
Cloud Service Model Patterns

Keiko Hashizume

1
, Eduardo B. Fernandez

1
, and Maria M. Larrondo-Petrie

1

1 Dept. of Comp. Science and Eng., Florida Atlantic University, Boca Raton, FL, USA,

ahashizu@fau.edu, ed@cse.fau.edu, petrie@fau.edu

1. Introduction
Cloud computing is a new paradigm that improves the utilization of resources and decreases

the power consumption of hardware. Cloud computing allows users to have access to

resources, software, and information using any device that has access to the Internet. The

users consume these resources and pay only for the resources they use.

A cloud model provides three types of services [Mat09]: Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). IaaS provides processing,

storage, networks, and other fundamental computing resources where the consumer is able to

deploy and run arbitrary software, which can include operating systems and applications.

PaaS offers platform layer resources, including operating system support and software

development frameworks to build, deploy and deliver applications into the cloud. SaaS

provides end-user applications that are running on a cloud infrastructure. The applications are

accessible from various client devices through a thin client interface such as a web browser

(e.g., web-based email).

In this paper, we develop two patterns for two of the cloud service models: Infrastructure-as-

a-Service and Platform-as-a-Service. We assume that our audience will include cloud system

designers as well as cloud application builders. Section 2 presents the Cloud Infrastructure

pattern. Next, in Section 3 we present the Platform-as-a-Service pattern. In Section 4, we

present some conclusions and possible future work.

2. Infrastructure-as-a-Service
Intent

The Infrastructure-as-a-Service describes the infrastructure to allow the sharing of distributed

virtualized computational resources such as servers, storage, and network.

Context

Distributed systems where we want to improve the utilization of resources and provide

convenient access to all users.

Problem

Some organizations do not have the resources to invest in infrastructure, middleware, or

applications needed to run their businesses. Also, they may not be able to handle higher

demands, or they cannot afford to maintain and store unused resources. How can they get

access to computational resources?

Forces

 Transparency - The underlying architecture should be transparent to its users. Users

should be able to use the provider’s services without understanding its infrastructure.

 Flexibility - Different infrastructure configurations and amounts of resources can be

demanded by users.

 Elasticity - Users should be able to expand or reduce resources in order to meet the

different needs of their applications.

 Pay-per-use - Users should only pay for the resources they consume.

 On-demand-service – Services should be provided on demand.

 Manageability - In order to manage a large amount of service requests, the cloud

resources must be easy to deploy and manage.

 Accessibility - Users should access resources from anywhere at anytime.

 Testability—We intend to develop system programs in this environment and we need to

test them conveniently.

 Shared resources - Many users should be able to share resources in order to increase the

amount of resource utilization and thus reduce costs.

 Isolation - Different user execution instances should be isolated from each other.

 Shared Non-functional requirements provision (NFRs) – Sharing of the costs to provide

NFRs is necessary to allow providers to offer a higher level of NFRs.

Solution

The solution to this problem is a structure that is composed of many servers, storage, and a

network, which can be shared by multiple users and accessible through the Internet. These

resources are provided to the users as a form of service called Infrastructure-as-a-Service

(IaaS). IaaS is based on virtualization technology which creates unified resources that can be

shared by different applications. This foundation layer – IaaS – can be used as a reference for

non-functional requirements.

Structure

Figure 1 shows a class diagram for a cloud infrastructure. The Cloud Controller is the main

component which processes requests from a Party. A Party can be an institution or a user

(customers and administrators). A Party can have one or more Accounts. The Cloud

Controller coordinates a collection of services such as VM scheduling, authentication, VM

monitoring and management. When a Cloud Controller receives a request from the party to

create a VM, it requests its corresponding Cluster Controllers to provide a list their free

resources. With this information, the Cloud Controller can choose which cluster will host the

requested virtual machine. A Cluster Controller is composed of a collection of Node

Controllers, which consist of a pool of Servers that host Virtual Machine (VM) instances.

The Cluster Controller handles the state information of its Node Controllers, and schedules

incoming requests to run instances. A Node Controller controls the execution, monitoring,

and termination of the VMs through a Virtual Machine Monitor (VMM) which is the one

responsible to run VM instances. The Cloud Controller retrieves and stores user data and

Virtual Machine Images (VMI). The Virtual Machine Image Repository contains a

collection of Virtual Machine Images that are used to instantiate a VM. The Dynamic Host

Configuration Protocol (DHCP) server assigns a MAC/IP (Media Access Control/Internet

Protocol) pair address for each VM through the Cloud Controller, and requests the Domain

Name System (DNS) server to translate domain names into IP addresses in order to locate

cloud resources.

Figure 1: Class Diagram for a Cloud Infrastructure

Dynamics

Some use cases are the following [Nis]:

 Open/close an account (actor: user)

 Copy data objects into/out a cloud (actor: administrator)

 Erase data objects in a cloud (actor: administrator)

 Store/Remove VM images (actor: administrator, user)

 Create a VM (actor: user)

 Migrate a VM (actor: administrator, user)

We show two UCs below:

UC1: Create a Virtual Machine (Figure 2)

Summary: Create of a Virtual Machine for a party, assign to it requested resources and assign

it to a server

Actor: Party

Precondition: The party has a valid account

Description:

a) A party requests a VM with some computational resources to the Cloud Controller.

b) The Cloud Controller verifies whether the requester has a valid account.

c) The Cloud Controller requests the available resources to the Cluster Controllers closer to

the location of the party. In turn, the Cluster Controller queries its Node Controllers about

their available resources. In the sequence diagram, there is only one Cluster Controller

and one Node Controller in order to maintain the diagram simple, but there can be more

Clusters and Node Controllers.

d) The Node Controller sends the list of its available resources to the Cluster Controller, and

the Cluster Controller sends it back to the Cloud Controller.

e) The Cloud Controller chooses the first Cluster Controller that can support the

computational resources requirements.

f) The Cloud Controller requests a MAC/IP pair address from the DHCP server for the new

VM.

g) The Cloud Controller retrieves a virtual machine image from the repository (VMI)

h) The Cloud Controller sends a request to the Cluster Controller to instantiate a VM.

i) The Cluster Controller forwards the request to the Node Controller which forwards it to

the VMM.

j) The VMM creates a VM with the requested resources.

k) The VMM assigns the VM to one of the servers.

Postcondition: A virtual machine is created and assigned to an account and a server

Figure 2: Sequence Diagram for Use Case Create a Virtual Machine

UC2: Migrate a Virtual Machine (Figure 3)

The administrator can migrate a VM to a specific Node Controller that can be located in the

same or in a different Cluster Controller. The administrator can also migrate a VM to a specific

location or to the first node that has the available resources. For the scenario below, we assume

that the administrator will move a VM to the first available Node Controller within the same

Cluster Controller.

Summary: A VM is migrated from one Node Controller to another one

Actor: Administrator

Precondition: a VM resides in some Node Controller (Compute Node Source)

Description:

a) The Administrator requests to the Cloud Controller to migrate a VM. However, the migration

process can be automatic due to load balancing for example.

b) The Cloud Controller sends a request to the Cluster Controller to start the migration of the

VM.

c) The Cluster Controller requests the Node Controller Source to stop the VM. The Node

Controller Source forwards this request to the VMM Source.

d) The VMM Source stops the VM and copies the content of the VM.

e) Do the same as UC1

f) The VMM Source sends the content of the VM to the VMM destination.

g) The VMM destination copies the content into the new VM

Postcondition: The VM has migrated to another host

Figure 3: Sequence Diagram for Use Case Migrate a Virtual Machine

UC1

1

Implementation

Eucalyptus [Euc] is an open source software that allows to implement Infrastructure as a

Service in order to run and control virtual machine instances via Xen and KVM. Eucalyptus

consists of five main components that are described in Figure 4 [Bau09].

Figure 4: Eucalyptus’ main components

The two higher level components are: the Cloud Controller and Walrus. The Cloud

Controller is a Java program that offers EC2-compatible SOAP and web interfaces. Walrus is

a data storage where users can store and access virtual machine images and their data. Walrus

can be accessed through S3-compatible SOAP and REST interfaces. Top-level components

can aggregate resources from several clusters. Each cluster needs a Cluster Controller which

is typically deployed on the head-node of a cluster. Each node will also need a Node

Controller for controlling the hypervisor. Cluster Controller and Node Controllers are

deployed as web services, and communications between them takes place over SOAP with

WS-Security [Has09].

A cloud can be setup as a single-cluster where the Cloud Controller and the Cluster

Controller are located on the same machine, which are referred to front-end. All other

machines running the Node Controllers are referred as back-end. However, there could be

also a more advanced configuration which comprises several Cluster Controller or Walrus

deployed in different machines.

A typical configuration includes [Ubu]:

 1 Cloud Controller (CPU-1GHz, Memory-512MB, Disk-5400rpm IDE, Disk space-

40GB)

 1 Walrus Controller (CPU-1GHz, Memory-512MB, Disk-5400rpm IDE, Disk space-

40GB)

 1 Cluster Controller + Storage Controller (CPU-1GHz, Memory-512MB, Disk-

5400rpm IDE, Disk space-40GB)

 Nodes (VT extensions, Memory-1GB, Disk-5400rpm IDE, Disk space-40GB)

Known Uses

 Eucalyptus [Euc] is an open source framework used for hybrid and private cloud

computing.

 OpenNebula [Ope] is an open source toolkit to build clouds.

 Nimbus [Nim] is an open source set of tools that offers IaaS capabilities to the scientific

community.

 Amazon’s EC2 [Ama] provides compute capacity though web services.

 HP Cloud Services [Hp] is a public cloud solution that provides scalable virtual servers

on demand.

 IBM SmartCloud Foundation [Ibm] offers servers, storage and virtualization components

in order to build private, public and hybrid clouds.

Consequences

The Cloud Infrastructure Pattern provides the following benefits:

 Transparency – Cloud users are usually not aware where their virtual machines are

running or where their data is stored. However, in some cases users can request a general

location zone for virtual machines or data.

 Flexibility - Cloud users can request different types of computational and storage

resources. For instance, Amazon’s EC2 [Ama] provides a variety of instance types and

operating systems.

 Elasticity - Resources provided to users can be scaled up or down depending on their

needs. Multiple virtual machines can be initiated and stopped in order to handle increased

or decreased workloads.

 Pay-per-Use – Cloud users can save on hardware investment because they do not need to

purchase more servers. They just need to pay for the services that they use. Cloud

services are usually charged using a fee-for-service billing model [Cent10]. For instance,

users pay for the storage, bandwidth or computing resources they consume per month.

 On-demand-services – IaaS providers deliver computational resources, storage and

network as services with one click.

 Manageability - Users place their requests to the cloud administrator who allocates,

migrates, and monitors VMs.

 Accessibility - Cloud services are delivered using user-centric interfaces via the Internet

[Wan10] from anywhere and anytime.

 Testability—Having an isolated environment allows testing system programs without

affecting the execution of other virtual machines.

 Shared resources - Virtualization enables to share a pool of resources such as processing

capacity, storage, and networks. Thus, higher utilization rate can be reached [Amr].

 Isolation – A VMM provides strong isolation between different virtual machines, whose

guest operating systems are then protected from one another [Kar08].

 Shared Non-functional requirements (NFRs) provision – Some IaaS providers offer

security features such as authentication and authorization to customers that can be added

as part of the service. Sharing allows the provider to offer a higher degree of NFRs at a

reasonable cost.

The Cloud Infrastructure Pattern has the following liabilities:

 Cloud computing is dependent on network connections. While using cloud services, users

must be connected to the Internet, although a limited amount of work can be done offline.

 The Cloud may bring security risks associated to privacy and confidentiality areas since

the users do not have the control of the underlying infrastructure.

 The isolation between VMs may not be so strong [Has12a].

 Virtualization increases some performance overhead.

Related Patterns

 The Virtual Machine Operating System [Fer05] describes the VMM and its created VMs

from the point of view of an OS architecture.

 The Grid Architectural Pattern [Cam06] allows the sharing of distributed and

heterogeneous computational resources such as CPU, memory, and disk storage for a grid

environment.

 Misuse patterns [Has12a] describe possible attacks to cloud infrastructures.

 The Platform-as-a-Service (PaaS) pattern describes development platforms that provide

virtual environments for developing applications in the cloud.

 Party [Fow97] indicates that users can be individuals or institutions.

3. Platform-as-a-Service
Intent

The Platform-as-a-Service (Pass) provides virtual environments for developing, deploying,

monitoring, and managing applications online without the cost of buying and managing the

corresponding software tools or hardware.

Context

PaaS services are built on top of the cloud’s Infrastructure-as-a-Service (IaaS), which

provides the underlying infrastructure.

Problem

Organizations may want to develop their own custom applications without buying and

maintaining the developing tools, databases, operating systems, and infrastructure underneath

them. Also, when the team is spread across several places, it is necessary to have a

convenient way to coordinate their work. How do we provide these functions?

This problem is affected by the following forces:

 Collaboration – sometimes teams of developers are located in different geographic

locations. When working on a project, they all should have access to the development

tools, code, and data.

 Coordination – When many developers work on a complex project, we need to

coordinate their work.

 Elasticity – There should be a way to increase or decrease resources for more compute-

intense development and deployment tasks.

 Pay-for-use – Party should only pay for the resources that they use.

 Transparency – Developers should not be concerned about the underlying infrastructure

including hardware and operating systems, and its configuration for development and

deployment.

 On-demand services – The developers should have the ability to request for an

application tool and start using it.

 Accessibility – Developers should be able to access the tools via standard networks and

from anywhere at any time.

 Testability—We intend to develop application programs in this environment and we need

to test them conveniently.

 Versatility – The platform should be able to be used to build applications for any domain

or type of application. Also, different options for developing tools should be offered to

the users.

 Simplification – Developers should be able to build applications without installing any

tool or specialized software in their computers.

Solution

PaaS offers virtual execution environments with shared tools and libraries for application

development and deployment into the cloud. PaaS uses IaaS as a foundation layer (servers,

storage, and network). PaaS hides the complexity of managing the infrastructure underneath.

Structure

Figure 5 shows a class diagram for a cloud Platform-as-a-Service (PaaS). The PaaS

Provider processes requests from Parties. A Party can be an institution or a user

(developers, administrators). The Party will choose the developing tools from the Software

Repository which contains a list of developing tools available for the users. The PaaS

provider offers Virtual Environments such as Development Environment and

Deployment Environment. The Development Environment is composed of Development

Tools, Libraries, Databases. The Virtual Environments are built upon the IaaS

(Infrastructure-as-a-Service) which provides the underlying hardware. The same PaaS

Provider can manage the IaaS, or it can be managed by a third-party service provider.

Figure 5: Class Diagram for PaaS Pattern

Dynamics

Some use cases are the following [Dod10]:

 Open/close an account

 Request a virtual environment

 Use a virtual environment

 Install development software

 Deploy application

 Undo deploy application

UC1: Consume Development Software (Figure 6)

Summary: A party requests to use a development application for the first time

Actor: Party

Precondition: The Party has an account

Description:

a) The Party requests to use a particular development software

b) The PaaS Provider checks if the Party has a valid account.

c) The Party downloads the client applications on its machine

 Postcondition: The client application is download in the party’s machine

Figure 6: Sequence Diagram for Consuming Development Software

UC2: Deploy an Application (Figure 7)

Summary: A party requests to deploy his application into the cloud, so the application can be

accessed by end-users from anywhere at any time.

Actor: Party (developer)

Precondition: The party has an account

Description:

a) A party requests to deploy his application into the cloud.

b) The PaaS Provider checks if the party has a valid account.

c) The PaaS Provider calculates the computational resources needed for the deployment

such as number of virtual machines.

d) The PaaS Provider requests to the IaaS to create a set of Virtual Machines

e) The PaaS Provider installs and runs the code

Postcondition: The application is running and ready to be accessed by the end-users

Figure 7: Sequence Diagram for Deploying an Application

Implementation

As an example of implementation of a typical PaaS approach we present here the approach

used by Force.com. Force.com [Sal] is a cloud Platform-as-a-Service system from

Salesforce.com. Force.com’s platform provides PaaS services as a stack of technologies and

services covering from infrastructure, database as a service, integration as a service, logic as

a service, user interface as a service, development as a service, and AppExchange [Sal2] in

order to create of business applications. Figure 9 shows the stack of Force.com’s

technologies and services, and it includes:

Infrastructure - The foundation of Force.com platform is the infrastructure that supports the

other layers. Force.com uses of three geographically dispersed data centers and a production-

class development lab which use replication to mirror the data at each location.

Database as a service – It enables customers to create customized data objects, such as

relational tables, and use metadata to describes those objects. Force.com provides data

security by providing features such as user authentication, administrative permissions, object-

level permissions, and field-level permissions.

Figure 9: The Force.com stack and services (from [Sal2])

Integration as a service – Force.com provides integration technologies that are compliant

with open Web services and service-oriented architecture (SOA) standards, including SOAP,

WSDL, and WS-I Basic Profile [Fer10]. Force.com offers different prepackaged integration

solutions such as Web Services API, Web Services Apex, callouts and mashups, and

outbound messaging.

Logic as a service – Force.com provides three options for implementing an application’s

business processing logic: declarative logic (unique fields, audit history tracking, history

tracking, and approval processes), formula-based logic (formula fields, data validation rules,

workflow rules, and approval processes), and procedural logic (Apex triggers and classes).

User Interface as a Service – Force.com provides two types of tools for creating the user

interface of applications built on the platform applications: Force.com’s Builder and

Visualforce. Builder creates metadata, which Forces.com uses to generate a default user

interface for each database object with its corresponding methods such as create, edit, and

delete. With Visualforece, developers can use standard web development technologies such

as HTML, Ajax, and Adobe Flex to create user interfaces for their cloud applications.

Development as a Service - Force.com offers some features to create cloud applications:

Metadata API, Integrated Development Environment (IDE), Force.com Sandbox, and Code

Share. Metadata API allows modifying the XML files that control an organization’s

metadata. The IDE provides a code editor for adding, modifying and testing Apex

applications. Apex is the Force.com proprietary programming language. Also, multiple

developers can share a code source repository using the synchronization features of the IDE.

Force.com Sandbox provides a separate cloud-based application environment for

development, quality assurance, and training. Force.com Code Share allows developers from

different organizations to collaborate on the development, testing, and deployment of cloud

applications.

Force.com IDE [Sal3] is a client application for creating, modifying, and deploying

applications. Once the user downloads the IDE in his local machine, he can start coding. The

IDE is in communication with the Force.com platform servers. There are two types of

operations: online and offline. For example, in the online mode, when a class is saved, the

IDE sends the class to the Force.com servers that compile the class and return any result

(error message). In the offline mode, all changes you performed on a local machine, and once

you connect to Force.com, all those changes are submitted and committed. Force.com

provides a built-in support for automated testing. Once an application is developed in the

development environment, it may be migrated to another environment such as testing, or

production. The Force.com IDE provides an easy way to deploy; just right click on the

component and select Deploy to Server.

Application Exchange – AppExchange is a cloud application marketplace where users can

find applications which are delivered by partners or third-party developers.

Force.com offers environments [Sal4] where users can start developing, testing, and

deploying cloud computing applications. There are different types of environments such as

Production, Development, and Test Environments. The Production environment stores live

data, while the Development Environment stores test data and are used for developing and

testing applications. The Development Environment has two types: Developer Edition and

Sandbox. Sandbox is a copy of the production environment that can include data,

configurations, or both. A Developer Edition environment [Sal5] includes the following

developer technologies: Apex programming language, Visualforce for building custom user

interface and controllers, the Integration APIs, and more. Figure 10 depicts the platform for

the Developer Edition environment. The Force.com’s virtual environments run on

Salesforce’s infrastructure.

Figure 10: Class Diagram of Force.com’s PaaS architecture

Force.com uses different security techniques to defense its platform from different types of

threats [Sal6].

 User authentication: Most users are authenticated on the login page, but also there are

other forms of user authentication: delegated authentication, and Security Assertion

Markup Language (SAML).

 An authenticated session needs to be established before accessing the Force.com SOAP

API and Metadata API.

 Force.com secure its network using different mechanisms such as Stateful packet

inspection (SPI), bastion hosts, two-factor authentication processes, and end-to-end

TLS/SSL cryptographic protocols.

 For sensitive data such as customer passwords, Force.com applies an MD5 one-way

cryptographic hash function, and supports encryption of field data.

 At an infrastructure and network level, salesforce.com applies rigorous security

standards, such as SysTrust SAS 70 Type II.

 Salesforce.com implements industry best practices to harden the host computers. For

example, all hosts use Linux or Solaris distribution with non-default configurations and

minimal processes, user accounts, and network protocols.

Known Uses

 Google App Engine [Goo] provides an environment to build and host web applications

on Google’s infrastructure. Google App Engine supports two application environments:

Java and Python.

 Microsoft Azure [Mic] provides a platform to build, deploy, and manage applications. It

provides different programming languages such as .Net, Java, PHP and others in order to

build applications.

 Salesforce [Sal] offers a development platform to build custom applications. (See

Implementation)

 IBM SmartCloud Applications Services [Dod10] delivers a collaborative environment

that supports the full lifecycle for software development, deployment, and delivery.

Consequences

The PaaS pattern provides the following benefits:

 Collaboration – Geographically dispersed developers can collaborate on the same project

because the code is managed online [Law08].

 Coordination – A project can be conveniently administered from a central point.

 Elasticity – The resources (storage, networking resources, and servers) needed to develop

and deploy an application can grow or shrink to accommodate varying workload

volumes. Scaling application deployments horizontally by replicating application

components such as application servers and data stores [Max09].

 Pay-for-use – Parties only pay for the services they consume. Parties do not need to buy

any developing tools or full year license.

 Transparency – The PaaS provider manages upgrades, patches, and other maintenance as

well as the infrastructure. The user does not need to worry about compatibility issues

between the server configurations and the development software.

 On-demand services – PaaS providers offer software development tools that can be used

by developers when needed.

 Accessibility – PaaS services are accessed through the Internet via web browsers from

anywhere at any time.

 Testability—The variety of tools that we can use makes testing application programs in

this environment more convenient.

 Versatility – PaaS offers different programming languages and databases. For instance,

using Microsoft Azure, you can build applications using .Net, Java, PHP and others.

 Simplification – Developers do not need to buy or install any development tool, or to

keep the servers updated. The applications are managed and maintained by the PaaS

providers.

The Platform-as-a-Service pattern has the following liabilities:

 PaaS providers usually offer their own proprietary development software which makes

hard to migrate an application from one vendor to another one. Also, APIs from different

providers vary, which raises portability issues as well.

 The availability of the PaaS products depends mostly on the Internet. Thus, those services

are available as long there are network connections.

 A PaaS provider can either own or sub-contract the underlying infrastructure to an IaaS

provider. In either case, the security or availability of PaaS services may not be assured.

Related Patterns

 Cloud infrastructure Pattern describes the infrastructure to allow sharing of distributed

virtualized computational resources.

 Misuse Patterns in [Has12a] describe possible attacks to cloud environments, which may

affect the security of PaaS.

 Cloud Computing: Platform as a Service (PaaS) Pattern [Nex10] describes execution

environments for PaaS applications.

 Party [Fow97] indicates that users can be individuals or institutions.

4. Conclusion and Future Work
We have presented two patterns for cloud service models. The Cloud Infrastructure pattern

describes the infrastructure that allows the sharing of distributed virtualized resources such as

server, storage, and network. The Platform-as-a-Service describes the middleware which

provides virtual environments for developing, deploying, and delivering applications online.

We will develop the missing service model: Software-as-a-Service, as well as a reference

architecture for cloud environments. These models are intended to study the security of cloud

systems; we have developed some misuse patterns [Has12a] in order to understand cloud

threats from the point of view of the attacker. We intend to extend a forthcoming security

pattern catalog [Fer13], to include new patterns as defenses.

Acknowledgements
We thank our shepherd Lior Schachter for his insightful and careful comments that significantly

improved this paper.

References

[Amr] D. Amrheim, ―Forget Defining Cloud Computing,‖ http://soa.sys-

con.com/node/1018801

[Ama] Amazon Web Services LLC, ―Amazon Elastic Compute Cloud (Amazon EC2),

http://aws.amazon.com/ec2/

[Bau09] C. Baun, M. Kunze, ―Building a private cloud with Eucalyptus,‖ Procs. of 5
th

 IEEE

International Conference on E-Science Workshops, 2009, 33-38

[Cam06] R. Camargo, A. Goldchleger, M. Carneiro, and F. Kon, ―The Grid Architectural

Pattern: Leveraging Distributed Processing Capabilities,‖ Procs. of the International

Conference on Pattern Languages of Program Design 5, 2006, 337-356

[Cent10] Centre for the Protection of National Infrastructure, ―Information Security Briefing

01/2010 Cloud Computing,‖ March 2010

http://soa.sys-con.com/node/1018801
http://soa.sys-con.com/node/1018801
http://aws.amazon.com/ec2/

[Dod10] M. Dosani, ―On Cloud Nine Through Architecture‖. Journal of Object Technology,

2010

[Euc] Eucalyptus Systems, Inc, http://www.eucalyptus.com/

[Fer05] E.B.Fernandez and T. Sorgente, "A pattern language for secure operating system

architectures", Procs. of the 5th Latin American Conference on Pattern Languages

of Programs, Brazil, August 16-19, 2005.

[Fer10] E. B. Fernandez, K. Hashizume, I. Buckley, M. M. Larrondo-Petrie, and M. VanHilst,

 "Web services security: Standards and products", Chapter 8 in "Web Services

 Security Development and Architecture: Theoretical and Practical Issues", Carlos A.

 Gutierrez, Eduardo Fernandez-Medina, and Mario Piattini (Eds.), IGI Global Group

 2010. 152-177.

[Fer13] E.B.Fernandez, ―Security patterns in practice: Building secure architectures using

 software patterns‖. To appear in the Wiley Series on Software Design Patterns.

[Fow97] M. Fowler, Analysis patterns – Reusable object models, Addison-Wesley, 1997.

[Goo] Google, Inc, https://developers.google.com/appengine/

[Hp] HP Cloud Service, http://hpcloud.com/

[Ibm] IBM, http://www.ibm.com/cloud-computing/us/en/

[Has09] K. Hashizume, and E.B.Fernandez, A Pattern for WS-Security. First IEEE Int.

Workshop on Security Eng.Environments, Dec. 17-19, 2009, Shanghai, China.

[Has12a] K. Hashizume, E.B. Fernandez, and N. Yoshioka, ―Three Misuse Patterns for Cloud

Computing‖. In Security Engineering for Cloud Computing: Approaches and Tool,

IGI Global: 2012.

[Kar08] P. Karger and D. Safford, ―I/O for Virtual Machine Monitors: Security and

Performance Issues,‖ IEEE Security & Privacy, Sep./Oct. 2008, 16-23

[Law08] G. Lawton, "Developing Software Online With Platform-as-a-Service

Technology," Computer, vol.41, no.6, pp.13-15, IEEE, June 2008

[Mat09] T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security and Privacy. 2009:

O´Reilly Media, Inc.

[Mic] Microsoft, Windows Azure, http://www.windowsazure.com/en-us/

[Nex10] Nexof, ―Cloud Computing: Platform as a Service (PaaS), http://www.nexof-

ra.eu/?q=node/669

http://www.eucalyptus.com/
https://developers.google.com/appengine/
http://hpcloud.com/
http://www.ibm.com/cloud-computing/us/en/
http://www.windowsazure.com/en-us/
http://www.nexof-ra.eu/?q=node/669
http://www.nexof-ra.eu/?q=node/669

[Nim] Nimbus, http://www.nimbusproject.org/about/

[Nis] The National Institute of Standards and Technology (NIST), ―Cloud Computing Use

Cases‖, http://www.nist.gov/itl/cloud/use-cases.cfm

[Ope] OpenNebula Project Leads, http://opennebula.org/

[Sal] Salesforce, http://www.salesforce.com/

[Sal2] Salesfore, ―Force.com: A comprehensive look at the World’s Premier Cloud-

Computing Platform‖

http://www.developerforce.com/media/Forcedotcom_Whitepaper/WP_Forcedotcom-

InDepth_040709_WEB.pdf

[Sal3] Salesforce, ―An introduction to the Force.com IDE,‖

http://wiki.developerforce.com/page/An_Introduction_to_Force_IDE

[Sal4] Salesforce, ―An Introduction to Environments‖,

http://wiki.developerforce.com/page/An_Introduction_to_Environments

[Sal5] Salesforce, ―About the Force.com Developer Edition Environments‖,

http://wiki.developerforce.com/page/Developer_Edition

[Sal6] Salesforce, ―Secure, private, and trustworthy: enterprise cloud computing with

Force.com‖, http://www.salesforce.com/assets/pdf/misc/WP_Forcedotcom-

Security.pdf

[Tec11] techPDF, ―Architecture and Components of Cloud Computing,‖

http://techpdf.co.cc/blog/architecture-and-components-of-cloud-computing/, June 15

2011

[Ubu] Ubuntu, ―UEC Package Install Separate‖,

https://help.ubuntu.com/community/UEC/PackageInstallSeparate#Overview

[Xu10] D. Xu, ―Cloud Computing: an Emerging Technology,‖ Procs. of the International

Conference on Computer Design and Applications (ICCDA 2010), 249-261

[Wan08] L. Wang, J. Tao, and M. Kunze, ―Scientific Cloud Computing: Early Definition and

Experience,‖ Procs. of the 10th IEEE International on High Performance

Computing and Communications, 2008, 825-830

http://www.nimbusproject.org/about/
http://www.nist.gov/itl/cloud/use-cases.cfm
http://opennebula.org/
http://www.salesforce.com/
http://www.developerforce.com/media/Forcedotcom_Whitepaper/WP_Forcedotcom-InDepth_040709_WEB.pdf
http://www.developerforce.com/media/Forcedotcom_Whitepaper/WP_Forcedotcom-InDepth_040709_WEB.pdf
http://wiki.developerforce.com/page/An_Introduction_to_Force_IDE
http://wiki.developerforce.com/page/An_Introduction_to_Environments
http://wiki.developerforce.com/page/Developer_Edition
http://www.salesforce.com/assets/pdf/misc/WP_Forcedotcom-Security.pdf
http://www.salesforce.com/assets/pdf/misc/WP_Forcedotcom-Security.pdf
http://techpdf.co.cc/blog/architecture-and-components-of-cloud-computing/
https://help.ubuntu.com/community/UEC/PackageInstallSeparate#Overview

