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ABSTRACT
Meta-architectures, also known as reflective architectures,
are a specific type of software architectures that are able to
inspect their own structure and behavior, and dynamically
adapt at runtime, thus responding to new user requirements
or changes in their environment. In object-oriented program-
ming, these architectures rely on a small set of core concepts
that provide them the means to describe themselves, thus
becoming “closed”. These three core patterns can be found in
almost every object-oriented meta-architecture: Everything
is a Thing, Closing the Roof, and Bootstrapping. By
delving into the inherent problems they try to solve, and the
forces that shape those problems, a developer will improve his
ability to adequately make architectural and design choices
to build and evolve systems with high-adaptability needs.

Keywords
Model driven software engineering, Adaptive object models,
Design patterns, Meta-modeling, Meta-programming.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns

1. INTRODUCTION
Meta-architectures, also known as reflective-architectures,
are software systems architectures that rely on meta-data
and reflection mechanisms in order to dynamically adapt, at
runtime, to new (or changed) user requirements [3, 4, 19].
This is achieved by exposing the domain model as a first-class
artifact able to be changed and shaped through the system
itself.
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1.1 Motivation
Back in 2005, some of the authors were leading a software
project consisting on the construction of a geographical in-
formation system which would help to manage records of
architectural and archeological heritage, their inventory and
the associated business processes. Although our development
methodology was a slight variant of eXtreme Programming [2],
we were considerably restricted in applying some of the prac-
tices for this particular project: (i) it was bided, so the cost
was fixed, (ii) we could not reduce the scope, although it was
systematically enlarged, (iii) we could not have an on-site
costumer, and (iv) the project needed to be considered a
success1.

Our problems began in the very first official meeting we had.
Because the bid was made years before the official start of the
project, the stakeholders’ understanding had evolved since
then. Therefore, the initial requirements were no longer a
reflection of their current manual processes. Our contract en-
forced the delivery of a requirement analysis document which
had to undergo validation before starting the development.
And so we began the task of collecting requirements... for
two years.

At a glance, this seems a good example of how it should
not be done; two years collecting requirements smells like a
good old waterfall. However, our mere presence was directly
contributing to this status. We started to question things the
stakeholders took for granted, and in the process of formaliz-
ing their practices, we uncovered inconsistencies which could
not be solved promptly. This resulted in a series of analysis
iterations, where the stakeholders had to re-think their goals,
their processes, and their resulting artifacts, before we could
even synthesize a coherent domain model.

At the end of those two years, and with a conceptual model of
over two hundred concepts, we were strongly convinced of one
thing: no matter how much time we invested in analysis, the
resulting system would hardly ever be considered finished2.
As an example, consider the following requirement: users
needed to collect the physical properties of archeological
artifacts found in excavations. At first, length, width and

1Even if it came to a point of non-profitability.
2Truthful to the agile principles.
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height seemed a good measure. But some artifacts are highly
irregular, like a three thousand year old jar. For these, weight
and material composition are greatly more useful. Other
artifacts, like coins, are very regular and rely on different
properties, like radius and thickness. Then we have things in-
between, such as plates. The more we categorized, the more
complex and longer the hierarchy would become, without any
confidence we would be able to cover all cases and exceptions.
Our model was being haunted by accidental complexity3,
and a simple solution urged objects to be characterized by
the end-user according to a pre-defined set of properties
(which were not pre-defined at all). Of course users are no
programmers, so they needed to add new properties and
create new hierarchies on-the-fly from inside the application,
without being explicitly aware of the underlying model.

Nowadays we have a name – Incomplete by Design [9] – and
a software architecture – Adaptive Object-Models [19] – for
this kind of systems. The irony of this story was that the
final application converged to an AOM without its developers
actually knowing it was one. Only some years later they have
found literature on the subject, a fact that further validates
the AOM as a pattern. We will make usage of this story
throughout this paper to illustrate parts and pieces of our
patterns.

1.2 Technical Description
Let’s consider the information that some particular Archeo-
logical Survey in our system is named Survey of the Coliseum,
and another one named Survey of the Parthenon, is called
data for the purpose of using it as an information system
for video renting. We could hypothetically take the set of
objects that account for data (normally called instances)
and name it the meta-level-zero (M0) of our system.

The way we would typically model such a simple system
in an object-oriented language would be to create a class
named Archeological Survey, with an atribute named Title.
This information is meta-data (it is data about data itself):
it conveys a very crucial information, which is the data’s
structure (and meaning), for the purpose of specifying an
executable program. We could draw a line around these
things that represent information about other things – classes,
properties, etc. – and call them meta-level-one (M1), or
simply model.

But, what exactly is a class, or a property? What is the
meaning of calling a method, or storing a value? As the reader
might have guessed, once again, there is structure behind
structure itself – an infrastructure – and the collection
of such things may be called the meta-level-two (M2), or
meta-model for short (i.e., a model that defines models),
which is composed of meta-classes, class factories, and other
similar artifacts.

This separating line between data, model and meta-model is
blurred when speaking about meta-data, in the sense that
everything is, ultimately, data; only its purpose is different.
What may be considered the model in one context, may be
seen as data in another, e.g., the compiler.

3Complexity that arises in computer artifacts, or their devel-
opment process, which is non-essential to the problem to be
solved.

In spite of this, it’s worthwhile to establish a consistent
vocabulary that allows us to reason about these topics. When
we talk about data (or instances) we are referring to M0 –
bare information that doesn’t provide structure. By model
we are referring to M1 – its information gives structure to
data. By meta-model we are referring to M2 – information
used to define the infrastructure. And so on...

Ultimately, depending on the system’s purpose, we will reach
a level which has no layer above. This “top-most” level
doesn’t (yet) have a name; in MOF [14] it is called a meta-
meta-model, due to being the third model layer4. This
building up of levels (or layers), where each one is directly
accountable for providing structure and meaning to the layer
below is known as the Reflective Tower, a visual metaphor
that can be observed in Figure 1.

M2

M1

M0

ClassAttribute

‹‹instanceOf››‹‹instanceOf››

M3 Class

Instance

‹‹instanceOf››‹‹instanceOf››‹‹instanceOf››

classifier

 +title: string

Video

title = "Matrix"

:aVideo‹‹snapshot››

‹‹instanceOf››

Matrix

‹‹instanceOf››

Figure 1: The Reflective Tower of a video renting
system, showing four layers of data.

All this would not be very useful if it did not have a purpose.
We already mentioned the compiler, whose task is to read
a particular kind of information (known as source code)
and translate it into a set of structures and instructions
(known as a program), which would later be executed by a
computer – a process known as compilation. The compiler
acts as a processing machine: the input goes into one side,
and the outcome comes from the other. Once the compiler
has done its job, it is no longer required, and so it does not
observe nor interact with the final program. Should we
wish to modify the final program, we would need to change
the source code and hand it again to the compiler.

Now let us suppose we wanted to add a new property to a
Video, like the name of its Director, or create new sub-types
of videos as needed, like Documentary or TV Series, each one
with different properties and relations. In other words, what
if we need to adapt the program as it is running? For that,
we would need both to observe and interact with our running
application, modifying its structure on-the-fly (the technical
term is during run-time). The property of systems that al-
low this to be performed is called Reflection, i.e., the ability
of a program to manipulate as data something representing
the state of the program during its own execution. The two

4Would it be the sixth, we seriously doubt anyone would
apply the same prefix five times.
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mentioned aspects of such manipulation, observation and
interaction, are respectively known as introspection, i.e.,
to observe and reason about its own state, and intercession,
i.e., to modify its own execution state (structure) or alter
its own interpretation or meaning (semantics).

The technique of using programs to manipulate other pro-
grams, or the running program itself, is known as meta-
programming, and the high-level design of such system is
called a meta-architecture. Granted, there has been some
debate on the exact meaning of this Humpty-Dumpty word5.
Joseph et al. defined it as architectures that can dynamically
adapt at runtime to new user requirements (a.k.a. “reflective
architectures”) [19]. Ferreira et al. pointed to an architecture
of architectures, i.e. an abstraction over a class of systems
which may rely on reflective mechanisms [5]. This seemingly
disagreement is due to the ubiquitous meta prefix, which can
be understood as being applied to the word architecture (i.e.,
an architecture of architectures), or as a subset categorization
(i.e., those architectures that rely on meta-* mechanisms).
For the purpose of this work, we should consider a meta-
architecture as a software system architecture that
heavily relies on reflective mechanisms.

1.3 General Forces
The construction of this kind of systems is under the influence
of a set of forces; concerns that should be weighted in order
to achieve a good solution. Because the patterns described in
this paper are deeply connected, most of them share a good
amount of forces in common. Figure 2 shows a schematic
relationship among some of the following forces that are
generally relevant to meta-architectures.

Homogeneity

Transparency

Usability

improves

Adaptability

Reuse

Separation of Concerns

Proliferation

Granularity Performance

Concurrency

improves

helps helps

hinders

leads to

leads to

hinders helps

º

G

∢

*↖▨

⑉

𐄟

☍

✂

⎌ Information Flux
increases

C

Figure 2: The relationship among forces of object-
oriented meta-architectures.

1. Transparency. How much of the underlying system
is available through reflection? In other words, to
which degree does the infrastructure expose its own
mechanisms for observation and manipulation? We
may regard a system which is more transparent to
improve usability in the sense that adds more power
to it (hence, the user is able to do more). On the
other side, a lot of transparency exposes details that
can hinder its understandability, and consequently, its
usability. Likewise, increasing transparency usually
improves the system’s adaptability, at the expense of

5From Lewis Carrol’s Down the Rabbit Hole, when Humpty-
Dumpty explains to Alice: “when I use a word, it means just
what I choose it to mean, neither more nor less”.

an increase in granularity (which will, ultimately, hinder
performance).

2. Usability. This is defined as “the extent to which a
product can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in
a specified context of use” [10]. In this sense, meta-
architectures6, have two type of target users: (i) those
which develop and evolve the infrastructure, and (ii)
those who use the public facilities of the infrastructure
to develop domain specific systems. Design choices may
have different influences on the usability of different
target users. This force is actually a result of several
other forces, i.e., homogeneity, seperation of concerns,
proliferation and transparency.

3. Separation of Concerns. This is a general design
force the establishes the fact that a particular function-
ality of a systems should be the concern of a different
component – in this case, a different level of the re-
flective tower. For example, M1 should be reserved to
only express domain-level concerns, but most systems
regard it as immutable during runtime. Thus, acci-
dental complexity arises when this level is tweaked by
non-domain concerns which should belong to M2. Hav-
ing a clear separation of these levels reduces accidental
complexity and thus helps on using the system (from
the programmer’s point of view).

4. Concurrency. Is a general counter-force to reflec-
tive meta-architectures, mainly due to integration mis-
match (i.e., tight interconnection among different level
artifacts, causal connection among entities to provide
consistency in the meta-representation of the system,
information flux among levels, etc.). Concurrency is
mainly relevant due to performance and distributivity
concerns, and has been a common issue in database
design.

5. Granularity. Represents the smallest aspect of the
base-entities of a computational system that are rep-
resented by different meta-entities, depending on the
reflectivity scope — structural and/or behavioral. Typ-
ical granularity levels are classes, objects, properties,
methods and method calls. The particular choice of
the level of granularity is driven by its transparency,
and has consequences on the resulting systems’ object
proliferation and performance.

6. Proliferation. Increasing the reflectivity granularity,
e.g., by representing method calls as objects, leads to
object proliferation, in the sense that more elements
exist to represent the system’s state. Likewise, more
elements typically means more communication among
them, increasing information flux and likely hindering
overall performance.

7. Information Flux. Measures the amount of infor-
mation that is exchanged between elements of a sys-
tem to perform a desired computation. Depending on
the meta-architecture design, instances typically ex-
change information with its class, classes with their
meta-classes, and so on. The more objects the system

6Particularly Adaptive Object-Models.
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has to represent it’s underlying state (both structural
and computational), the more information is needed to
be exchanged among them.

8. Performance. This is also a general engineering force
that may mean short response time, high throughput,
low utilization of computing resources, etc. A high
proliferation of system elements may have an impact on
performance, as more system resources will be required.
On the other hand, the ability to perform concurrent
computations usually improves performance.

9. Adaptability. Characterizes a system that empowers
end-users without or with limited programming skills
to customize or tailor it according to their individ-
ual or environment-specific requirements. The more
transparent a reflective system is, the more it can be
tailored.

10. Reuse. Is the ability of using existing artifacts, or
knowledge, to build or synthesize new solutions, or
to apply existing solutions to different artifacts. For
example, one can reuse the persistency engine, typically
tailored to persist data, to also persist model and meta-
model elements. Reusing generally leads to a reduce of
overall systems complexity and improves usability.

11. Homogeneity. A system’s parts are more interchange-
able if it’s more homogeneous, leading to a higher ca-
pacity for reuse. A homogeneous system can also be
understood a lot easier, contributing to its usability.

1.4 Pattern Thumbnails
TypeSquare [19] is one of the core patterns for adaptive
object-models. It supports turning into meta-data level M1

and the levels above it, so that the different layers may be
handled by the system at runtime.

Figure 3 shows the three patterns here presented, how they
relate with each other, and how they relate to TypeSquare,
extending the pattern language for adaptive object-models [4,
7, 11, 12, 17, 18]. It is worth noting that the patterns in
this language are classified according to more categories in
addition to the architectural category, to which the patterns
presented in this paper belong, such as structural, behavioral,
architectural, interaction, creational, evolution, construction
and support [4].

1. Everything is a Thing. Which unifies multiple repre-
sentations of the same underlying concept into a single
abstraction.

2. Closing the Roof. A pattern that encloses the struc-
ture and meaning of a meta-architecture by stopping
the seemingly infinite escalation of meta-levels.

3. Bootstrapping. Which provides a way for enclosed
structures to define themselves, by relying on a (small)
set of basic definitions, upon which it’s possible to build
more complex structures.

In this paper we we use Christopher Alexander’s pattern
language (APL) format [1], instead of the more commonly

Everything is a Thing

Closing the Roof

Bootstrapping

brings the need for requires

Type Square
is extended by also defines a

Figure 3: Patterns of object-oriented meta-
architectures and their relationship.

used variants of the Gang of Four [8]. Although recognizing
the several benefits of the latter, including a more method-
ological partitioning of the pattern, we feel that the APL
form results in a more fluid, narrative-like structure.

Some typographical conventions are used to improve the
readability of this document. Patterns names always appear
in SmallCase style. Whenever referring to domain elements,
e.g., class names, they are printed using fixed-width char-
acters. If not otherwise specified, the graphical notation used
complies to the latest versions of UML [16] and OCL [15]
available at the date of publication (v.2.3).

1.5 Target Audience
The main goal of this paper is to present a collection of
patterns that address fundamental concepts underlying meta-
architectures. They are intended for those (developers) build-
ing or trying to understand the inner workings of such sys-
tems, among which may be (a) those whose interest is in the
design of programming or specification languages, and (b)
others that aim to improve their systems’ adaptivity. We
hope both find these patterns useful.

The secondary purpose of this work is to unveil some of the
magic that seems to hover anything that is prefixed by meta.
Tim Peters, a python guru, once said [13]:

“[Metaclasses] are deeper magic than 99% of users
should ever worry about. If you wonder whether
you need them, you don’t (the people who actually
need them know with certainty that they need
them, and don’t need an explanation about why).”

While we respect, and to some extent agree with Tim’s
remarks, we have seen many developers scared away by this
meme of “forbidden kingdom”. The net result is a class of
awfully designed systems and too many hours “reinventing
the wheel”, mainly due to the overall lack of education in the
practical application of meta techniques. Should this paper
help those 1% of users that actually need them, but don’t
(yet) know, then it has served its secondary purpose.

2. PATTERN I: EVERYTHING IS A THING
Also known as Universal Object, Everything is an object,
Meta-class.

The system, with its several types of composing parts, needs
to be adapted. Meta-architectures make use of elements avail-
able at runtime (i.e., models and meta-models) to specify the
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Figure 4: A 3D projection of a Calabi-Yau mani-
fold from superstring theory – an hypothesis that
explains every entity our universe is made of.

system’s behavior. The system’s data is observed and manip-
ulated according to such elements, addressing concerns such
as Persistency, Behavioral Rules, Graphical User-Interfaces,
and Communications, among others.

[
Back to the story started in Section 1.1, our system began
as a simple variant of the TypeSquare pattern that in-
cluded attributes, relations, compositions, etc. In fact, it
was heavily inspired in UML class diagrams and we were
trying to automate as much as possible7. At first it was
sufficient to store the model description (i.e., EntityTypes,
AttributeTypes, etc.) in a separate XML file, and dis-
tribute it over client applications and load it at start-up.
Truth be told, to modify the domain model we had to modify
the XML file, so there was not that much run-time “adap-
tivity”. There was also a “mapper”, with the purpose of
interpreting the XML file into runtime elements. Then we
had a GUI engine which followed a set of heuristic rules
and was able to automatically create a user interface by, like
everything else, observing the system’s definition.

The lack of homogeneity was a problem first spotted
with the need to actually manipulate the domain model
at runtime. Although easy to deal with, the round-
trip to XML was ugly. Also, changing the name of an
AttributeType or of an EntityType required special-
ized operations, such as ChangeAttributeTypeName or
ChangeEntityTypeName, that established the degree of
transparency at the model level, but what was really bug-

7In other words, we were trying to extract as much infor-
mation as possible captured in UML diagrams, in order to
automatically address several system’s concerns, such as
user-interface generation, data persistency, data constraints,
etc.

ging us was that logic was duplicated all around. The GUI
engine inferred the user interface to manipulate the data level,
but the same rules were hardcoded for the manipulation of
the model level. Then we realized that relying on XML to
persist the model would not work well in a concurrent en-
vironment. We asked ourselves: why exactly do we have two
types of representation (effectively, two ways of describing)
for the same system? If we have the infrastructure to manip-
ulate data, why don’t we reuse it to manipulate meta-data?
In other words:

How to represent all that needs to be reflected upon?

Clearly, we were lacking a fundamental, unifying principle.
We have a system that observes and manipulates data, but it
cannot do the same for meta-data? Why may we use a certain
operation to change the attribute value of any instance, like
setting the name of a person to John, but a different operation
is required to change the name of a model element? Why
could the data be stored in a warehouse, but needed the
XML to store the model? We had decoupled the system
from the domain, but we were coupled to what we believed
to be a fixed structure; a false belief, since it soon needed to
evolve. Our implementation pointed to a system that would
need a large number of specific operations and components to
manipulate the meta-level, and that number would increase
in direct proportion with the system’s transparency. What
was so different between elements of M0 and elements of M1?
The solution was right in front of us: the system knew how
to manipulate instances, so we needed to make the elements
of our model to also be instances.

Therefore, make all system’s elements specializations
of a single concept, regardless of their model level.
These highly generic concepts are Things (or Instances, or
Objects...). They are a single, unifying, primitive structure, as
seen in Figure 5. To manipulate data or model elements, the
system always relies on the manipulation of Things, that have
a common set of basic capabilities for their own observation
and manipulation. By homogenizing these concepts, the
mechanisms that deal with such generalizations don’t need
to be specific to every kind of entity. For example, setting
the name of a type is performed as setting the attribute
called name of that instance. Consequently, this increases
the degree of reflection transparency of the system.

Lets suppose that the persistency mechanism focuses on
loading/saving States of Things, then the same mechanism
can be reused for both levels (whether they are base-level
objects, or types). This is also valid for graphical user-
interfaces (GUI) and other features relying on the system’s
reflective properties. A known use is the Oghma framework
[5, 4, 6], which is able to render a GUI for editing meta-levels.
This GUI is dynamically generated using the same rules as
those used for the base-level. For example, every enumeration
is rendered as either a combo-box (if the property has an
upper-bound cardinality of 1), or a check-list (for more than
1). Because the concept of enumeration is equal both in the
user defined model (e.g., the gender of a person) and in the
system’s meta-model (e.g., the rule of an association), both
are rendered in the same way.

The following code is a snippet of a C# unit-test, asserting
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Entity Entity Type

‹‹instanceOf››

Figure 5: Extending the TypeSquare to implement
this pattern, by making EntityType a specialization
of Entity.

several properties that hold after implementing this pattern:

1 var m = new MetaModel();
2 var entity = m.OfType<Entity>().ByIdOrDefault("entity");
3
4 Expect(entity, Is.Not.Null, "There is an Entity named

Entity.");
5 Expect(m.ToList(), Is.All.AssignableFrom<Thing>(), "

Everything is a Thing.");
6 Expect(m.ToList().All(t => t.Meta.Identity == entity.

Identity), Is.False, "There must be things beside
Entities.");

7 Expect(m.Where(t => t.Is(entity)), Is.All.AssignableFrom<
Entity>(), "All Things which have Entity as Meta are
typed as Entities.");

8 Expect(name.Meta.Meta, Is.EqualTo(entity), "The Meta-Meta
of any Thing is the Entity named Entity.");

Line 1 creates a new container loaded with the system’s
basic infrastructure. Line 2 finds and strongly types a
Thing (more specifically, an element of the meta-model)
with an Identifier named Entity. Line 4 and 6 are sanity
checks. Line 5 states that everything that is defined inside
the container derives from Thing. Line 7 checks that if
the model says the meta of any Thing is an Entity, then
the infrastructure ensures it is typed as one. Finally, line 8
checks for meta-circularity definition, which will be discussed
in Section 3. The following snippet shows a usage of these
features:

1 var car = entity.New<Entity>();
2 var attr = m.Get<Entity>("attributetype");
3 var c1 = car.New<Thing>();
4
5 Expect(c1.Violations, Is.Empty);
6
7 var vehicle = entity.New<Entity>();
8 var p = attr.New<AttributeType>(m, "name");
9 p.Owner = vehicle;

10 p.lowerBound = 1;
11
12 car.ParentEntity = vehicle;
13
14 Expect(c1.Violations, Is.Not.Empty);

Lines 1 – 3 create a new entity car and instantiates it. Line
5 verifies there are no violations for that instance. Lines 7 –
10 create a new entity vehicle, with a mandatory attribute.
Line 12 changes the inheritance of car, and 14 checks that
there is now a reported violation due to the mandatory parent
entity attribute.

There are some liabilities to this pattern, which are direct
consequence of the level of transparency. The model can be
changed in many more ways than if we don’t have specialized
mechanisms to manipulate it. This results in an higher
coupling between meta-levels, mainly due to an increase of
information flux. For example, instead of a Type having
a specialized field to hold its name, it would have to rely on

holding it in a separate object (attribute), which is defined
by its meta-type. The type would thus need to exchange
information with the meta-type to access its own name.
Considering that the model may change anytime, the same
thing is even more evident with base-level objects. The fact
that more objects are needed to hold basic properties of a
system leads to what is known as object proliferation. Both
information flux and object proliferation may contribute to
a decrease in the overall performance of the system.

[
In set theory, everything is a set. In LISP, everything is a list.
In the object-oriented world, everything is an object. Well,
not quite everything – there are binary relations, function
applications, and message passing. But the principle still
applies, in the sense that there is a single, unifying, primitive
aspect (set, list, object) defining the fundamental underlying
structure.

Known uses of this pattern include the Meta Object Facility
(MOF), pure Object-Oriented languages like Smalltalk, and
adaptive object-model frameworks, such as Oghma [4, 5].
Both the Memento pattern and the History of Opera-
tions pattern can be used for storing the States of Things
regardless of their underlying model level.

3. PATTERN II: CLOSING THE ROOF
Also known as Self-Compliance, Rooftop, Idempotence.

Figure 6: A famous painting by Escher, where two
drawn hands seem to protrude out of the drawing,
becoming the real hands that would be drawing one
another.

By seeing the model as data, one can use Everything is
a Thing to manipulate the several model levels using the
same mechanisms. But, whenever we raise up a level, we find
ourselves needing another (probably more abstract) level to
describe it.

[
Continuing the story in Section 1.2, we implemented Ev-
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erything is a Thing by making all objects directly inherit
from Thing. Attributes and Relations were stored in slots
(just like Ruby and Smalltalk), and accessed by Methods.
Because the system needed to be adaptable, we designed it
much like a dynamic language, so that when a method was
invoked8, the meta-class was responsible for dispatching it
to the appropriate handler. This meant that the meaning of
a method call of an instance was given by its meta-class.

We are dealing with three levels here: (M1) the instance,
(M2) its class and (M3) its meta-class. The semantics of
a particular level is given by the level above. But what
gives M3 its meaning? As we were, M3 was hardcoded in
our application. In other words, at some point we decided
that the concept of an “entity” or “class” would not change.
But this isn’t necessarily true. One simple example where
extending M3 makes sense is when defining a static method,
i.e., a method that operates over a class and hence should
belong to the meta-class. Should we need an M4 to define a
fixed structure so that we could adapt the M3? This points
towards a potentially unbounded number of levels (since each
level requires an higher – more or equally abstract – level to
describe it), thus resulting in a seemingly infinite escalation.
In other words:

How do we stop a seemingly infinite escalation of
meta-levels? We could devise a system were an infinite
escalation of meta-levels would be consistent to its seman-
tics, but, pragmatically, computations are more useful if
they terminate. A solution that would establish an hard-
coded structure, such as in the system’s native programming
language, could easily solve this problem at the expense of
reducing both the overall level of transparency (i.e., this
structure could not be reflected upon), and its homogeneity
(since there would be a dependency on an external definition).
Another way is to devise a stop condition able to halt the
infinite recursion, although how does one establish an infinite
number of levels? Maybe by induction, though this approach
would be significantly more complex. Our main goal is to
provide enough transparency among all levels so that they
are both observable and changeable.

Therefore, use a self-describing meta-level and make
it the top-most layer of the reflective tower. This
meta-level needs to be expressive enough to define itself, but
once this property is attained it could, in principle, expose
all the necessary information to allows the whole system
to adapt and evolve. This represents a very high level of
transparency. You should make this top-most level as simple
as possible, with the bare information needed to specify more
extensive (and eventually more complex) lower levels.

This particular solution is also known as a meta-circular
model (or a closed meta-model) where the primary represen-
tation of the model is a primitive model element in the model
itself (a property related to homoiconicity). One primary
advantage of this approach is not requiring (or depending
on) an external representation of the system.

The main liability of this pattern is the potential for our
system’s logic to be trapped into infinite loops, since inter-

8Or should we say a message was sent.

M0

M1

M2

M3

complies-to

...

Figure 7: Closed Reflective Tower.

preting the self-describing level will imply that same level to
be introspected. This may pose threats on the decidability of
the meta-model, particularly when semantics-level reflection
is provided. Bootstrapping and Lazy Evaluation may
be used to solve such infinite dependencies.

[
There are several known uses for this pattern, from model-
driven (e.g. MOF) to grammar definitions (BNF). In UML-
related models, the layer that describes UML per-se is the
M2, as depends on MOF — M3 — which is self-compliant.
Another common example of meta-circularity (although not
always regarded as such) is the XSLT language: XSLT is
expressed using XML, thus allowing XSLTs to be written
that manipulate other XSLTs.

4. PATTERN III: BOOTSTRAPPING
There are no known alias.

Figure 8: An artist rendition of the big-bang, a cos-
mological theory that postulates the birth of the uni-
verse as a massive explosion of matter and energy
from a singularity.

Using the Closing the Roof pattern implies the existence
of a circular dependency in the top-most model level. In fact,
due to the nature of reflective systems, it is very common
for circular dependencies to appear throughout a system’s
design.

[
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Continuing the story so far, when we decided to Close the
Roof so that we could bound the number of levels in our
system, we were faced with another chicken-and-egg problem:
if a model complies to itself, how does it come to exist? In
fact, one cannot say that a model-level complies to another
model-level (even to itself) if it doesn’t yet exist. Actually,
the creation of any model-level is usually constrained by
the rules and specifications of higher levels; how can the
elements of a level be instantiated, if they have themselves
to be inspected for that purpose? Therefore, a first “blind”
instantiation9 of the model was needed to allow its self-
definition.

How do we provide a model whose definition de-
pends on itself? Or more generally, how do we start
any process that depends on its own outcome? This often
leads to a chicken-and-the-egg problem, where you may find
yourself in need of definitions which may not yet have been
defined, and in turn those definitions need whatever you are
now defining. This is similarly to what happens when writing
a dictionary, how do you write the meaning of a word if the
words you’ll use also require a meaning?

The first apparent solution to this problem was to hard-code
a meta-model into the source code. This would move the
instatiation issue to outside our running system. The first
model would never be given birth; it was always assumed to
exist, through well known, hard-coded rules.

The problem here was homogeneity; the code started to be
polluted with conditional statements in the form of “if my
meta-level is myself, then I’ll do this special case”; in fact, a
cross-cutting concern. We had also receded to have (again)
two different types of descriptions; one using meta-data, and
another using the host’s source code. It was also starting to
be clear that, should this level evolve, the code would have to
be changed and recompiled. In fact, should we wish to ever
make the system self-hosted, this would definitely represent
an added difficulty. We actually started to experiment hard-
coded definitions, but the sheer size of our model was starting
to overwhelm us from the point of view of dealing with too
many elements, definitions and constraints.

Therefore, provide a minimalistic core of well-known
elements from where you can build more complex
constructions, and instantiate it at the very begin-
ning of the system’s execution. Similarly to a dictionary,
you start with a small set of existing resources and then pro-
ceed to create something more complex and effective. The
smaller and simpler it is, the less the system will be bound
to specific model elements, and the less likely the top-most
level will need to change in the future. A thorough formal-
ization of the core will benefit the system, as it will serve
as a foundation for all the other levels. In order to help
solving cyclic dependencies, lazy computational models may
be used. Although maintaining the core small and simple,
boot-strapping a system also requires a substantial degree of
expressiveness, which will eventually result in increasingly
richer levels.

The term bootstrap seems to have its roots on a metaphor

9In other words, an instantation assumed to be right, without
any type of structural or constraint enforcement.

Instantiator Meta-Level-*

describes

Figure 9: Bootstrapping a model level. The instan-
tiator is the classic aristotelian primum movens, that
gives “birth” to the first model-level.

derived from pull straps sewn onto the backs of leather boots
with which a person could pull on their own boots (without
outside help). The term was heavily to refer to the seemingly
paradoxical fact that a computer cannot run without first
loading its basic software, but to do so it needed to be
running.

[
The most common known uses of this pattern are program-
ming languages and their compilers (e.g. Smalltalk and
LISP). The advantages of starting with a small self-describing
core to define the whole system are very patent in the fol-
lowing war story from Alan Kay:

“ (...) the virtual machine, running inside Ap-
ple Smalltalk, was actually simulating the byte
codes of the transformed image just five weeks
into the project (...) Ten weeks into the project,
we crossed the bridge and were able to use Squeak
to evolve itself, no longer needing to port images
forward from Apple Smalltalk. About six weeks
later, Squeak’s performance had improved to the
point that it could simulate its own interpreter and
run the C translator, and Squeak became entirely
self-supporting.”

For model languages, the most well-known use is probably
MOF, which began as a small subset of UML structural
diagrams along with some constraints, and that is used to
define the whole UML.

5. CONCLUSION
This paper presented three of the most central patterns for
the design of a meta-architecture, which are a specific type
of software architectures, able to inspect their own structure
and behavior, and adapt them at runtime. They closely
complement each other. Everything is a Thing allows
to use the same representations strategy regardless of the
model level, unifying these levels under the same concept.
However, this brings the need of a upper level to every model
level. Closing the Roof addresses this issue by creating a
ciclic dependency on the upper-most level, that should thus
comply to itself. This ciclic dependency is, however, not
trivial to deal with. Bootstrapping addresses this problem
by relying only on a minimal set of definitions, upon which
more complex structures can be built.
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