
Design patterns generic models
Jyothish Maniyath

CDC Software India Pvt Ltd
6

th
 Floor, Canberra Block, UB City, #24

Vittal Mallya Road, Bangalore, India
+91 94482 46718

jyosh@maniyath.com

ABSTRACT

This paper discusses about generic models of software design

patterns defined in terms of design patterns’ programming

meaning or effective execution behaviors. The study is based on

23 design patterns cataloged in the seminal book by famous GoF

authors: Design patterns, Elements of Reusable Object-Oriented

Software. The generic models defined in this paper are a different

way to understand abstract intents of design patterns. And also it

will be helpful to analyze and understand similarities and

differences in among design patterns.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Object-oriented design

methods

General Terms

Design, Language.

Keywords

Design patterns, generic models

1. INTRODUCTION
Programming language features are just building blocks and in

programs they have to be used in combination to solve complex

problems. Sometimes certain combinations or direct usage of

certain features can make programs inefficient to modify or extend

latter. The importance of design patterns is they describe optimal

and proven combinatory usage of, especially, object-oriented

language features to address recurring design and programming

problems.

Decision of choosing appropriate design patterns is made

primarily based on their abstract intents. Goal of this paper is to

define generic models of design patterns based on their

programming meaning and effective execution behaviors. The

study is based on the 23 design patterns cataloged in the seminal

book, Design patterns, Elements of Reusable Object-Oriented

Software. The generic models will be useful to analyze and

understand the similarities and differences in among design

patterns

2. Design Patterns generic models catalog
In total nine generic models are identified and defined in this

catalog. First a summary table of the generic models and related

design patterns are given. For most of the models there are two or

more variations. In the table basic models are given in bold letters

and variations underneath.

Table 1. Summary table of models and related design patterns

Generic models and variations Design patterns

In-memory object reuse

Enforced Singleton

Managed Flyweight

Object indirection

With different interfaces for

compatibility concern
Adapter

With different interfaces for

decoupling concern
Command

With common interface Proxy

With collections Iterator

Behavior indirection Visitor

Callback dependency

Unidirectional Observer

Multidirectional Mediator

Class type reuse with composition

Behavior composition Strategy

Matrix model Bridge

Agent based object instantiation

Inheritance oriented Factory method

Meta-agent based Abstract factory

Composition oriented Builder

Self-agent Prototype

Objects hierarchy with common interface

Call forwarding Chain of responsibility

Aggregated states Composite

Aggregated behaviors Interpreter

Behavior refinement Decorator

Abstraction decomposition

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, to republish, to post on servers

or to redistribute to lists, requires prior specific permission. A preliminary version of

this paper was presented in a writers' workshop at the 18th Conference on Pattern

Languages of Programs (PLoP). PLoP'11, October 21-23, Portland, Oregon, USA.

Copyright 2011 is held by the author(s). ACM 978-1-4503-1283-7

Monolithic presentation Facade

Distinctly dynamic object

abstraction
State

Procedure abstraction Template

Object in-memory persistence Memento

2.1 In-memory object reuse
Reuse of runtime objects can help to improve program

performance or it is sometimes required for program correctness.

With in-memory object reuse program performance can be

improved by the optimal use of runtime resources. In the cases

where a high chance for a significant number of instances of a

class needs or happens to be created at runtime, reuse of in-

memory objects is necessary for the optimal performance of the

program. In some other cases, as part of program correctness it

requires that either only single instance of a particular class can

exists during the lifetime of the program or an object with a

particular identity is once instantiated has to be reused everywhere

in the program.

There are two main approaches to achieve in-memory object

reuse, in first approach the target object itself ensures its reuse and

in second one the client code, itself or with the help of an agent

object manages the reuse of target objects.

In the first approach reuse of the target object is enforced by the

class definition. So it can be called as enforced reuse. In the basic

model of this approach only single instance of a class can be

instantiated in a program. In a variation of it, it is allowed to

create multiple instances with different identities but objects with

a particular identity is once instantiated its reuse is enforced

everywhere in the program. It can be implemented by maintaining

a list of instantiated objects against a selected identity property

based on key-value pairs.

The Singleton design pattern is an example for enforced in-

memory object reuse. In the basic model the participant Singleton

ensures only a single instance of the class is created in client code.

A variation of it can be created to support multiple instances with

unique identities by implementing a key-value pair list to store

multiple static instances instead of single static instance like in the

basic model.

In second approach either client code itself or with the help of an

agent object, target object instances are reused. In such cases the

target object class has to be designed in such a way that its

instances can be reused independent of their identity. This

approach can be called as managed reuse because it is possible to

create as many target objects in client code but the reuse of

objects is managed by client code logic with support of target

object class design.

An example for managed in-memory reuse is the Flyweight design

pattern. In that pattern the FlyweightFactory participant acts as

the agent that manages the reuse and the ConcreteFlyweight

participant class is designed to support reuse of its objects in a

managed way. The name flyweight implies target objects’

abstraction is designed to create object as lightweight by including

only intrinsic properties and extrinsic properties required in

behaviors has to be provided from client code.

2.2 Object indirection
Object indirection is about client objects interact with or access

target objects indirectly using intermediate objects. There are

basically three types of objects in this model – client object, in-

directing intermediate object and in-directed target object. The in-

directing object may implement a same or a subset of interface of

the in-directed object or altogether a different interface that is

compatible to the client code depends on the requirement of the

client object.

One scenario is object indirection is used to support interaction of

client object with a target object that has an incompatible

interface. In such a case the in-directing object implement the

interface that is compatible to the client code and the invocations

to them are redirected to corresponding implementation in the

target object. For redirection the in-directing object internally

maintains a reference to the in-directed object. An example of this

model is the Adapter pattern. The participant Adapter acts as the

in-directing object to access the target object, the Adaptee

participant. A different model of the same pattern is the

abstraction indirection in which the in-directing object

implements both the client code compatible interface and the in-

directed object interface instead of maintaining a reference to the

target object.

The Command pattern is also based on object indirection similar

to the Adapter pattern in which the in-directing object internally

maintains the in-directed object reference and implements an

interface with more general actions like ‘Execute’. The main

application of the command pattern is that the specific actions

with different names associated with different types of objects can

be accessed from the client object uniformly with a common

interface. So the major accomplishment of the Command pattern

is loosely coupling so that the target objects themselves or their

code can be changed without any impact on the client code.

So far we have discussed in-directing and in-directed objects with

different interfaces with respect to the client object. Another

possible variation of object indirection is both the objects

implements a common interface in complete or a subset of it. An

example for such an object indirection is the Proxy design pattern.

Applications of the proxy pattern include – lazy initialization,

secure access, remote access etc. In the cases where target objects

are heavyweight, lazy initialization is useful to defer their

instantiation until they are actually required. In the scenarios

when certain interfaces of a target object has to be hidden from

the client code access to the target object can be controlled

through a proxy object, which will implement only a subset of the

interfaces. In the case of remote access when a client code wants

to access target object on a different process in the same machine

or on a different machine proxy objects are used to shield remote

communication complexities from the client code.

The Iterator design pattern is a different type of object indirection

than those are discussed so far. The iterator pattern is used to

work with collection objects. Instead of client code keep track the

position of objects in a collection an iterator is used for forward or

backward sequential traversal of it. The iterator participant

provides options to access the objects in a collection by hiding the

details of the position information.

2.3 Behavior indirection
In this model the behaviors that are logically belong to the target

object abstractions will be implemented in separate abstractions

and the target object abstractions will provide an indirection

method to invoke them. The method will redirect the call to

appropriate behavior implemented externally. Applications of

behavior indirection includes, allow implementing new virtual

methods later without modifying already implemented class

abstractions and simulating multi-methods.

The Visitor pattern is an example of behavior indirection. The

ConcreteEelement participant implements a general (like 'Accept')

method which redirects the call to a ConcreteVisitor method

(which actually implements the behavior belongs to

ConcreteEelement).

2.4 Callback dependency
Callback is implicit invocation of methods of one or a set of

objects upon an event occurs in another object. The events can be

some state change, execution of certain actions or a user /external

application interaction. A dependency results from the usage of

callback mechanism can be called as callback dependency. There

are two types of objects in callback dependency relationship –

publisher and subscriber objects. The publisher and subscriber

objects are associated through a callback interface or an

anonymous/delegate method. In the interface based callback

dependency relationship, subscriber objects implement the

callback interface and publisher object keeps the references of

subscriber object based on the callback interface. Otherwise in a

method based callback a method reference is passed to the

publisher object.

In a simple model of the callback dependency the relationship is

unidirectional in which there will be a dedicated publisher object

that is associated with one or more subscriber objects. In a more

complex model a set of objects acts as both publisher and

subscriber and interconnected with one another through callback

dependency, which can be called as multidirectional callback

dependency.

The Observer design pattern is an example for unidirectional

callback dependency. In it the ConcreteObserver participants can

register with a ConcreteSubject participant and the

ConcretSubject will callback all registered observers when the

event, which they are subscribed for, occurs.

The Mediator design pattern is an example for multidirectional

callback dependency. In it generally all participating objects are

interested in events that occur in other participating objects. So to

simplify the communication among these objects, a mediator

object is created and participating objects register with it to get

notified about other object’s events. This avoids the complexity of

interactions among the participants and makes fewer dependencies

among them. In the mediator pattern, Colleague class participants

register with a ConcreteMediator participant and Colleague

classes include a reference of the mediator participant. And when

an event happens in any colleague class it executes a callback to

the mediator object and it will callback appropriate registered

colleague classes methods.

2.5 Class type reuse with composition
Common states, behaviors and contracts shared across multiples

class types can be encapsulated into a common base class and

reused to avoid redundancy and improve maintainability. There

are two options to integrate reusable abstractions – inheritance

and composition. Inheritance based integration is a compile time

operation so any change or addition requires recompilation.

Composition based integration come into effect only at runtime so

it can be applied dynamically.

In the inheritance-based approach, a reusable base abstraction is

extended by adding variant states and behaviors to create different

specializations of it. Different specialized abstractions created via

inheritance basically represent different types. So if client code

wants to work with different derived types dynamically the

polymorphism feature can be utilized.

A basic model of composition-based approach consists of one

context class with common states and behaviors and different

variant classes with varying states and behaviors. Different types

of target objects are created at runtime by combining instances of

context and appropriate variant classes. With the composition

based approach client code can create different variations of target

objects without directly using polymorphism. One basic goal of

composition based class type reuse is reduce sub-classing. There

can be different specializations of the basic model with respect to

how the variant abstractions are designed and/or context and

variant classes’ instances are combined to create target objects.

The Strategy design pattern is an example for composition-based

class type reuse model. This pattern is applicable if a set of

abstractions differs only in the implementation of one or few

behaviors. In such cases, variant behaviors can be implemented as

part of different abstractions and composed with context

abstraction to create variations when required. If we want to

implement a similar thing using inheritance, first need to create a

base abstraction with variant behaviors as virtual methods

together with invariants and then create different derived classes

implementing the variant virtual method. In strategy pattern the

Context participant is a configurable context abstraction and the

ConcreteStrategies are variant abstractions that are passed to the

Context to create variations of it.

In the Builder and the Prototype patterns a similar model can be

observed but the main intent of them is ‘agent based object

instantiation’ which is explained in the next section. In the State

pattern also same model is followed but its main intent is

‘decomposition of distinctly dynamic object abstraction’ which is

also explained latter.

The Bridge pattern is based on both inheritance and composition.

In the bridge pattern there can be different specializations of base

abstractions and variant abstractions. These specializations can be

combined together to create different permutations among them. If

this combination were performed through only the inheritance it

would result in a much larger number of specialized abstractions.

The Abstraction participant is the base abstraction for

RefinedAbstractions participant. The Implementor participant is

base abstraction for the ConcreteImplementor participant.

Multiple specialized RefinedAbstractions and

ConcreteImplementor can be created through inheritance and in

client code a larger number of variations can be created by

composing different combinations of instances of them.

2.6 Agent based object instantiation
A straightforward way to instantiate class abstractions is to use the

new operator with the class constructors, but there are some

limitations associated with this approach. Direct use of the new

operator makes the coupling between the abstractions tight and

thereby introduces a direct dependency. One solution to avoid

such a tight coupling is to use an agent object, which can create

target objects on demand, by providing the necessary object

initialization parameters.

The simplest example for agent based object instantiation is the

Factory method design pattern. In it the ConcreteCreator

participant acts as the agent object, which provides a method to

create different ConcreteProducts and it returns a reference of

type Product interface. Client code needs to pass necessary

parameters while calling the object creation method and based on

that the agent object decides which object to be created and

returned.

The Abstract factory is a special case of the Factory method

pattern. Basically it is a nested implementation of it. The

AbstractFactory participant implements a method to create a

ConcreteFactory. The ConcreteFactory implements a method to

create ConcreteProducts on-demand and returns AbstractProduct

type interface reference. Actually an Abstract factory is a meta-

agent object, which creates the appropriate agent object on-

demand and the newly created agent creates target objects

required for the client code.

The Builder pattern unlike the Factory method pattern is not based

on inheritance. In this pattern the Director participant acts as an

agent to create target objects but client code can decide the

internal structure of the target object, Product, through the

ConcreteBuilder participant. The Product and the

ConcreteBuilder participants can be designed to create objects

with different internal structures based on composition or simple

value change. Because it is not based on inheritance for creation

of variations, composition based abstraction reuse approach, that

is explained in the previous section, can be applied to create

variations.

In the Prototype pattern the target object itself act as an agent to

create new object. Once an object of same type is created through

an existing object, client code can change the variant parts to

create an object with different internal structure or state. The

ConcretePrototype participant acts as an agent to create new

objects. Similar to the Builder pattern it can be designed to create

different variations using composition based abstraction reuse or

simple value change.

2.7 Object hierarchy with common interface
Inheritance in multiple levels will create a class hierarchy in

which derived classes aggregate all possible states and behaviors

of all the base classes above to it in the hierarchy. In such a

hierarchy we can observe two types of method binding. In first

case, if a method is invoked with a derived class that is not

implemented in it then it will try to bind to an implementation of

its base class in bottom up order until a matching implementation

is found. In second case a virtual method is invoked with a base

interface reference pointing to a derived class object then it will

try to bind an implementation by derived class in bottom up order.

Analogues to inheritance based class hierarchies it is possible to

create object hierarchies based on composition. The object

hierarchies with common interface are a special case of it in which

all the objects in the hierarchy implements a common interface.

There are two variations possible with the hierarchy – linear

structure and tree structure. In the linear structure an object will

be linked to only one object in the hierarchy but in tree structure

an object can be linked to more than one object at one level and it

can be implemented recursively. Some applications of the model

‘object hierarchy with a common interface’ are explained below.

Control forwarding: In this case when a common interface method

is invoked with an object first it checks is it configured to execute

it, if it is then it executes and returns else it forwards the control to

upward or downward in the hierarchy depend upon the design.

The Chain of responsibility pattern is based on one directional

control forwarding. A set of ConcreteHandler participants

implements the Handler interface and forms a logical hierarchy by

referencing another ConcreteHandler. The Client participant can

invoke the method enabled with control forwarding using a header

object in the hierarchy and control forwarding will happen

internally until an implementation gets executed.

In the Chain of responsibility pattern control forwarding happens

only in one direction and the forwarding is terminated when

reached at an appropriate implementation. Different variations of

control forwarding are possible like, perform control forwarding

in top-to-bottom or bottom-to-top direction, by default always

continue with control forwarding till reach to root or bottom of

the hierarchy with an option to terminate the forwarding

conditionally at any level etc. Such patterns can be observed in

event tunneling and bubbling implementations.

Aggregated states, aggregated behaviors and refined behaviors: In

this model when a common interface method is invoked with an

object it internally recursively calls implementations of all the

objects below to it in the hierarchy.

For some objects value of certain states can be an aggregation of

values of similar state in all objects they are composed with. For

example, cost of a machine can be total cost of all of its

components or weight of a composite object where each sub-

component will have its own weight and weight of the composite

object will be a total of them. In such cases the composite object

is represented by an object hierarchy with a common interface.

And all the composing objects implement a state value computing

method to calculate its value recursively.

In the case of expression evaluation or similar scenarios the result

of a top level expression will be aggregation of result of

evaluation of sub-expressions done recursively. It is an example

of aggregated behaviors.

In case of refined behavior, behaviors of objects on top of the

hierarchy get refined in objects at bottom of them. It is done by

executing additional actions after or before the execution of

behaviors of upper level objects in the hierarchy.

The Composite pattern is based on tree structure hierarchy, which

is suitable to implement aggregated states. In it Leaf and

Composite participants implement the common interface

Component.

In the interpreter design pattern we can observe the aggregated

behavior model. The interpreter pattern is a solution to the

problems which can be expressed using a language and its actual

functioning will be based on the interpretation of the language by

expression evaluation. Generally expression trees are represented

using object hierarches and their evaluations are done recursively.

The evaluation result of top level expression will be aggregation

of evaluation results of sub-expressions. The participants

TerminalExpression and NonterminalExpression implement

AbstractExpression common interface. And the Client participant

with the help of the Context participant creates the object

hierarchy. The result of the ‘evaluate’ behavior of the top level

NonterminalExpression will be aggregation of results of

‘evaluate’ behavior of other NonterminalExpression and

TerminalExpression participants in the hierarchy.

The Decorator pattern is basically a linear structure hierarchy and

is mainly used for behavior refinement. In this pattern,

ConcreteComponent and ConcreteDecorator participants

implement a common interface Component.

2.8 Abstraction decomposition
Data abstraction (class) and procedure abstraction (behavior or

method) are the two important abstractions in object-oriented

programing. It is always desirable to design abstractions with

single or fewer cohesive responsibilities. Designing systems and

subsystems based on granular abstraction units are helpful to

manage complexity, modify and maintain them individually and

as a composite group.

An opposite approach to it is designing them as big monolithic

abstraction units. Monolithic design has certain advantages over

the highly decomposed design of abstractions while considering

the lesser-complicated interfacing option available to the client

code. That means it is easy to provide the services or

functionalities the client codes want to consume in more abstract

form by hiding the details, in the monolithic design. In the case of

decomposed approach using granular abstraction units in

combination will be complicated to client codes.

Monolithic presentation is a technique to utilize the advantages of

both approaches. In this model, systems or complex abstractions

will be decomposed into granular abstraction units and a

monolithic presentation abstraction is created to hide the

complexity of granular decomposition. The Façade design pattern

is an example for monolithic presentation. The Façade pattern

describe about providing a packaging Façade abstraction around

decomposed Subsystems.

Objects are dynamic entities because during runtime the states and

behaviors of them can change. But an abstraction can be called as

‘Distinctly dynamic objects abstraction’ if significant behaviors of

the objects of it behave distinctly differently when one or a small

set of states value is changed. In such cases it is possible to

decompose the abstraction into a base abstraction to encapsulate

common states and behaviors and a set of variant abstractions to

represent the distinct behaviors.

The State pattern is an example for decomposition of ‘distinctly

dynamic object’ abstraction. In model a possible monolithic

‘distinctly dynamic object’ abstraction can be decomposed into

one context abstraction and multiple variant abstractions that

encapsulate distinct behaviors. The target objects are created by

composing the participant Context class object and the participant

ConcreteState subclass objects.

The Template method design pattern is about decomposition of

procedure abstraction. A template method defined in the base

class maintains an order for a sequence of sub-procedures, which

can be implemented differently in sub-classes. The AbstractClass

participant declares a Template procedure and Abstract Primitive

abstractions. The Template procedure will be an ordered

composition of primitive operations, and primitive operations can

be overridden in ConcreteClass participants to create variations.

So such a behavior also can facilitate behavior generalization and

specialization

2.9 Object in-memory persistence
Certain languages or its base library provide a feature to serialize

or de-serialize object states in order to save objects states before

they are destroyed or changed and to recreate objects with same

states later. If the states need not be saved across sessions it is a

less efficient approach because it involves costly file operations.

In such cases the persistence can be done optimally within

primary memory itself (for example, undo/redo operations during

editing).

The Memento design pattern describes how to accomplish in-

memory persistence. One or more states of Originator object can

be serialized in Memento object ‘in memory’ and restored later to

the same or another object. Memento objects can be kept inside a

Caretaker object for better management.

3. ACKNOWLEDGMENTS
The author would like to thank following individuals for their

valuable comments and suggestions provided to improve the

paper during the shepherding and writers’ workshop in PLoP

2011. David Isaacs – shepherded the paper for PLoP 2011,

Ademar Aguiar, Eduardo Guerra, Fernando Sergio Barbosa,

Filipe Correia, Joseph Yoder, Rebecca Wirfs-Brock – reviewed

the paper in writers workshop PLoP 2011.

4. REFERENCES
[1] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides.

1995. Design patterns - Elements of reusable object oriented

design. Addison Wesley.

[2] James.O. Coplien. 1992. Advanced C++ - Programming

Styles and Idioms. Addison Wesley.

[3] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter

Sommerland, Michael Stal. 1996. Pattern Oriented Software

Architecture Volume 1. John Wiley & Sons.

