
Patterns for Consistent Software Documentation

Filipe Figueiredo Correia
Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n
filipe.correia@fe.up.pt

Hugo Sereno Ferreira
Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n
hugo.sereno@fe.up.pt

Nuno Flores
Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n
nuno.flores@fe.up.pt

Ademar Aguiar
Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n

ademar.aguiar@fe.up.pt

ABSTRACT
Documentation is an important part of the captured knowl-
edge of a software project, providing a flexible and effec-
tive way of recording informal contents. However, maintain-
ing documentation’s consistency raises several issues. The
present pattern language describes complementary solutions
for managing and ensuring the consistency of software doc-
umentation, by focusing on different tools and approaches
which support such activities. Ten distinct patterns and
their relations are described — Views, Transclusion, Links,
Single Source, Heterogeneous Document, Synchronous
Co-Evolution, Time-Shifted Co-Evolution, Auditable
Document, Domain-Structured Information and In-
tegrated Environment.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Documentation; D.2.11 [Software Architectures]: Pat-
terns

1. INTRODUCTION
Artifacts derived from the process of software development
are forms of captured knowledge. They are of different na-
tures, they capture several types of knowledge. Some of
them are more structured and formal and thus specialized;
others are more flexible and may be used to express virtually
any intended topic.

Documentation is as valuable as its ability to convey accu-
rate information. It is therefore imperative to assure that
it remains consistent. Yet, current production of software
documentation still typically focuses on capturing informal,
unstructured, human-oriented information. Therefore, en-
suring its consistency reveals to be a process both hard to
automate, and highly dependent upon human intervention.

Also, it’s usual for software systems to be frequently evolv-
ing, thus requiring changes in code artifacts along with re-
lated documentation (e.g. requirements, architecture and
design documents). In fact, one of the highest costs of main-
taining documentation for a large system is ensuring it’s kept
in-sync with its related artifacts, a practice that may require
continuous review.

In this context, inconsistencies essentially occur when a par-
ticular information evolves without the co-evolution of re-
lated parts. Among several other reasons, this happens be-
cause (a) the author lacks a global knowledge of all artifact
dependencies, (b) a particular change cascades into multiple
other changes, thus hardening the task of manually tracking
them, or (c) as a deliberate way of reducing the maintenance
effort.

Some patterns which address the topic of software docu-
mentation have already been documented. The book “Agile
Documentation: A Pattern Guide to Producing Lightweight
Documents for Software Projects” [14] introduces a set of
patterns, covering a wide scope of concerns in the production
of software documentation. The pattern language “Patterns
for Documenting Frameworks” [1, 3, 4, 5, 6] has focused on
framework documentation in particular.

Although having things in common with the aforementioned
works, the patterns presented in this paper address software
documentation from a consistency standpoint, while not dis-
regarding other important issues. They are meant to help
both the documentation producers to select the right tools,
and tool developers to implement the most appropriate tech-
niques.

2. OVERVIEW
Figure 1 depicts an overview of the pattern language, pre-
senting each pattern and the relationships between them.
They are organized in groups which reflect similarities be-
tween both their contexts and the problems they address.

2.1 Information Proximity Patterns
Software documentation may include the same information
in different documents, produced for different purposes. How-
ever, the relations among these dependent pieces of informa-



Information Proximity

Evolution

Heterogenous
Document

Views LinksTransclusion

Synchronous
Co-Evolution

Auditable
Document

Time-Shifted
Co-Evolution

Domain-Structured 
Information

Integrated
Environment

supports

supports

converge to

contributes to

helps

alternative to uses

contributes to

Single
Source

Figure 1: Overview map of consistency patterns and their relationships.

tion only exist implicitly. This may happen because (a) the
process hasn’t yet led the authors to explicitly capture such
contents, (b) they may have appeared at different times or
(c) they were produced using different tools. With no way of
recovering these relations, the effort of maintaining consis-
tency increases, as information is duplicated and scattered
over several documents.

The class of patterns that keep related contents at close
range, in order to facilitate their maintenance, is called In-
formation Proximity Patterns. While all these patterns fo-
cus on establishing relations among different artifacts, they
may have to be brought into balance with the overall goal
of documentation: to capture concise and targeted informa-
tion.

2.2 Evolution Patterns
Software artifacts change to better respond to new needs,
and documentation is required to accompany this evolution.
However, due to the aforementioned intrinsic relations be-
tween different parts of documentation, it is common that
locally introduced changes may render related pieces incon-
sistent or obsolete.

Evolution Patterns focus on the strategies to update related
parts of documentation, considering the moment in which
it should be done. While maintaining documentation con-
sistency at all times ensures the value of documentation is
kept, it might not always be cost-effective, and deferring
these tasks may reveal to be the most appropriate option.

Furthermore, documentation may be written cooperatively
by different producers (i.e. towards the same goal), often
resulting in the lack of a global view of their contributions.
Awareness of what contributions have been made, where,
and by whom, allows to track changes and possible defer
consistency maintenance tasks for a later time.

3. VIEWS
In software documentation, the description of artifacts can
be captured using different documents, which have differ-

ent purposes. Maintaining them consistent requires an non-
neglectable effort. As documentation evolves, such effort
rises due to the proliferation of duplicate and related con-
tents.

This pattern considers that a document is being produced
and all of its contents originate from external artifacts.

3.1 Problem
How to preserve documentation consistency when fragments
of related contents are scattered across documents?

This issue appears from the need of having multiple uses of
the same information, across a set of different documents,
although there would be advantages in capturing a single
existence, to ease maintenance.

Achieving an appropriate separation of concerns is also a
relevant issue, in which case individual fragments of infor-
mation could be reused more easily. However, the associated
effort might not be negligible, specially when tailoring arti-
facts for different contexts while maintaining an high fitness
for purpose.

3.2 Solution
Create a virtual document, composed by different individual
fragments of information.

Views may be called virtual documents, as they have no con-
tent of their own. Instead, they combine contents by weaving
them together according to a desired format. It is a form of
virtual information proximity in the sense that contents are
stored separately, even though they are presented together
to the readers.

The following consequences should be considered when ap-
plying this pattern:

Document-Oriented. Although leading to the creation of
individual information fragments, the intended result
provides a cohesive document to the reader.



Reuse. Abstracting information into individual units also
allows them to be reused more effectively.

Information Proximity. Information that is created and
stored separately is presented to the reader in close
range of each other, simplifying consistency mainte-
nance.

Effort. The flow of creating documentation may be hin-
dered if authors are faced with the need to abstract
existing information into new distinct units.

This pattern may be used to create an Heterogeneous
Document, even though the view’s contents would not nec-
essarily be of different types.

As every other Information Proximity pattern, it helps Evo-
lution, because keeping related contents at close range helps
changing them altogether. Moreover, the creation of differ-
ent information fragments frequently converges to Domain-
Structured Information, which also supports evolution,
by providing a richer base of trackable information.

As with the other patterns in this pattern language, this
pattern greatly benefits from an appropriate tool support,
which may be leveraged by an Integrated Environment.

3.3 Known Uses
Views are frequently the product of an automatic generation
process, in which several contents are combined according
to a pre-established document form — some tools exist that
support this approach [9].

4. TRANSCLUSION
In software documentation, the description of artifacts can
be captured using different documents, which have differ-
ent purposes. Maintaining them consistent requires an non-
neglectable effort. As documentation evolves, such effort
rises due to the proliferation of duplicate and related con-
tents.

This pattern considers that a document is being produced
and portions of its contents are imported from other doc-
uments.

4.1 Problem
How to preserve documentation consistency when fragments
of related contents are scattered across documents?

This issue appears from the need of having multiple uses of
the same information, across a set of different documents,
although there would be advantages in capturing a single
existence, to ease maintenance.

Achieving an appropriate separation of concerns is also a
relevant issue, in which case individual fragments of infor-
mation could be reused more easily. However, the associated
effort might not be negligible, specially when tailoring arti-
facts for different contexts while maintaining an high fitness
for purpose.

4.2 Solution
Include the contents of an information fragment in a docu-
ment by using a reference to it.

By isolating fragments of information as individual units,
one eases their use for different purposes. Transclusion con-
sists in creating references to information fragments on a
document, in such a way that they are presented to the
reader as part of the document itself.

The following consequences should be considered when ap-
plying this pattern:

Document-Oriented. Although leading to the creation of
individual information fragments, the intended result
provides a cohesive document to the reader.

Reuse. Abstracting information into individual units also
allows them to be reused more effectively.

Information Proximity. Information that is created and
stored separately is presented to the reader in close
range of each other, simplifying consistency mainte-
nance.

Effort. The flow of creating documentation may be hin-
dered if authors are faced with the need to abstract
existing information into new distinct units.

This pattern may be used to create an Heterogeneous
Document, even though the view’s contents would not nec-
essarily be of different types.

As every other Information Proximity pattern, this pattern
helps Evolution, as keeping related contents at close range
helps changing them altogether. Moreover, the creation
of different information fragments frequently converges to
Domain-Structured Information, which also supports
evolution, by providing a richer base of trackable informa-
tion.

As with the other patterns in this pattern language, this
pattern greatly benefits from an appropriate tool support,
which may be leveraged by an Integrated Environment.

This pattern is similar to Import by Reference [14], al-
though it focuses on consistency maintenance.

4.3 Known Uses
The concept of Transclusion appeared in the context of
hypertext-based systems, and it’s still used nowadays. For
example, Mediawiki, the wiki engine powering Wikipedia,
uses this concept to allow the inclusion of repetitive blocks
of content.

Another example is that of Literate Programming (LP) [13].
These approaches provide means of creating information
fragments — chunks – which can then be (re)used multi-
ple times across several documents.



5. LINKS
In software documentation, the description of artifacts can
be captured using different documents, which have differ-
ent purposes. Maintaining them consistent requires an non-
neglectable effort. As documentation evolves, such effort
rises due to the proliferation of duplicate and related con-
tents.

This pattern considers that a document is being produced
and its contents are related with other contents, though they
are not meant to be part of the document being au-
thored.

5.1 Problem
How to preserve documentation consistency when fragments
of related contents are scattered across documents?

This issue appears from the need of having multiple uses of
the same information, across a set of different documents,
although there would be advantages in capturing a single
existence, to ease maintenance.

Achieving an appropriate separation of concerns is also a
relevant issue, in which case individual fragments of infor-
mation could be reused more easily. However, the associated
effort might not be negligible, specially when tailoring arti-
facts for different contexts while maintaining an high fitness
for purpose.

5.2 Solution
Use explicit relations between different resources, so that re-
lated contents are kept separated, but readers may easily nav-
igate between them.

Creating links between contents allows to explicitly relate
them, while keeping them as separate entities from both the
authors’ and readers’ viewpoint. Links allow documentation
users to quickly reach related pieces of information, thus
easing the process of maintaining them consistent.

The following consequences should be considered when ap-
plying this pattern:

Web of Documents. This pattern leads to the creation of
relations among the existing contents, forming a web
of related documents.

Reuse. Although not a Reuse technique per se, links pro-
vide the ability to reduce the need to duplicate con-
tents.

Information Proximity. Even if information is created,
stored and presented separately, one may easily reach
related contents.

Effort. If links are used to remove duplicated information,
there will be an additional effort of abstraction. Nonethe-
less, the existence of explicit relations represents a new
concern of maintenance as documentation evolves.

As every other Information Proximity pattern, this pat-
tern helps Evolution, as keeping related contents at close

range helps changing them altogether. Moreover, the cre-
ation of explicit relations frequently converges to Domain-
Structured Information, which also supports evolution,
by providing a richer base of trackable information.

As with the other patterns in this pattern language, this
pattern greatly benefits from an appropriate tool support,
which may be leveraged by an Integrated Environment.

Although Wikis [14] make heavy use of hypertext, this pat-
tern’s scope goes beyond the creation of explicit and naviga-
ble relations between resources, addressing the collaborative
nature of this kind of systems.

5.3 Known Uses
Hypertext-based systems in general, of which wikis are a
good example, allow to establish links between related re-
sources.

Elucidative Programming [16] is a documentation technique
that relies on the creation of links between source code and
documentation, allowing to mutually navigate between them.

6. SINGLE SOURCE
In software documentation, the description of artifacts can
be captured using different documents, which have differ-
ent purposes. Maintaining them consistent requires an non-
negligible effort. As documentation evolves, such effort rises
due to the proliferation of duplicate and related contents.

This pattern considers related contents are being produced,
and they may be made part of the same document,
if required.

6.1 Problem
How to preserve documentation consistency when fragments
of related contents are scattered across documents?

Both having related information fragments at close range of
each other, and having multiple uses of the same informa-
tion, across a set of different documents, are common needs
in software documentation. However, there is also value in a
well established separation of concerns among different arti-
facts, as it allows them to be reused more easily, even if that
implies tailoring them for different contexts while maintain-
ing an high fitness for purpose.

6.2 Solution
Capture related information fragments in a same artifact, so
that one may be easily reached from the other.

Although not possible for all kinds of information, some can
be captured together, in the same artifact. Doing so allows
related information fragments to be kept consistent, as the
author may more easily reach them. This is thus a form of
Physical Information Proximity as the contents are stored
together, with the objective of being presented together to
the author.

The following consequences should be considered when ap-
plying this pattern:



Single artifact. The reader is presented with a document
based in a single artifact, but that includes different
types of information.

Reuse. Capturing different information fragments in the
same artifact allows them to be reused less effectively.

Information Proximity. Related information is stored and
presented to the reader at close range of each other,
simplifying consistency maintenance.

Effort. The flow of creating documentation is better than
if these related contents were kept separately.

As an Information Proximity pattern, this pattern helps
Evolution, as keeping related contents at close range helps
changing them altogether. Moreover, organizing different
types of contents within a single artifact frequently con-
verges to Domain-Structured Information, which also
supports evolution, by providing a richer base of trackable
information.

As with the other patterns in this pattern language, this
pattern greatly benefits from an appropriate tool support,
which may be leveraged by an Integrated Environment.

This pattern is similar to Code-Comment Proximity [14],
as both use the same base approach. However, Single-
Source goes beyond source code and comments, and doesn’t
restrict itself to a particular type of information.

6.3 Known uses
Literate Programming combines textual descriptions and source
code in a single source file, and provides the mechanisms to
extract such different contents to different artifacts, when-
ever required. The Literate Programming tool set dotNoweb
further allows to combine textual descriptions and source
code with diagrams expressed using the dot language.

Using the technique of Code Annotations, documentation
(or parts of it) can be generated from a unified representa-
tion of textual descriptions and source code. It is primarily
used in the creation of API documentation, and is supported
be several tools: Javadoc [12] is one of the first known uses
of the technique, as is Autoduck [8], a tool supporting code
annotations in C++. The .NET framework uses XML in
code annotation to produce both compilations of API docu-
mentation (CHM, HTML, etc.) and in-editor assistance, as
code-completion.

7. SYNCHRONOUS CO-EVOLUTION
Evolving information in the documentation usually requires
other documents and artifacts to be updated, in order to
maintain them consistent.

7.1 Problem
When to update a related piece of information in documen-
tation?

Changes are made by the authors having in sight the in-
troduction of added value. However, changes required to
ensure consistency don’t always provide immediate benefits,
and may shift the author’s main focus.

Furthermore, the approach to a given task may vary be-
tween a depth-first or a breath-first approach, depending on
the desired goal. For example, during an inception phase,
the change rate at which documented artifacts evolve is usu-
ally high, thus changing just enough in every piece of related
information would be regarded as more productive. In oppo-
sition, deployment phases of development may benefit from
an high level of detail about a single piece of information.

Finally, tracking all the required simultaneous changes may
be difficult to carry out by memory alone, since it is easy to
forget or disregard global consequences during local changes.

7.2 Solution
Whenever a change is introduced, update every related piece
of information, leaving the details for later.

When there are related pieces of information, changing one
may render others inconsistent. If we don’t update them
at the same time, and we don’t record what needs to be
updated, they grow harder to resync as time passes. Al-
though the quantity of information to be updated may be
considerable, the most reliable way of ensuring consistency
is to synchronously update all related information, leaving
out details for later improvement.

The following consequences should be considered when ap-
plying this pattern:

Memory. Because all the required changes are introduced
simultaneously, the risk of forgetting to update every
relevant piece of information is reduced. With the
proper support of tools, this risk can be rendered al-
most non-existent.

Objective. By lowering the level of detail (and depending
on the goal of the current task), the effort of a simul-
taneous update can be reduced.

Incremental. Updating every document to reflect every
change may hinder both experimentation and focus
on earlier phases of development, where new ideas are
introduced and old ideas change very frequently. Keep-
ing documentation fully consistent in these phases doesn’t
provide substantial benefits, while making an incre-
mental approach more difficult. Using this pattern is
recommended on later phases.

Concentrated effort. When introducing a change which
triggers the need to update several pieces of informa-
tion and documents, that change can be said to carry
an high up-front cost. However, it is frequent that only
the original change will provide short term benefits.

Using Domain-Structured Information supports Syn-
chronous Co-Evolution, since making richer information
available allows to more easily track which information needs
to be co-evolved.

All of the Information Proximity patterns help this pattern
in a similar way, since having related contents easily reach-
able from one another allows to determine which contents
are affected by a particular change.



Time-Shifted Co-Evolution is a direct alternative to this
pattern, and the choice on which to use will greatly depen-
dent upon how easy it is to decide which contents are related
with each other and how easy it is to track, at at later time,
which changes were introduced.

7.3 Known Uses
Literate Programming and Code-Annotations, such as Javadoc,
may be regarded as a way of supporting Synchronous Co-
Evolution, as providing Information Proximity helps to
co-evolve related information parts simultaneously.

8. TIME-SHIFTED CO-EVOLUTION
Evolving information in the documentation makes it neces-
sary to update related documents and artifacts in order to
maintain them consistent.

Auditable Documents are being produced; allowing to
track how documentation is evolving.

8.1 Problem
When to update a related piece of information in documen-
tation?

Changes are made by the authors having in sight the in-
troduction of added value. However, changes required to
ensure consistency don’t always provide immediate benefits,
and may shift the author’s main focus.

Furthermore, the approach to a given task may vary be-
tween a depth-first or a width-first approach, depending on
the desired goal. For example, during an inception phase,
the change rate at which documented artifacts evolve is usu-
ally high, thus changing just enough in every piece of related
information would be regarded as more productive. In oppo-
sition, deployment phases of development may benefit from
an high level of detail about a single piece of information.

8.2 Solution
Whenever a change is introduced, update only the most rele-
vant piece of information, and provide mechanisms to track
the related required changes.

When there are related pieces of information changing one
may render others inconsistent. If we don’t update them
at the same time, and we don’t record what needs to be
updated, as time passes they grow harder to resync. Us-
ing Auditable Documents one may keep track of which
changes were introduced, thus facilitating the detection of
pending changes in related pieces of information, in order to
keep documentation consistent.

The following consequences should be considered when ap-
plying this pattern:

Memory. Because all the required changes are introduced
at different times, there is the risk of forgetting to up-
date the relevant pieces of information. Using Au-
ditable Documents reduces this risk.

Objective. By providing only the necessary detail in a doc-
ument, or just updating the most relevant artifacts, the
author may better focus her attention.

Incremental. By updating only the required information
for that point in time, one may take an incremental
approach to the production and evolution of contents.

Concentrated effort. The effort of applying this pattern
is distributed across the development process, as docu-
mentation may be updated only when necessary. How-
ever, the author may be faced with the additional ef-
fort of tracking which information needs to be updated,
even if tools that support this task may exist.

Using Domain-Structured Information supports Time-
Shifted Co-Evolution, since making richer information
available allows to more easily track which information needs
to be co-evolved.

All of the Information Proximity patterns help this pattern
in a similar way, since having related contents easily reach-
able from one another allows to determine which contents
are affected by a particular change.

This pattern depends on the ability to track how the in-
formation has evolved, which may be achieve through an
Auditable Document.

Synchronous Co-Evolution is a direct alternative to this
pattern, and the choice on which to use will greatly depen-
dent upon how easy it is to decide which contents are related
with each other and how easy it is to track, at at later time,
which changes were introduced.

8.3 Known Uses
Solutions that allow Auditable Documents to be pro-
duced support Time-shifted Co-Evolution. Wiki engines
and version control systems are a good examples of such so-
lutions, which track how a documents evolve and support
the decision of what changes are required to maintain con-
sistency.

9. AUDITABLE DOCUMENTS
Documents are produced and consumed by different actors,
who work cooperatively (i.e. towards the same goal) but
there isn’t a global view of the contributions made by each
of them. Namely, it’s not possible to know when each con-
tribution was introduced and by whom.

9.1 Problem
How to increase the transparency of the process by which the
documents are evolved?

Being able to follow and understand how a document is cre-
ated makes the authoring process more transparent. Such
transparency is proportional to the level of traceability achieved,
this is, to the level of detail recorded about every step in a
process chain.

Tracking the evolution of an heterogeneous document as a
whole may not be easy, depending on the types of artifacts
that are used. Furthermore, the introduced tracking mech-
anisms may increase the complexity of authoring the doc-
ument, and the extra information that is recorded may in-
crease its storage space consumption.



9.2 Solution
Make it possible to assess at any time who, how, and what
has been produced, by tracking information regarding its cre-
ation and evolution process.

All these extraneous information (meta-information) directly
related to the process, may be recorded. Namely, informa-
tion about which individual contributions were made to a
given document along it’s evolution, who has done each of
them and at which point in time they were made, among
others.

The following consequences should be considered when ap-
plying this pattern:

Transparency. By recording these meta-information, and
by making it accessible, authors and readers may un-
derstand how the document is being evolved. This
allows authors to perceive how they may play a part
in that process, and increase readers’ trust in the docu-
ment, by tracking document changes. It becomes pos-
sible for them to assess which updates were made to
the documentation and if inconsistencies might have
been introduced.

Tool support. New tools may have to be developed that
are able to efficiently track different types of artifacts.

Space Consumption. Additional storage space is required
to accommodate the additional contextual information
and each of the applied changes. If space consump-
tion becomes critical, either: (a) use a strategy where
only enough information about the change is stored
(i.e. keeping only the differences), or (b) discard older
data, though taking into account the potential loss of
transparency and traceability.

Using Domain-Structured Information makes richer in-
formation available, thus providing more feedback on which
information needs to be co-evolved.

Time-Shifted Co-Evolution uses this pattern to support
determining the information that may need to be updated.

Other related patterns include Document History [14],
which focuses on maintaining a list of past versions of a
document, and Annotated Changes [14], that provides a
way to directly record inside a document which of its parts
have recently been changed.

9.3 Known Uses
It is common for text processors to possess a track changes
feature, which is a form of Annotated Changes. This
feature may be used by authors and readers to track the
changes the document has recently gone through. Although
this makes the document auditable to a certain point, it is
usually very limited in time.

Document management systems frequently track the entire
production context of documents, and the several versions
that a document has gone through. Wiki engines also track
changes made to their pages, and allow to later query the
differences between different versions.

Version Control Systems (VCS), specifically those that use
global versioning (such as Subversion, as opposed to CVS),
are widely used to maintain consistency during the process
of evolution in software development.

10. HETEROGENEOUS DOCUMENT
Several types of documentation artifacts are produced, each
fulfilling a distinct purpose. During this process, different
facets of the overall information need to be addressed and
combined into the same document.

10.1 Problem
How to express different types of information in the same
document?

The simplest way of authoring and combining different types
of information is to express them all as the same type of ar-
tifact — documentation is commonly for the most part ex-
pressed as text — although different subjects may be better
conveyed using different types of artifacts.

There are mismatches between different types of artifacts.
Using different formats, and having been designed as stan-
dalone units, and requiring different authoring tools, they
are most often not easy to combine.

10.2 Solution
Allow the coexistence of different types of artifacts in the
same document while maintaining them as separate entities.

The underlying format of the document should be able to
deal with different types of artifacts relating distinct pieces
of information, and weaving them to result in an hetero-
geneous document, without losing the identify of each ar-
tifact it is composed by. Information Proximity patterns
may be used as a general approach to combine these inter-
related parts of information while preserving overall consis-
tency. Since information recorded as different types of arti-
facts pose additional challenges, mainly due to their different
syntactic format and potential lack of a formal semantics,
they may not trivially support being combined. A specifica-
tion of how these different artifacts should be weaved allows
them to remain self-contained, despite being part of a larger
document. The process of weaving these artifacts together
may be done automatically by supporting tools.

The following consequences should be considered when ap-
plying this pattern:

Fitness for purpose. By creating an heterogeneous docu-
ment (i.e. combining different artifacts) authors may
decrease the effort in preserving consistency among re-
lated artifacts, since they are closely presented. Au-
thors are also able to address the particular goal of
each document, since different artifacts convey com-
plementary information, and allow to better express
the intended ideas.

Mismatches. Artifacts are weaved together through a weav-
ing specification, working around the difficulty of bridg-
ing them using their own (often syntactically irrecon-
cilable) formats alone.



Heterogeneous Tools. The use of distinct tools increases
the effort of authoring content.

Simplicity. Authoring simplicity may be lost, as the author
now need to support the multiple ways of interacting
with each of the several supported content types.

This pattern may be applied by making use of Views or
Transclusion when the use of different types of artifacts
is possible. It greatly benefits from an Integrated Envi-
ronment since different types of authoring tools are usually
involved.

10.3 Known Uses
XSDoc [7, 2] is a wiki engine oriented for software develop-
ment in which pages weave together heterogeneous artifacts.

Several office software suites, such as Microsoft Office and
OpenOffice, allow combining different kinds of artifact in a
same document. This is a feature that unfortunately has not
yet seen it’s usage in popular Integrated Environments, such
as Visual Studio or Eclipse. However, some uses of Literate
Programming, such as VDMTools, directly parse and write
.rtf documents which have native support for images.

11. DOMAIN-STRUCTURED INFORMATION
While textual descriptions represent a very flexible way of
capturing acquired knowledge, and thus are usually an im-
portant part of software documentation, the degree in which
a document is relevant will vary depending on how well it
serves its purpose and accurately conveys the intended ideas.
Moreover, the same piece of information bay be better con-
veyed by using different perspectives, intrinsically related
with each other.

Maintaining and assuring consistency requires continuous
review. The major cause of it is the fact that relations
between documentation parts aren’t explicitly formalized,
hence decreasing the capability of information to be auto-
matically identified, processed and inferred. For this reason,
these types of maintenance tasks affect the issue of consis-
tency orthogonally.

11.1 Problem
How to create documentation so that procedures over the cap-
tured information may be automated?

As mentioned before, textual documentation is a flexible way
of capturing knowledge. This flexibility is an important as-
set, but a higher level of formalization also brings benefits,
such as being less subject to multiple interpretations, and
allowing information to be automatically processed.

However, the mechanisms used to allow a degree of formal-
ization higher than that provided by textual descriptions,
may easily undermine the simplicity of producing documen-
tation

11.2 Solution
Structure information according to its domain, so that the
information form directly relates to domain concepts.

Textual documentation usually follows a text-oriented struc-
ture, using elements such as titles, paragraphs, lists, tables,
etc. In order to automate tasks, infer relationships and pre-
serve format consistency over it, an higher degree of struc-
ture is needed, requiring a formalization oriented to domain
concepts and their underlying relations, specifically between
different artifacts that convey different perspectives over the
same information.

Extending the documentation with richer structure provides
an infrastructure where not only consistency can become
automatically assessed, but also prevent introduction of new
inconsistencies.

The following consequences should be considered when ap-
plying this pattern:

Flexibility of production. Some flexibility is lost when-
ever information has to follow a predefined structure.

Objectivity. The use of a structure with well defined se-
mantics makes information less open to different inter-
pretations.

The creation of structure and/or individual information frag-
ments, frequently required by Information Proximity Pat-
terns, tends to converge to Domain-Structured Infor-
mation. This pattern also supports Evolution, as it provides
a richer base of trackable information.

As with the remaining patterns of this pattern language,
Domain-Structured Information requires appropriate
tool support, and may benefit from the use of an Inte-
grated Environment.

This pattern is similar to Structured Information [14],
in that it also address how documents’ contents are orga-
nized. However, Domain-Structured Information fo-
cuses on formalizing contents according to the information’s
domain, with the objective of automating consistency as-
sessment, while Structured Information focuses mainly
in structuring contents to ease readers’ perception.

11.3 Known Uses
Code comments are a form of source code documentation.
Code annotations, such as Javadoc comments [12], add an
additional level of structure to source code comments, for-
malizing information elements of a lower granularity. Javadoc
allows to describe elements such as method parameters, au-
thors, creation dates and references, among others.

Semantic Wikis support Domain-Structured Informa-
tion, and some semantic wiki engines may automatically
detect existing inconsistencies with the use of reasoners [11].

Some wiki engines allow templates to be applied for very
specific purposes. Mediawiki allows the creation of sidebar
templates, through which one may provide structured infor-
mation.

Systems taking an object-oriented approach to documenta-
tion have also been use in the past [15, 10].



12. INTEGRATED ENVIRONMENT
Working with different kinds of artifacts frequently implies
the use of specialized and independent tools for each of
them. Although such artifacts are sometimes strongly re-
lated, these tools don’t necessarily interoperate with each
other, making the development environment heterogeneous
and more difficult to use.

12.1 Problem
How to maintain consistency between related information
parts that are stored as independent artifacts?

Tools that deal with a wide range of artifacts usually pro-
vide a more homogeneous and interoperable environment,
although they tend to be not as powerful and simple as spe-
cialized tools.

12.2 Solution
Use an integrated environment, where several types of arti-
fact and their relations may be maintained uniformly.

An integrated environment goes beyond the capabilities that
general purpose tools possess. They support the produc-
tion and maintenance of several types of artifact, providing
specialized features for each of them and an infrastructure
through which they interoperate.

This supports strategies of documentation maintenance which
focuses on bridging related information parts regardless of
their nature.

The following consequences should be considered when ap-
plying this pattern:

Specialization. Integrated environments strike a balance
between a generic approach, in which tools may han-
dle several types of artifacts with a basic level of func-
tionality, and a specialized approach, in which exists a
deeper support for a selected set of artifact types.

Simplicity. While potentially complexifying each tool in-
dividually, their overall simplicity is increased by pro-
viding an homogeneous usage.

Interoperability. An integrated environment coordinates
the several tools it provides, and supports their inter-
operability.

Integrated Environment directly contributes the remain-
ing patterns of this pattern language, by orchestrating the
several tools involved. It is also directly related to the pat-
tern Few Tools [14], which introduces the notion that sup-
porting the creation of documentation with too many and
unconnected tools may become a burden, rather than a way
to support the users.

12.3 Known Uses
Eclipse and Visual Studio are two examples of integrated
environments that combine different kinds of artifact and
tools, supporting and articulating their work.

13. ACKNOWLEDGMENTS
We would like to thank the Portuguese Foundation for Sci-
ence and Technology and ParadigmaXis, S.A. for sponsoring
this research through the doctorate scholarship grant SFRH
/ BDE / 33298 / 2008.

14. REFERENCES
[1] A. Aguiar and G. David. Patterns for documenting

frameworks — Part I. Helsinki, Finland, Sept. 2005.

[2] A. Aguiar and G. David. WikiWiki weaving
heterogeneous software artifacts. In Proceedings of the
2005 international symposium on Wikis, pages 67–74,
San Diego, California, 2005. ACM.

[3] A. Aguiar and G. David. Patterns for documenting
frameworks — Part II. Irsee, Germany, July 2006.

[4] A. Aguiar and G. David. Patterns for documenting
frameworks — Part III. Portland, Oregon, USA, Oct.
2006.

[5] A. Aguiar and G. David. Patterns for documenting
frameworks: customization. In Proceedings of the 2006
conference on Pattern languages of programs, pages
1–10, Portland, Oregon, 2006. ACM.

[6] A. Aguiar and G. David. Patterns for documenting
frameworks - process. Recife, Brazil, May 2007.

[7] A. Aguiar, G. David, and M. Padilha. XSDoc: an
extensible wiki-based infrastructure for framework
documentation. Alicante, Oct. 2003.

[8] E. Artzt. Autoduck user’s guide. Technical report,
2000.

[9] J. Bayer and D. Muthig. A view-based approach for
improving software documentation practices. In
Engineering of Computer Based Systems, 2006. ECBS
2006. 13th Annual IEEE International Symposium
and Workshop on, page 10 pp., 2006.

[10] B. Childs and J. Sametinger. Literate programming
and documentation reuse. In Software Reuse, 1996.,
Proceedings Fourth International Conference on, pages
205–214, 1996.

[11] B. Decker, E. Ras, J. Rech, B. Klein, and C. Hoecht.
Self-organized reuse of software engineering knowledge
supported by semantic wikis. In Proceedings of the
Workshop on Semantic Web Enabled Software
Engineering (SWESE), Nov. 2005.

[12] L. Friendly. The design of distributed hyperlinked
programming documentation. In Proceedings of the
International Workshop on Hypermedia Design,
Montpellier, France, 1995.

[13] D. E. Knuth. Literate programming. Comput. J.,
27(2):97–111, 1984.

[14] A. Ruping. Agile Documentation: A Pattern Guide to
Producing Lightweight Documents for Software
Projects. John Wiley & Sons, Inc., 2003.

[15] J. Sametinger. Object-oriented documentation.
SIGDOC Asterisk J. Comput. Doc., 18(1):3–14, 1994.

[16] T. Vestdam and K. NÃÿrmark. Aspects of internal
program documentation-an elucidative perspective. In
Program Comprehension, 2002. Proceedings. 10th
International Workshop on, pages 43–52, 2002.


	1 Introduction
	2 Overview
	2.1 Information Proximity Patterns
	2.2 Evolution Patterns

	3 Views
	3.1 Problem
	3.2 Solution
	3.3 Known Uses

	4 Transclusion
	4.1 Problem
	4.2 Solution
	4.3 Known Uses

	5 Links
	5.1 Problem
	5.2 Solution
	5.3 Known Uses

	6 Single Source
	6.1 Problem
	6.2 Solution
	6.3 Known uses

	7 Synchronous Co-Evolution
	7.1 Problem
	7.2 Solution
	7.3 Known Uses

	8 Time-Shifted Co-Evolution
	8.1 Problem
	8.2 Solution
	8.3 Known Uses

	9 Auditable Documents
	9.1 Problem
	9.2 Solution
	9.3 Known Uses

	10 Heterogeneous Document
	10.1 Problem
	10.2 Solution
	10.3 Known Uses

	11 Domain-Structured Information
	11.1 Problem
	11.2 Solution
	11.3 Known Uses

	12 Integrated Environment
	12.1 Problem
	12.2 Solution
	12.3 Known Uses

	13 Acknowledgments
	14 References

