
Patterns for Software Startups
JORGE MELEGATI, Universidade de Sao Paulo
ALFREDO GOLDMAN, Universidade de Sao Paulo

Startups are human organizations focused on innovation, generally, under lack of resources. Then, a highly uncertain environment is created
that influences how software is developed. This set of patterns tries to capture the expertise found in literature to help founders and employee
developers to optimize software development process under the unique circumstances that a startup faces. We present seven new patterns:
Be Agile, Use Open Source Solutions, Simple Tools, Early Validation, Empower, In the clouds and Celebrate failure and discuss the relations
between them and other patterns already presented in literature.

Categories and Subject Descriptors: K.6.3 [Computing Milieux ]: Management of computing and information systems—Software Develope-
ment

General Terms: Startups

Additional Key Words and Phrases: Software development, startup development

ACM Reference Format:

Melegati, J. and Goldman, A. 2015. Patterns for Software Development Startups. jn 2, 3, Article 1 (May 2015), 11 pages.

1. INTRODUCTION

Startups are present in innovation context since the 1970s. Nevertheless, like agile methodologies, their suggested
best practices are being discussed after being applied in industry. As a matter of fact, efforts to reach best practices
on developing startups came to light after the “dot com bubble”, at the beginning of years 2000s, which led several
young companies to close and investments in the sector to fall abruptly.
This set of patterns tries to formalize several practices described in the literature to improve software development,
specifically inside software startups, focusing on team mindset, dealing with limited resources and learning fast.
They can be used by founders, software development managers and developers to create an environment to foster
innovation. In section 2, we review works on the literature related to the subject, in section 3, we describe a set of
patterns and, finally, there we present a final conclusion in section 4.

2. RELATED WORK

Besides patterns focusing directly on startups, some other pattern languages found in literature indicate good
practices that could be used in these startups, either with some adaptations or even the way that were proposed
for mature teams or companies. Then, in this section, we start by discussing some patterns related to software
development process in general, then we present works that are not directly related but could be used on startups
like on enterprise architecture and design thinking. At last, we finally present the work on patterns for startups.
Hecksel [Hecksel 2004] proposes a set of patterns on software development in general focusing on the following
topics: methodology, methodology selection, team composition, management and project management. Several
patterns presented could be used for problems in startups, some with minor modifications and others in the same
way they are presented. In this set, some represent good advices to startups like Utilize Tools Over Growth, Set

Author’s address: J. Melegati, A. Goldman, Deparment of Computer Science, University of Sao Paulo, Rua do Matao, 1010, Cidade
Universitaria, Sao Paulo, SP, 05508-090, Brazil; email: melegati@ime.usp.br, gold@ime.usp.br

PLoP’15, October 14-26, Pittsburgh, Pensylvania, USA. Copyright 20105 is held by the author(s).



Senior Developer Ratio and Breadth Over Depth. Under methodology category, Utilize Tools Over Growth gives
preference to use productivity tools “when there are low hanging fruits manual tasks that can provide large return
on investments if automated”. This is especially true in a startup since financial resources to hire are scarce. This
pattern could use our On giants’ shoulders and Simple Tools to select their productivity tools. Set Senior Developer
Ratio foresees a trap that should be avoided. When hiring, startup founders tend to try to save money. Then
they search for junior developers, however this pattern tell us to advocate for a minimum rate of 25% of senior
developers up to 50%, since, the authors argues, citing Pragmatic Programmer from Dave Thomas, that “adding
a Senior Developer to the project team can have up to a 20x productivity contribution to the team compared to
adding another inexperienced team member”. But too many senior developers is also bad: it will create the “all
chiefs no indians” effect where expectations about decision making authority would not be satisfied for all. This
pattern is under team composition category. From the same category, we can discuss the Breadth Over Depth
pattern that advocates hiring team members that understand the “big picture on both project requirements and
selected technologies” instead of outstanding developers that only master a single technology. In a startup, this
makes total sense since everything, from processes to the software itself, have to be built and help from everyone
is very useful. Because of the high uncertain environment, some members could leave the company and, if any
of them is the only one who dominate a technology important for the development, the progress will slow down.
These last two patterns are closed related to our Empower since to empower a team there must be members with
higher experience and they should have a bigger picture of the business.
Since startups use more often agile methodologies since they are guided by the product, based on small teams
and embrace changes instead of avoiding them [Taipale 2010; Coleman and O’Connor 2008], Coplien and Harrison
book [Coplien and Harrison 2004] about organizational patterns for agile software development is an important
work and brings several patterns applicable to startups. Some of them are closely related to patterns proposed on
this paper: Early Validations is an alternative to Surrogate Customers but it is inspired by Build Prototypes; to
employ Empower it is important to have a Community of Trust and is possible when Developer controls process.
Rodin et al. [Rodin et al. 2011] created a pattern language for release and deployment process because, according
to the authors, changes in software systems must occur in a controlled and disciplined way. The language would
help software delivery be controlled and disciplined in an agile environment. For instance, Obtain certificate of
originality is essential when using On giants’ shoulders.
Van Hilst and Fernandez [Van Hilst and Fernandez 2010] analyze theories behind most used practices in process
improvement, among them CMMI, Lean and Agile, extracting a set of patterns to approach the theories that
support these methodologies, even if these theories are not well understood yet. The set is composed of five
patterns (Have a Plan, Copy What Works or Better Practices, Remove Waste or Flow, Consider All Factors or
System Thinking and Incorporating Feedback and Learning) and four anti-patterns (And a Miracle Occurs, Buy a
Silver Bullet, All Problems are Nails, and Solutions must be General). Between these, we can highlight Remove
Waste and Incorporate Feedback and Learning that are closed related to our Be Agile, Early Validations and
Failure can be a good thing.
The next two works have no close relationship to ours but they could have important lessons to software startups.
Ernst [Ernst 2008] uses patterns approach to discuss the enterprise architecture problem (EA) that aim to align
information technology area with business of a company. This is very important for startups since both areas
development are done simultaneously and, many times, they are still building a new market. Rikner and West
[Rickner and West 2010] argue that developers are designers since “they design everything from user interface to
program architectures to algorithms” and, besides that, receive little education on design discipline so, a set of
patterns that represent designers way of thinking, called design thinking, is presented.
Finally, works on patterns whose target is startups. Hokkanen and Leppanen [Hokkanen and Leppanen 2015]
proposes patterns to how to validate your hypothesis though user involvement. They should be used when doing
Early Validations. Eloranta [Eloranta 2014] tackled the same problem that we are discussing, patterns for software

Patterns for Software Startups — Page 2



startups. Although on the same subject, patterns identified are different from our work. For the patterns he already
identified, Develop only what is needed now is important when doing Early Validations.

3. PATTERNS

The figure 1 summarizes relations between patterns described in this paper. It also describes how these patterns
connects to those found on literature. When you decide to create a startup company, generally, you have a product
in mind. For a startup, its products or service represents an innovation: a new product, service, a product already
established in a new market, a new technology or etc. But they also represent a threat to company: you do
not know if consumers (people or companies) will be interested in paying for it. You could spend a lot of time
and money to build something that will not be what your market needs. In this scenario, it is better to use Early
Validations and test your hypothesis about your potential market. Then, you will have highly changing environment:
your hypothesis could be wrong and you must change your product development very fast. So, it is better to Be
Agile than to use traditional software development methodologies. To Be Agile, it is better to Empower and it also
facilitates Early Validations since more people will be able to do it. Besides that, through Early Validations, several
hypothesis could be found to be false and a demotivating environment could be formed. So, it is important to
remember that Failure can be a good thing.
You still do not know what to do, you are testing your hypothesis but there are already other companies building
similar products. Besides that, you have to build, test and learn fast because you are running out of money and
your team is getting frustrated since your product is not getting traction. To gain speed, you cannot reinvent the
wheel but build on giants’ shoulders, that is, use already developed technologies and frameworks. You should also
use infrastructure and/or supporting tools In the clouds what will free resources to build what it really matters to
your company. You should also prefer Simple Tools to gain speed. The use of these three patterns will speed up
your startup but it will represent dependency to others (libraries and frameworks communities and cloud vendors)
what can be a problem in the future: if a library is discontinued or a cloud platform will not have a feature that you
need.

3.1 Pattern: Early Validations

Context. Before the “dot-com bubble” burst, the development of a startup followed a traditional project develop-
ment process: find a problem, project a solution, build it and launch your product. This whole cycle could take
years to be completed and, finally, get a real user feedback and any revenue. This approach was very criticized
[Blank 2007] by not detecting what the user really wanted, that is, the company spent money and time building
something that nobody wanted. Since then, several methodologies have risen, like Customer Development
[Blank 2007], Lean Startup [Ries 2011] and Design Thinkign [Leavy 2010], that focus on user feedback and fast
iterations.

Problem. Startups build brand-new products for incipient (in some cases, nonexistent) markets and they do not
know exactly what to do or if what they are building is what the user is expecting. In this scenario, they could be
using emergent technologies with which the development team is not familiar but they do not know if it is the
best suit for their needs.

Forces. Experiments to validate hypothesis could bring more information to decide what should be done next
but this could lead to sense of slow development what can create frustation on the team. When the time goes
by, this perception could be surpassed by the effect of not throwing away effort on unnecessary features or
wrong technology decisions.

Patterns for Software Startups — Page 3



Fig. 1. Relation between patterns

Solution. Every assumption even one that seems obvious should be confirmed. Take your assumption as a
hypothesis and develop an experiment that allow to test it. The experiment planning must include metrics to
evaluate your hypothesis and it also try to isolate other variables that can influence the result. At the end of the
experiment, you should be able to validate or reject your initial hypothesis and take the following actions based
on your acquired knowledge.

Consequences. Testing your assumptions early prevents your company from wasting a lot of time and money
on something that will not be used by your user or will not bring other customers. Instead of it, a little effort is
spent to test something. But experiments should be planned with criterion. A not well design experiment could
lead to a wrong conclusion that can take to waste of time and money or to lose a business opportunity.

Known Uses. This pattern could be used in different areas of a startup like pointed out by Ries in his book Lean
Startup [Ries 2011]. Besides using it to test hypothesis in what the startup product should be, an approach
already described by Blank [Blank 2007], he extends this experimentation view to marketing and business
areas of a startups. All these should be applied on software development startups and, also, it could be use
to take technology related choices: which programming language should be used, which framework, which
library?

Related patterns. Early Validations leads to several changes of software requirements and this is easier to
handle when being agile (Be Agile). This pattern can be seen as an alternative to Coplien and Harrison’s

Patterns for Software Startups — Page 4



Surrogate Customer since they address the same problem: lack of customer presence but Early Validations
seems to be a better option since a team member will hardly know what the user really wants (Ries [Ries 2011]
tell good examples about it). Nevertheless, another pattern proposed on the same work was Build Prototypes
and Early Validations has the same core but focus on hypothesis.

3.2 Pattern: Be agile

Context. During product development in your startup, you will have several points that you are not sure if what
you are building is not the right thing. Then, you have to verify your hypothesis through Early Validations. As
a result, you could change what is being built. In this context, since requirements change rapidly, traditional
software development techniques are not adequate.

Problem. Traditional software development methodologies are based on long planning and designing phases
that could slow down the response to a plan change and customer feedback. Besides that, it takes a longer time
to get customer feedback to make Early Validations. For a startup to have an organized software development,
it will need a methodology that supports change instead of avoiding it.

Forces. The following forces are present:
—a startup, by being in an innovative and uncertain environment, will have several changes during its product

development, that is, software requirements will be volatile;
—the team must respond quickly to cope with customers expectations and competitors;
—since it is common to startups have inexperienced teams, it could be tempting to not follow any methodologies

nor principle and just do what each member wants.

Solution. Develop an agile mindset within your company, use agile practices. Agile methodologies, like XP,
Scrum, Crystal and others, emerged from the criticism over traditional software management methodologies.
As stated by Highsmith and Cockburn [Highsmith and Cockburn 2001], “agility, ultimately, is about creating and
responding to change”. In 2001, a group of authors of these new methodologies and others important figures in
the area got together and wrote the Agile Manifesto [Beck et al. 2001], based on the following principles:
Individuals and interactions over processes and tools: cumbersome processes and tools could slow down

responses to changes, prefer improve interactions between members and teams to favor creativity and
speed.

Working software over comprehensive documentation: through working software, your startup will be trusted
by stakeholders like customers and investors (that is very important to a young company) and documentation
will not bring this and will slow down software development.

Customer collaboration over contract negotiation: for a software startup, most of the time, customer collabora-
tion is made through the analysis of software use but it can also use interviews or questionnaires.

Responding to change over following a plan: this point is totally true in a startup environment since the plan is
changing all the time and responsiveness is very important.

Software development startups, generally, are subject to product changes and these should be implemented
quickly, so agile practices should be used, except when specific conditions related to certification processes
are required like in pharmaceutical or defense markets.

Consequences. Through agile methodologies your company will have a better response time to changes in
your market or other environmental changes. It should be avoided to take agile as another process that should
be followed strictly what could remove its advantages. For instance, if a two-week sprint is used and on the

Patterns for Software Startups — Page 5



second day it is discovered that what is being built is not the right thing, everything should be stopped to rethink
the strategy. The internal communication improvement could create a consensus environment taking to a false
sensation of doing the right thing even without checking the user wills.

Known Uses. Da Silva et. al [Da Silva et al. 2005] reports the adoption of XP in a brazilian startup. The author
concludes that “XP helped [them] adapt quickly to the constant changes in the economic reality of a developing
country”. Ambler [Ambler 2002] uses the agile mindset to propose a new way to model an architecture based
on his work in two startups. The first author is a software developer in a brazilian software startup and his team
implement several agile practices like, for instance, fixed length sprints and collective code ownership. As a
result, the team has a good responsiveness to change besides being small and a very low software downtime.

Related patterns. This pattern makes easier to change development directions caused by Early Validations. In
an agile context, Empower is favored and more team members will think about business issues.

3.3 Pattern: On giants’ shoulders Or Do not reinvent the wheel

Context. Startups build brand-new products disrupting some market or creating new ones. Generally, to develop
all necessary software for the product (and tools needed to assist company operations) from scratch will be an
unfeasible task.

Problem. Startups need software solutions, that support their software development, such as libraries and
frameworks, of good quality and support and do not have human resources to develop them in-house either.
These software resources should be easily and quickly obtained to not slow down the product development
and, most of the times, it should run on several platforms to make wider the target audience.

Forces. Startups should make products of good quality to win the market which is composed of demanding
clients expecting new products very often without flaws and available in the platform they have. Meanwhile,
startups struggle to survive under lack of resources.

Solution. Startups should use libraries or other third party software to build their project so their development
team can focus on what is important: build something to learn. It must be avoided the culture of reinventing
the wheel. Open source solutions are good options since they can be obtained within few clicks, without
bureaucracy and, if well chosen, can have very good support through active communities. Besides that, without
initial monetary investment. Although lack of resources could repel it, maybe spend some money for some
library or tool already built, could be an wiser choice than build it in-house. Generally, startups use several
thirdy party software, specially open source, but in some cases, careful is demanded. Areas extremely sensible
to flaws like health related could have strict restrictions about code (maybe some kind of certification is needed).
When using open source, another concern would be licensing: some projects have strict licenses that prevent
its code from use on a commercial license, this does not prevent the use of binary forms, although.

Consequences. Using third party solutions wisely will decrease your company time-to-market and the time
to run a build-learn-measure cycle. But your company will be vulnerable to some risks: the development of a
software can be discontinued or changed in a such way that would not be useful. In these cases, if it is very
tied to the product core, it could lead to a slow down on your own company or even prevent something from
working. So, choose carefully where you should use third party tools/libraries and their providers.

Patterns for Software Startups — Page 6



Known Uses. Wall [Wall 2001] tells how open source software was used to handle low budget for his company,
Yozons, which product would be a process for incorporating public-key cryptography into any document. Since
the money to build the product would come from the founders, the so-called “bootstrapping”, they didn’t have
money to buy commercial tools. They used open source solutions through all their software stack: operating
system, database system management and web server. Although his initial intent was to save money, Wall
recognizes how good the solutions were: “open source solutions may be more than adequate and often run
better than their commercial counterparts”. He also concludes that these solutions have excellent support
networks that can help when something goes wrong. Wood [Wood 2005] presents the use of open source on a
company he helped to found. Besides using it, they decided to release some of its product as open source. The
product is described as “for the enterprise middleware market” that implemented some standards of the World
Wide Web Consortium (W3C). The project part related to these standards were released as open source and
the company was also involved and standards discussions. All this made the company famous and made it a
natural market leader.

Related patterns. Sometimes, Simple tools are the best options when choosing third party solutions. It is
important to be careful and Obtain certificate of originality to prevent license problems.

3.4 Pattern: Simple tools

Context. Startups live with lack of resources, human and financial, then tools used for process management
and the software development itself (e.g., CASE tools), cannot be complex as in consolidated companies
because they demand more investment and time to implement.

Problem. Lack of human and financial resources and time prevent a startup to use complex tools that could
leverage their development productivity.

Forces. Startups have to respond quickly to changes in their market and must use their resources the most
optimized way, this lack of resources discourages the use complex productivity tools. Nevertheless, more
elaborated tools could leverage team productivity and could free resources to develop other functions.

Solution. Prefer simple tools for both process management and internal communication, like white boards,
cards and general use instant messaging software, and for software development like simple software environ-
ments over more complex tools (for instance, CASE tools). But, always appraise if a more complex tool could
leverage your team efficiency without committing a major part of your budget.

Consequences. With simpler tools, less time will be used for training or learning how to use something, then
more time will be left to focus on what is important: learn about the market. In the long run, simple tools may be
changed because they will not be able to handle more complex processes and/or requirements what could take
some time to implement.

Known Uses. Ambler [Ambler 2002] cite a startup company that he worked with that used white-boards on
modelling sessions what make them “achieve the benefits of modeling without incurring the costs of writing and
maintaining cumbersome documentation”.

Related patterns. On giants’ shoulders: several tools used by startups are thirdy party.

Patterns for Software Startups — Page 7



3.5 Pattern: Empower

Context. Startups are, generally, inserted in a highly uncertain environment where requirements could change
very fast. Resposiveness time is intrinsically related to how decisions are made inside the organization and
how these are implemented. In the meantime, these companies generally contract younger professionals since
they represent lower cost and could adapt easier to a high demand but casual environment but they have less
experience.

Problem. Modifications on products and/or strategies are often necessary and these modifications should
be done quickly. A traditional hierarchy which separates managers who take decisions from employees who
implement them could lead to high responsive times to those changes. Besides that, if more people have
autonomy to create, run, analyze experiments without managers approval, more Early Validations can be done.

Forces. The application of this pattern should balance two forces: startups should empower their team mem-
bers to respond quicker to market changes since, with more power and less bureaucracy, they can do more by
themselves, taking decisions and, in last instance, learning. Nevertheless, given the lack of experience, some
important errors could happen like inappropriate actions. This could be minimized by a careful team members
selection focusing on finding “talents”.

Solution. Cut bureaucracy and empower team members. They could be able to take some decisions by
their own, leveraging company responsiveness. Besides that, this culture creates a better work environment
increasing productivity and quality.

Consequences. More independent team members creates a better atmosphere in tho company and people
work better in this environment but, if not well implemented, could lead to problems. A lack of understanding
of reasons that motivate this culture could take people do what they want to, instead of what should be done,
threatening the whole company. Besides that, when not so interesting things must be done, some members
could feel unmotivated.

Known Uses. May [May 2012] describes lessons learned by her while developing a mobile app called Minidates
inside a startup. One of the practices to optimize a team, she enforced that “must be able to trust each of your
team members to do his/her job fully, completely, very well and independently”.

Related patterns. This pattern enables quicker tests for Early validations and it is favored by the use of Be
agile. Again, we can relate this to patterns of Coplien and Harrison: it is necessary a Community of Trust and
the Developer controls process as the authors stated: “successful organizations work in a organic way with a
minimum of centralized control.”

3.6 In the clouds

Context. The emergence of solutions to outsource technology infrastructure, also known as “cloud computing”,
where is possible, for instance, to run servers with few clicks, store as much data as you want and pay propor-
tionally to your use, made the effort to build a company technology infrastructure decrease and, also, its cost.
In this category, we can cite:

IaaS (Infrastructure as a Service). vendors that provide infrastructure (servers, data storage).

Patterns for Software Startups — Page 8



SaaS (Software as a Service). instead of acquiring licenses and installing them on your own servers,
softwares are provided through web. For instance, code repositories or business inteligence tools.

PaaS (Platform as a Service). a service that handle all infrastructure to run determined application. The
common example is a solution that you can upload your code for a web site and the solution will create
all necessary servers to run it and will handle increases on traffic, creating more servers if necessary, for
example.

Problem. Most of software development startups depends on infrastructure or other information technology
tools to build or distribute their product: run highly available web servers, store a lot of data and keep its backup,
retain its code history, etc. But building an in-house computing center is expensive and complex, demanding
people and expertise to handle common problems like backup, failing machines, etc.

Forces. Cloud is an opportunity to accelerate company creation and to save resources (again, human and
financial). It also facilitates scale your company as changing size, for instance, of a machine, is as easy as
a button click. But it could be not a good solution for other stakeholders. For example, startups operating, or
whose clients operate, on information sensitive markets like pharmaceuticals or biotechnology could prefer
have control of data. Even investors could not feel safe having market sensitive information in the cloud. A
possible minimization of this threat should be a careful vendor selection, that is, prefer well-known vendors with
good reputation.

Solution. Do not spend time and money building your own technology infrastructure. Take advantage of cloud
services as much as you can from compute to store data eliminating the overhead of managing this company
area.

Consequences. Using cloud solutions, your startup will be able to build faster and, then, learn faster. But as
you grow, you can be tied to a vendor and have some limitations because of this vendor’s solution capabilities.
For instance, you may need some solution or a customization not available. Besides that, when your business
get bigger, you can end with huge bills that would be smaller if you had your own infrastructure.

Known Uses. This pattern could be applied for any startup that needs some kind of information technology
infrastructure since high dependent on servers like internet web sites to companies using IT only to support
some kind of activity like code repository for a mobile app.

Related patterns. When choosing a vendor to implement this pattern, one must remember to use Simple tools,
that is, vendors that have easier-to-use interfaces should be favored. The cost and easy-to-use of these tools
also facilitate experiments for Early Validations.

3.7 Pattern: Failure can be a good thing

Context. Startups develop new products with low resources and, usually, with not experienced teams. They do
not know a lot about several areas of the company from business to technology. Using Early Validations could
try to solve this problem but leads to a lot of “perceived failures”, that is, still part of the process, a hypothesis
proven wrong could demotivate people involved or even the whole team. Besides that, as stated on literature
[Blank 2007; Ries 2011; Paternoster et al. 2014], most of startups fail.

Patterns for Software Startups — Page 9



Problem. In the context of uncertainty and inexperience, errors are common and failure is almost certain. How
to cope with these failures, not lose faith and continue building a company?

Forces. Failures are an important mean to reach the learning goal of a startup but they could lead to motivation
issues in the team and also others stakeholders like consumers and investors.

Solution. Take failures naturally and use them to learn more about the business, the product or the technology.
Try to understand why others startups failed and how to not make the same mistakes again. This point is well
explored by Cotterill [Cotterill 2011]. Sometimes, a radical change of what the company is building is necessary,
this is called a pivot by Ries [Ries 2011].

Consequences. Having this mindset, your team will be more resilient to failure, recovering faster what it is very
important to make the necesssary adjustments to keep the business going. But careful is advisable: people can
get used too much with failures and not trying to learn anything from it. They could not do enough changes
towards a better fit to the market.

Known Uses. Ries [Ries 2011] tells the story about his company IMVU. In the beginning, they created a
product to handle several instant messages networks in only one software. After releasing it and not getting
the expected number of users, they performed an experiment and realized that this was not what the users
wanted. Users, actually, liked to have several instant messages software to split their social relations. This,
definitely, was a failure. But this showed more insights about their target users and helped them to come
up with their final product: a kind of game that emulates a parallel world where users control their own characters.

Related patterns. Failures are inherent when using Early Validations and when using Be agile it is easier to
change directions needed to handle these failures. It is a way to Incorporate feedback and learning.

4. CONCLUSION

A list of patterns for startups that develop software was presented. In the case of Early Validations, the use of
already know techniques of hypothesis test on startups was brought to technology related problems like choosing
a programming language. The patterns Be Agile, Open source solutions and Simple Tools emerged from literature
research. Empower and Celebrate Failure, like Early Validations, were inspired by agile methodologies (related to
Be Agile) and well known methodologies of startup development like Customer Development [Blank 2007] and
Lean Startup [Ries 2011]. Finally, this set was not intended to fulfil the wide range of problems related to creating
a new company but aims to continue the discussion that, in a future work, can lead to a broader pattern language
to guide entrepreneurs.

Acknowledgements

A first version of this paper was presented at Writing Group of 10th Latin American Conference on Pattern
Language of Programs (SugarLoafPLoP 2014). The authors would like to thank the participants of the workshop
including Fabio Kon, Joseph Yoder, Takashi Iba, Arisa Kamada and Masafumi Nagai.

REFERENCES

AMBLER, S. W. 2002. Lessons in agility from internet-based development. IEEE Software 19, 2, 66–73.
BECK, K., BEEDLE, M., VAN BENNEKUM, A., COCKBURN, A., CUNNINGHAM, W., FOWLER, M., GRENNING, J., HIGHSMITH, J., HUNT, A.,

JEFFRIES, R., KERN, J., MARICK, B., MARTIN, R. C., MELLOR, S., SCHWABER, K., SUTHERLAND, J., AND THOMAS, D. 2001. Manifesto for
agile software development.

Patterns for Software Startups — Page 10



BLANK, S. 2007. The Four Steps to the Epiphany: Successful Strategies for Products that Win. Cafepress.com.
COLEMAN, G. AND O’CONNOR, R. V. 2008. An investigation into software development process formation in software start-ups. Journal of

Enterprise Information Management 21, 6, 633–648.
COPLIEN, J. O. AND HARRISON, N. B. 2004. Organizational Patterns of Agile Software Development. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA.
COTTERILL, K. 2011. Entrepreneurs’ response to failure in early stage technology ventures: A comparative study. Proceedings of the 1st

International Technology Management Conference, ITMC 2011, 29–39.
DA SILVA, A. F., KON, F., TORTELI, C., AND FREIRE, A. 2005. XP south of the equator: An eXPerience implementing XP in Brazil. In Lecture

Notes in Computer Science. Vol. 3556. 10–18.
ELORANTA, V.-P. 2014. Towards a pattern language for software start-ups. In Proceedings of the 19th European Conference on Pattern

Languages of Programs. ACM, 24.
ERNST, A. M. 2008. Enterprise architecture management patterns. Proceedings of the 15th Conference on Pattern Languages of Programs -

PLoP ’08, 1.
HECKSEL, D. 2004. Software Development Patterns. In Proceedings of 11th Pattern Languages of Program Conference.
HIGHSMITH, J. AND COCKBURN, A. 2001. Agile software development: The business of innovation. Computer 34, 120–122.
HOKKANEN, L. AND LEPPANEN, M. 2015. Three patterns for user involvement in startups. In Accepted to 20th European Conference on

Pattern Languages of Programs.
LEAVY, B. 2010. Design thinking âĂŞ a new mental model of value innovation. Strategy & Leadership 38, 3, 5–14.
MAY, B. 2012. Applying lean startup: An experience report - Lean & lean UX by a UX veteran: Lessons learned in creating & launching a

complex consumer app. Proceedings - 2012 Agile Conference, Agile 2012, 141–147.
PATERNOSTER, N., GIARDINO, C., UNTERKALMSTEINER, M., GORSCHEK, T., AND ABRAHAMSSON, P. 2014. Software development in startup

companies: A systematic mapping study. Information and Software Technology .
RICKNER, R. AND WEST, D. 2010. Design Thinking Patterns. Proceedings of the 17th Conference on Pattern Languages of Programs - PLoP

’10.
RIES, E. 2011. The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. The

Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Crown Business.
RODIN, R., LEET, J., AZUA, M., AND BYGRAVE, D. 2011. A pattern language for release and deployment management. Proceedings of the

18th Conference on Pattern Languages of Programs - PLoP ’11, 1–13.
TAIPALE, M. 2010. Huitale–a story of a finnish lean startup. In Lean Enterprise Software and Systems. Springer, 111–114.
VAN HILST, M. AND FERNANDEZ, E. B. 2010. A Pattern System of Underlying Theories for Process Improvement. In Proceedings of the 17th

Conference on Pattern Languages of Programs. Number Cmmi. 8:1—-8:24.
WALL, D. A. 2001. Using open source for a profitable startup. Computer 34, 12, 158–160.
WOOD, D. 2005. Open source software strategies for venture-funded startups. MIND Laboratory, University of Maryland, Tech. Rep.

TR-MS1287 .

PLoP’15, October 14-26, Pittsburgh, Pensylvania, USA. Copyright 20105 is held by the author(s).

Patterns for Software Startups — Page 11


