of the symptoms of the

awkwardness of the result of an attempt to extract it to an aspect

are described in [27].

4.2.6 Consequences
No turning back. Once the system is made to evolve to AOP, it is

hard and costly to reverse this particular evolution step.

Less mature tool support. Available tool support for evolving

the system may be less mature than for the OO version of the

system.

Permanent need for AOP skills within the team. In order to

maintain the system, the team will need to permanently include

one or several members knowledgeable in the AOL used and

associated tools.

Enhanced evolvability. The source code of the system is cleaner

and free from the scattering and tangling effects, and therefore

understandability and maintainability are made easier.

4.2.7 Known uses
AspectJ. AspectJ [1][18][19] is a good example of an AOL being

used in industrial projects. Colyer and Clement describe lessons

learned while refactoring a large IBM middleware platform [6].

Zhang and Jacobsen report on the aspectization of ORBacus4, an

open source industrial implementation of the CORBA middleware

platform [32]. Tonella and Ceccato treat the implementation of

Java interfaces as a CCC and report on the results of an extraction

experiment targeting three packages from the standard library of

the Java 2 Runtime Environment Standard Edition [30].

Other AOLs. Published work about refactoring to AOP is not

confined to the Java universe. Mortensen, Ghosh and Bieman

report on their experiences of refactoring to AspectC++ two VLSI

CAD applications written in C++ [29]. They also provide details

on the techniques used for ensuring proper test coverage.

Bruntink Deursen and Tourwé report on their experience in

migrating CCCs of a large-scale C system into AspectC [5].

4.3 Refactor Towards Aspect-Friendly Code

4.3.1 Context
You have an OO system with one or several CCCs and you

decided that you want to refactor it to an AOP extension of the

existing language.

4.3.2 Problem
You would like to assess whether the system in its current form is

ripe for refactoring to that AOL as it is, or whether some prior

refactoring is required.

Will the present structure of the system constrain the refactoring

process? If so, what should be the course of action?

4 ORBacus, http://www.iona.com.

4.3.3 Forces
Lack of joinpoint leverage. Extracting a code fragment from a

method entails creating a pointcut that captures a joinpoint that

corresponds to a point behaviourally equivalent to where the

fragment is placed, or extending an existing pointcut. The code

base may not expose suitable joinpoints. For instance, it is much

simpler to move elements that are first-class members (such as

fields and methods) than to move code fragments from the middle

of long method. Prior refactoring may be required in such cases,

to make the code base more amenable to the composition of

aspects, using Refactor Towards Aspect-Friendly Code.

Present design and style of the target system. Experience gained

in the latest few years tells that good OO design and coding style

are important prerequisites for refactoring to AOP [23][31]. The

more well-decomposed a system is, the greater the likelihood that

it exposes all desirable joinpoints. Unfortunately, many existing

systems are not well decomposed [9], again requiring prior use of

Refactor Towards Aspect-Friendly Code.

Time available to refactor. Refactoring takes time but can be

performed in phases. By itself, refactoring just to make a system

aspect friendly yields no aspects but yields its own benefits.

Benefits of traditional OO refactoring. Refactoring to a better

style or design brings benefits to understandability,

maintainability and ease of evolution that are independent of

whether you Decide to Refactor to Aspects or not.

4.3.4 Solution
Before going ahead with AOP refactorings, ensure that your

system is already well-decomposed according to the current

notions of good OO style. Fowler’s book [10] provides a

catalogue of 72 refactorings that can be used to perform such a

decomposition, as well as a collection of 22 bad smells that

indicate the kinds of situation in the code that warrant the use of

the refactorings. Typical examples of such smells are: Duplicated

Code, Long Method and Large Class.

4.3.5 Consequences
Once the code base is further decomposed, it is more likely to

expose the joinpoints needed by potential aspects.

In some cases, duplication initially deemed to be caused by CCCs

may be removed, eliminating the motivation to refactor to aspects.

The resulting system is easier to reason with and evolve,

independently of the initial motivation being to make the system

more aspect-friendly.

4.3.6 Known uses
Large repository of testimonies. The aspectj-users mailing list

[2] has lots of posts describing awkward situations that are solved

by refactoring the code base in order to expose the desirable

joinpoints.

When discussing insights acquired from analyzing a Java

framework, Monteiro [23] notes that good OO style – in the sense

proposed by Fowler et al [10] – is a precondition for applying

AOP and briefly discusses the subject. If, for instance, the system

has many instances of the Large Class and Long Method code

smells [10], the team risks facing situations in which most or all

of the elements of the CCC are hard-to-reason-with and hard-to-

disentangle fragments “swimming” in a sea of unrelated code.

Yuen and Robillard reach conclusions similar to those of

Monteiro [23] on the basis of experiments that included locating

and extracting two CCCs from an open-source Java project [31].

5. CONCLUSION
This paper proposes three patterns of an incipient pattern

language for refactoring an existing system into the aspect-

oriented paradigm. The patterns focus on the early assessment and

decision stages. Detect Crosscutting Concerns guides provides

advice on how to identify latent aspects in a software system.

Decide to Refactor to Aspects describe the situations in which it is

feasible to refactor to aspects. Refactor Towards Aspect-Friendly

Code provides advice on how to assess whether the necessary

prerequisites for a refactoring process are met.

6. ACKNOWLEDGMENTS
The authors would like to thank Peter Sommerlad (our PLoP’07

shepherd), Ralph Johnson, Atul Jain, Hridesh Rajan, Berna L.

Massingill and Mark Mahoney for the valuable feedback provided

on earlier versions of this paper.

This work was partially supported by project AMADEUS

(POCTI, PTDC/EIA/ 70271/2006) funded by Portuguese

Fundação para a Ciência e Tecnologia.

7. REFERENCES
[1] AspectJ home page. http://www.eclipse.org/aspectj/

[2] AspectJ users mailing list,

https://dev.eclipse.org/mailman/listinfo/aspectj-users

[3] Refactoring home page. http://www.refactoring.com/

[4] Bruntink M., Deursen A.v., Engelen R., Tourwé T. (2005).

On the Use of Clone Detection for Identifying Crosscutting

Concern Code. In IEEE Transactions of Software

Engineering, (Vol. 31, No. 10), pages 804-818.

[5] Bruntink M., Deursen A.v., Tourwé T. (2004). Isolating

Crosscutting Concerns in System Software, In proceedings of

the WCRE 2004 Workshop on Aspect Reverse Engineering

(WARE), Delft, The Netherlands.

[6] Colyer A., Clement A. (2004) Large-scale AOSD for

Middleware. In proceedings of AOSD 2004, pages 56-65,

Lancaster, UK.

[7] Colyer A, Clement A., Harley G., Webster M. (2004) Eclipse

AspectJ: Aspect-Oriented Programming with AspectJ and the

Eclipse AspectJ Development Tools. Addison Wesley.

[8] Feathers M. (2004). Working effectively with legacy code.

Prentice Hall.

[9] Foote B., Yoder J. (1999). Big Ball of Mud. In proceedings

of PLoP '97, Monticello, Illinois.

[10] Fowler M., Beck K., Opdyke W., Roberts D. (1999).

Refactoring – Improving the Design of Existing Code.

Addison Wesley.

[11] Gamma E, Helm R, Johnson R, Vlissides J. (1995) Design

Patterns, Elements of Reusable Object-Oriented Software.

Addison-Wesley.

[12] Ghag, G. (2007). Implement crosscutting concerns using

Spring 2.0 AOP. Javaworld.

http://www.javaworld.com/javaworld/jw-01-2007/jw-0105-

aop.html

[13] Hanenberg S, Oberschulte C, Unland R. (2003) Refactoring

of aspect-oriented software. In proceedings of

Net.ObjectDays, Thuringia, Germany.

[14] Hannemann J., Kiczales G. (2002). Design Pattern

Implementation in Java and AspectJ. In proceedings of

OOPSLA 2002, Seattle, USA, ACM press, pages 161-173.

[15] Kerievsky J. (2004). Refactoring to Patterns, Addison-

Wesley.

[16] Kersten, M. (2005). AOP tools comparison, Part 1.

Developerworks.

http://www.ibm.com/developerworks/java/library/j-

aopwork1/index.html

[17] Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C,

Loingtier J, Irwin J. (1997) Aspect-oriented programming. In

Proceedings of ECOOP 1997, Jyväskylä, Finland (LNCS,

vol. 1241), Springer; pages 220–242.

[18] Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J,

Griswold WG. An overview of AspectJ. In proceedings of

ECOOP 2001, Budapest, Hungary, (LNCS, vol. 2072),

Springer; 327–335.

[19] Laddad R. (2003) AspectJ in Action – Practical Aspect-

Oriented Programming. Manning.

[20] Laddad R. (2003) Aspect-Oriented Refactoring, parts 1 and

2, The Server Side, 2003. www.theserverside.com/

[21] Lopes C. V. (1997). D: A Language Framework for

Distributed Computing, Ph.D. thesis, College of Computer

Science, Northeastern University, Boston, USA.

[22] Lopez-Herrejon R., Apel S. (2007). Measuring and

Characterizing Crosscutting in Aspect-Based Programs:

Basic Metrics and Case Studies. In proceedings of FASE

2007 at ETAPS 2007, pages 422-437.

[23] Monteiro MP. (2005) Refactorings to evolve object-oriented

systems with aspect-oriented concepts. PhD thesis,

Universidade do Minho, Portugal.

[24] Monteiro M.P. (2006). Using Design Patterns as Indicators

of Refactoring Opportunities (to Aspects). In proceedings of

the LATEr 2006 workshop at AOSD 2006, Bonn, Germany.

[25] Monteiro M. P., Fernandes J. M. (2004) Pitfalls of AspectJ

Implementations of Some of the Gang-of-Four Design

Patterns. In proceedings of the DSOA’2004 workshop at

JISBD 2004, Málaga, Spain.

[26] Monteiro M. P., Fernandes J. M. (2005) Refactoring a Java

Code Base to AspectJ – An Ilustrative Example. In

proceedings of ICSM’05 pages 17–26, Budapest, Hungary.

[27] Monteiro M. P., Fernandes J. M., Object-to-Aspect

Refactorings for Feature Extraction, Industry track paper at

the 3rd International Conference on Aspect-Oriented

Software Development (AOSD 2004), Lancaster, UK, March

2004.

[28] Monteiro M.P., Fernandes J. M. (2005) Towards a Catalogue

of Aspect-Oriented Refactorings. In proceedings of AOSD

2005, pages. 111-122. Chicago, USA.

[29] Mortensen M., Ghosh S.,. Bieman J.M. (2006). Testing

During Refactoring: Adding Aspects to Legacy Systems. In

proceedings of the Industry track of AOSD 2006, Bonn,

Germany.

[30] Tonella P., Ceccato M. (2004). Migrating Interface

Implementation to Aspects. In proceedings of ICSM’04,

pages 220-229, Chicago, USA.

[31] Yuen I., Robillard M. (2007). Bridging the Gap between

Aspect Mining and Refactoring. In proceedings of the LATE

2007 workshop, Vancouver, Canada.

[32] Zhang C., Jacobsen H.A. (2003). Refactoring Middleware

with Aspects. IEEE Transactions on Parallel and Distributed

Systems, November 2003 (Vol. 14, No. 11), pages 1058-

1073.

