Relating Patterns and Reference Architectures

Eduardo Guerra, LAC/INPE, Brazil
Elisa Yumi Nakagawa, ICMC/USP, Brazil

Abstract: Both patterns and reference architectures aim to describe solutions to be reused for
the software systems development. Despite they have a common goal, they have a lot of
differences and have also been investigated separately. The objective of this paper is to discuss
the relationship between them, and how they can be complementary, respecting their respective
peculiarities. We also discuss how patterns can support the creation of reference architectures
and how reference architectures can be source for pattern mining.

1. Introduction

Patterns are recurrent solutions that are used for problems on different software systems that
share a specific context. On the field of software design and architecture, patterns present
technical solutions on how to structure software components in order to achieve desired
requirements. On the other hand, a reference architecture is a special type of software
architecture that can be used as a basis for the construction, standardization, and evolution of
software architectures of systems in a given domain. It defines elements, their roles and
relationships needed to solve common problems in aimed domains.

Based on their description, it is possible to perceive that these two ways of documenting
reusable solutions have a lot in common with each other. However, despite few isolated works
that focus on specific domains [Striker et. al 2010; Guerra et. al 2013B; Fernandez et. al 2015],
this relationship is not being explored. The goal of the paper is to explore the relationship
between patterns and reference architectures, and present a discussion to work with both in a
complementary way and, as a consequence, aiming at supporting more effectively the
development of software systems.

The paper is organized as follows: Section 2 presents an overview of reference architecture
concepts; Section 3 describes a process for the reference architecture creation; Section 4
highlights differences between patterns and reference architectures; Section 5 focuses on
guidelines for using a pattern language as the basis of reference architectures; Section 6
presents some research perspectives in this topic; and, finally, Section 7 concludes the paper.

2. An Overview of Reference Architectures

A reference architecture refers to an architecture that encompasses the knowledge about how
to design concrete architectures of systems of a given application domain; therefore, it must

address the business rules, architectural styles (sometimes also defined as architectural
patterns that can also address quality attributes in the reference architecture), best practices of
software development (for instance, architectural decisions, domain constraints, legislation, and
standards), and the software elements that support development of systems for that domain. All
of this must be supported by a unified, unambiguous, and widely understood domain
terminology [Nakagawa, 2015].

Reference architectures usually contain important knowledge about how to organize
architectures of software systems of a given domain, presenting several possibilities of use.
Diverse purposes have guided their adoption and use, such as the creation of concrete
architectures to support the building of software systems, standardization of systems of a given
domain, evolution of existing software systems, construction of new reference architectures, and
support to the building of software product line.

Considering their relevance, different domains have already understood the need for
encapsulating knowledge in reference architectures, with the aim at disseminating and reusing
this knowledge and standardizing the systems as well. Good examples are AUTOSAR
(AUTomotive Open System ARchitecture) [Autosar, 2015], for the automotive domain, and
Continua [Continua, 2015] and UniversAAL [Universaal, 2015], for AAL (Ambient Assisted
Living). In particular, these architectures have been developed by consortiums that involve
maijor industrial players (such as manufacturers and suppliers) and researchers. Besides that,
platform-oriented architectures, i.e., architectures not related to the specific application domain,
but to a specific architectural style or technology, have also been proposed and widely used as
reference architectures. Some good examples are OASIS [Oasis, 2008] and S3 [Arsanjani,
20071, for software systems based on SOA (Service-Oriented Architecture) [Papazoglou, 2008],
and OSGi (Open Services Gateway initiative framework) [OSGI, 2015], a set of specifications
and a layered architecture that define dynamic component systems for Java. However, it is
observed that these architectures were created without using a systematic approach, what can
be consuming extra effort, time, and even requiring rework.

In order to systematize the establishment of reference architectures, some initiatives can be
found, such as that ones found in [Angelov, 2012; Bayer, 2004; Cloutier, 2010; Dobrica, 2008;
Galster, 2011: Muller, 2008]. They are in general high-level guidelines, principles,
recommendations or domain-specific processes. In this scenario, we proposed ProSA-RA
[Nakagawa, 2014], a process for the building of reference architectures, focusing on how to
design, represent, and evaluate such architectures. It has been widely used to create several
architectures for different domains and scenarios (both industry and academia); however, we
had not still explored the use and benefits that could be provided by patterns.

3. Reference Architecture Creation

Similarly to processes to construct software architectures, reference architectures should be
built considering a set of systematized steps, as already discussed by the software architecture
community. The goal of this section is to present one of such systematizations, i.e., a process
that has supported the building of reference architectures. .

From our experience in building reference architectures, as well as in systematizing the steps to
build them, we can summarize the whole building process as presented in Figure 1. To
adequately apply this process, first of all, it is specially important to establish the scope of the
reference architecture, i.e., the target application domain. This scope can be defined
considering the set of systems that are intended to be produced based on this architecture. In
short, four steps compose this process:

Rany
: Domai e/
Publications —» Step RA-1: it o,
Software systems — | |nformation Source e <, Ong,
Information from people —» Investigation ; s ’99,«'96‘
rchitectura

SepRAZ | eienents
Domain System Architectural P
Experts Analysts Analysis

v

Step RA-3:
Architectural

Reference
Architecture

Domain Systemn

Experts Analysts f [

Legend: Synthesis ;

[step Step RA-4: Evaluated

—3» Flow of information/artifact Domain Software Evaluation Architectural Reference
Experts Architects Rasults Evaluation Architecture

= Process flow

% Involved people % %

Domain Software
Experts Architects

Figure 1: Outline Structure of ProSA-RA [Nakagawa 2012A]

e Step RA-1: Information Source Investigation: In this step, the main information sources
are selected. These sources must provide information about processes and activities
that could be supported by software systems of the target domain. Since reference
architectures should be basis of several software systems of a given domain, these
sources must involve a more comprehensive knowledge about the domain if compared
with information sources when developing the architecture of a specific system. In this
perspective, ProSA-RA highlights as the most relevant sources: people, documents,
systems of the domain, related reference models and reference architectures, and
domain ontologies, if available;

e Step RA-2: Architectural Analysis: Based on the selected sources, three set of elements
are identified. Firstly, the set of requirements of software systems of that domain is
identified and, based on these requirements, the set of requirements of the reference
architecture is then identified. These requirements include functional and non-functional
requirements. After that, the set of concepts that must be considered in this reference

architecture is established. For this, three main tasks are performed: (i) identification of
the system requirements; (ii) identification of the reference architecture requirements;
and (iii) identification of the domain concepts;

e Step RA-3: Architectural Synthesis: In this step, the architectural description of the
reference architecture is built following a model for reference architectures, such as
RAModel [Nakagawa, 2012]. For instance, architectural styles, as well as a combination
of these and other styles, probably identified in Step RA-1, must be considered. These
styles are the basis on which concepts previously identified are organized. For instance,
if a three-tier architecture is used as an architectural style of the reference architecture,
the concepts related to the business rules should be organized into the application tier,
since this tier usually contains these rules. Besides that, considering the effectiveness of
using architectural views to represent concrete software architectures, they can be also
adopted to describe reference architectures; and

e Step RA-4: Architectural Evaluation: In the context of this work, reference architecture
evaluation refers to the task to check the architectural description of such architecture
together with diverse stakeholders intending to detect defects in this description. For this,
ProSA-RA uses a checklist-based inspection approach, called FERA (Framework for
Evaluation of Reference Architectures). In short, FERA is composed by 93 multiple
choice questions whose answers vary from "“fully satisfactory" to "totally unsatisfactory",
and fields to add comments. It also considers to be answered by a range of stakeholders
(namely architects, domain experts, analysts, software project manager,
designers/developers/implementers, integrators, testers, and quality assurance
stakeholders).

4. Differences Between Patterns and Reference Architectures

Patterns can be related to other patterns in different ways [Buschmann et. al 2007]. As a
reference architecture is a broader solution, in some cases, it is more fair to compare such
architecture to a set of patterns instead to a single one. A Pattern Collection can be used to
organize and classify patterns related to a common domain. A Pattern Compound, also known
as Compound Pattern, can document a recurrent combination of patterns, which can be
considered itself a pattern. Moreover, a pattern language, which focus on how patterns relate in
a given domain, is a strongest relation that patterns can have, documenting a broader
knowledge in that context. Despite the term "pattern language" is commonly used by the pattern
community, there is no formal boundary that divides pattern collections from pattern languages.
In this scenario, this paper refers to pattern language as a set of related patterns..

An important difference between a pattern and a reference architecture is that a pattern must be
a recurrent solution that was already used on existing implementations. On the other hand, a
reference architecture can propose new, innovative solutions in its structure, whose usage was
not yet proven in existing softwares. As a consequence, a reference architecture is more
suitable to propose a structure for new domains, which are not still well established. Moreover,

for a domain that already has many applications implemented, it is interesting to establish such
architecture, but it is necessary to identify the recurrent solutions used by these applications.

Patterns and reference architectures document solutions in different levels of granularity. While
a pattern focus on a single problem and in a single recurrent solution, a reference architecture
usually considers the target domain as a whole. Hence, a pattern language or other kinds of
pattern grouping are closer to the solution scope of a reference architecture. However, even a
pattern language does not have explicit requirements to fulfill and is not worried about
completeness, it documents recurrent solutions that are already well established for the domain
it focuses.

The domain of a pattern is related to its recurrency. It can be more general or more specific to a
given domain, depending on the problem in which it is related to and the scope where the
pattern mining was performed. On the other hand, a reference architecture is commonly
focused on a single domain, containing patterns that can be appropriate for other architectures,
too.

A pattern is documented based on a template composed by sections, which are at least its
context, its problem, and its solution. Other common sections present the forces,
consequences, alternatives for implementations, and examples of use. In a pattern language,
the patterns usually have a standard structure. A reference architecture has a more
comprehensive documentation, usually with many pages, including models, tables, texts, and in
some rare cases implementation.

When we consider evolution, a fast way to improve a pattern language is by adding new pattern
to it. Being a recurrent solution, this new pattern can complement the existing knowledge in
different ways, either by offering an alternative solution or by adding a solution to a different
problem. However, this addition should be done carefully, avoiding redundant parts and
confusions. When evolving a reference architecture, a new version is released. This version can
present minor or major additions, but it should be released as a whole.

Table 1 summarizes the differences between both of them. The column related to patterns
presents characteristics for a single pattern and a pattern language, when applicable.

Characteristic Single Pattern / Pattern Reference Architecture
Language
Information originality Recurrent solution Innovative solution or

recurrent solution

Granularity Single problem / Single Multiple related problems
problem for each pattern in a
shared domain

Relation to application
domain

Independent or dependent of
the application domain

Dependent of the application
domain in the most of the
cases

Documentation

Pattern description, usually
using a standard pattern
template / A diagram relating
the patterns

Many pages, including
models, tables, texts, and
even implementation

Update

New implementation
strategies and variations /
Additions of new patterns

Minor or major additions
considering the whole
document

Table 1: Summary of Differences between Patterns and Reference Architectures

5. From a Pattern Language to a Reference Architecture

The goal of this section is to go towards guidelines to create a reference architecture based on
a pattern language. It is worth highlighting that when reference architectures are created,
several information sources must be considered, including reference models, domain models,
conceptual models, domain ontologies, and so on. In particular, our proposal explicitly explore
the use of pattern languages and patterns for that. Reference architectures can be also built
out from analysis/design patterns; moreover, other patterns, such as for security, safety, or
reliability, can be combined into such architectures.

Our guidelines can also be followed to apply other types of pattern groupings such as patterns
collections to contribute to the reference architecture building. It is important to highlight that a
reference architecture does not necessarily need to be based on patterns, and even when it is,
it can also use some ad-hoc solutions to problems in which the solution is not still consolidated

in existing implementations.

As stated before, a pattern language is a set of related patterns that capture recurrent solutions
for common problems in a given domain. Despite patterns can document relations and
dependencies with other patterns in the language [Noble 1998], a pattern language does not
present a single structure. This fact is important to create a reference architecture based on
pattern language, presenting how the patterns participants can fit together in the same

structure.

A pattern usually present components (often described in a "Participants" section), which
interact to solve a target problem. In a pattern language, patterns handle problems in the same

domain. Hence, it is common to have components that play the same role in different patterns of
the language. Based on that, the structure can be unified by using the common components as
points to bind the pattern solutions together.

When there is some patterns or groups of patterns that ends up without a connection, there can
be some missing pattern on the pattern language. That can be a problem, because the
participants need to be bound to a single structure in the reference architecture. One option is to
perform some pattern mining on the existing systems to specifically search for the solution that
binds the structure. If the solution used by the systems is not uniform, in other words, there is
not a consolidated pattern, a new or a particular solution can be proposed and used in the
reference architecture. Pattern solutions can also be complemented by new proposals or
solutions inspired in more general patterns.

When a pattern language presents alternative patterns for the same problem, one of them
should be chosen to be used in the reference architecture. Despite having a discussion on how
to add this kind of variability on reference architectures [Nakagawa 2012B], it is not common to
find alternative solution in existing architectures. An alternative to add both solutions is to define
variabilities on the reference architecture, representing different implementations. However,
supportting both solutions in the same structure might not represent faithfully the domain's
needs, since only one of them should be used.

It is important to highlight that these ways to handle missing patterns or alternative solutions to
define reference architectures from a pattern language need deeper investigations and
validation. They are both a first initiative on how they can be handled.

An example of this initiative is the reference architecture for metadata based frameworks
[Guerra et. al 2013A]. This reference architecture was created based on a pattern language
[Guerra et. al 2013B] that documents eight patterns focused on recurrent solutions for metadata
processing and reading used in this kind of framework. In this case, the patterns in the pattern
language were enough to bind all the components referenced on the patterns.

The same happened in the Adaptive Object Models (AOM) domain. Initially, some patterns
documented practices on how to create adaptive objects using metadata [Yoder and Foote
1998]. After that, it evolved to what was called an architectural style [Yoder and Johnson 2002],
which is in some extent closer to a reference architecture. Since it is easier to add extensions
on a set of patterns, future works focused on other aspects of the AOM architecture, such as
graphical interface rendering [Welicki et. al 2007] and the creation of objects [Welicki et. al
2009]. Despite a new reference architecture was not defined nor the architectural style was
redefined, since these new patterns were meant to be used with the initial AOM patterns, they
are perfectly compatible with the documented AOM architectural style. Other similar examples
are the reference architecture for service-based systems [Striker et. al 2010] and a security
reference architecture for cloud systems [Fernandez et. al 2015].

6. Future Perspectives

This section focus on some future research perspectives that involve patterns and reference
architectures focusing on how one can contribute to the creation of the other one.

6.1. Using Reference Architectures for Pattern Mining

Pattern mining activity consists in searching recurrent solutions in a target domain. For
architectural design and, more generally, software patterns, this search can be conducted by
using code inspection. Software documentation, such as diagrams and descriptions, can also
be used in this activity.

This search can be focused on the problem, looking on software how they solve a particular
issue. The pattern mining can be also based on the structure of several software related to the
same domain, searching for common practices. In both activities, the reference architecture can
be used as a source for the pattern mining. It can be compared to actual implementations to
identify the its recurrency. A reference architecture that was already used on several projects
can also be a source of information.

6.2. Pattern-based Method for Reference Architecture Creation

Aiming at exploring the benefits of using recurrent, well-tested solution during the construction
of reference architectures, patterns become quite interesting to be included in ProSA-RA. In
particular, Step RA-3 can be benefited by these patterns, what includes mainly design patterns
and architectural patterns. However, depending on the reference architecture domain, other
kinds of patterns can also be considered, such as security patterns, safety patterns, and testing
patterns.

During the conduction of this step, there are several sources of patterns that can be used, such
as patterns repositories, pattern collections or pattern languages related to the reference
architecture domain, as well as patterns related to a problem domain that is being faced on the
reference architecture (security, reliability, distribution, etc...). A particular source can be also
specialists in patterns or domain specialists. The patterns can be used in the following activities:

e |dentification of a set of candidate patterns. For this, requirements of the reference
architecture identified in the last step must be considered;

e Selection of patterns that fit the needs of the reference architecture. Benefits and
drawbacks of adopting each pattern must be investigated separately;
Joint analysis of all patterns that are intended to be adopted;
Decision of the Points of Application (PA), i.e., part/component of the reference
architecture where each pattern will be applied and also when two or more patterns are
concurrent in the same PA. This last issue characterizes the variation points of the
reference architecture regarding pattern application; and

e Design of the reference architecture by creating architectural views and models that
include the selected patterns.

Besides using patterns for these architectures, the use of pattern languages are also aligned
with goals of such architectures.

When the search does not find a pattern for a given problem related to a reference architecture,
an alternative is to conduct a pattern mining activity to find a pattern on existing systems. This
pattern can be documented and stand on its own, and can be further be incorporated in the
reference architecture.

7. Conclusions

Patterns, pattern languages, and reference architectures must be investigated in a
complementary way to provide a more complete solution to the development of software
systems. Initiatives in that direction can be already found and there are still good open research
perspectives.

The use of patterns and pattern languages to create reference architecture could bring
important contributions, such as reduction in time and efforts to design reference architectures
and improvement in the reference architecture quality, as parts of such architecture adopt
well-tested solutions.

It is important to highlight that both areas (patterns and reference architecture) have already
achieved a consolidated status, with recognized advantages and solutions; therefore, it seems
natural to investigate them together, contributing to the advance of the state-of-the-art of these
areas.

Acknowledgments

This study is supported by Sdo Paulo Research Foundation (FAPESP, Grant: 2014/02244-7
and 2015/16487-1), CNPq (Grant: 445562/2014-5) and Brazilian funding agency Capes (Grant:
2012/034). We would also like to thank Prof. Dr. Eduardo Fernandez from Florida Atlantic
University (FAU) who served as a shepherd, providing us valuable comments that led us to a
considerable improvement of the paper.

References

[Angelov, 2012] S. Angelov, P. Grefen, and D. Greefhorst, “A Framework for Analysis and
Design of Software Reference Architectures,” Information and Software Technology, vol. 54, no.
4, pp. 417-431, 2012.

[Avgeriou, 2013] P. Avgeriou, “Describing, Instantiating and Evaluating a Reference
Architecture: A Case Study,” Enterprise Architect Journal, Fawcette Technical Publications, Jun.
2003.

[Arsanjani, 2007] A. Arsanjani,L.J. Zhang, M. Ellis, A. Allam, K. Channabasavaiah, “S3: A
Service-Oriented Reference Architecture”, IT Professional, vol. 9, no. 3, p. 10-17, IEEE
Computer Society, 2007.

[Autosar, 2015] AUTOSAR, “AUTOSAR (AUTomotive Open System ARchitecture)”, [On-line],
World Wide Web, 2015, Available in: http://www.autosar.org/ (Access in 07/30/2015).

[Bayer, 2004] J. Bayer, T. Forster, D. Ganesan, J. F. Girard, I. John, J. Knodel, R. Kolb, and D.
Muthig, “Definition of Reference Architectures Based on Existing Systems,” Fraunhofer IESE,
Tech. Rep. 034.04/E, 2004.

[Buschmann et. al, 2007] F. Buschmann, K. Henney, D. C. Schmidt. "Pattern-Oriented Software
Architecture”, vol. 5, On Patterns and Pattern Languages, Wiley, 2007.

[Cloutier, 2010] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone, “The
Concept of Reference Architectures,” Systems Engineering, vol. 13, no. 1, pp. 14-27, 2010.

[Continua, 2015] CONTINUA HEALTH ALLIANCE, “Continua Health Alliance”, [On-line], World
Wide Web, 2013, Available in: http://www.continuaalliance.org/ (Access in 07/30/2015).

[Dobrica, 2008] L. Dobrica and E. Niemela, “An Approach to Reference Architecture Design for
Different Domains of Embedded Systems,” in SERP ’08, Las Vegas, USA, Jul. 2008, pp.
287-293.

[Fernandez et. al, 2015] E.B.Fernandez, R. Monge, and K. Hashizume, “Building a Security
Reference Architecture for Cloud Systems”, Requirements Engineering, Jan. 2015, pp. 1-25

[Galster, 2011] M. Galster, P. Avgeriou, D. Weyns, T. Mannistd, “Variability in Software
Architecture: Current Practice and Challenges”, SIGSOFT Software Engineering Notes, vol. 36,
no. 5, 2011, p. 30-32.

[Guerra et. al, 2013A] E. Guerra, F. Alves, U. Kulesza, C. Fernandes, "A Reference Architecture
for Organizing the Internal Structure of Metadata-based Frameworks," Journal of Systems and
Software, vol. 86, no. 5, May 2013, p. 1239-1256

[Guerra et. al, 2013B] E. Guerra, J. Souza, C. Fernandes. "Pattern Language for the Internal
Structure of Metadata-Based Frameworks". In Transactions on Pattern Languages of
Programming lll, Lecture Notes in Computer Science Volume 7840, 2013, p. 55-110.

[Muller, 2008] MULLER G., “A Reference Architecture Primer”, [On-line], World Wide Web,
2008, Available in http://www.gaudisite.nl/ (Access in 07/30/2015).

[Nakagawa, 2012A] E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A Reference
Model of Reference Architectures,” in WICSA/ECSA 12, Helsinki, Finland, 2012, pp. 297-301.

[Nakagawa 2012B] E.Y. Nakagawa. "Reference Architectures and Variability: Current Status
and Future Perspectives," WICSA/ECSA '12, Helsinki, Finland, 2012, p. 159-162.

[Nakagawa, 2015] E.Y. Nakagawa, F. Oquendo, and J.C. Maldonado, "Reference
Architectures”, In: Oussalah, M.; Software Architecture: Principles, Techniques, and Tools, Ed.
John Wiley & Sons, p. 101-122.

[Noble, 1998] J. Noble. "Classifying Relationships between Object-Oriented, Design Patterns,"
ASWEC 98, Adelaide, Australia, 1998, P. 98-107

[Papazoglou, 2008] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, “Service-Oriented
Computing: A Research Roadmap" International Journal of Cooperative Information Systems, v.
17, n. 2, p. 223-255, 2008.

[Oasis, 2008] OASIS, "Reference Architecture for Service Oriented Architecture Version 1.0,"
Report, OASIS Standard, April 2008.

[OSGI, 2015] OSGI ALLIANCE, “OSGi Alliance Specifications”, [On-line], World Wide Web,
2013, Available in http://www.osgi.org/Specifications/ (Access in 07/30/2015).

[Striker et. al, 2010] V. Stricker, K. Lauenroth, P. Corte, F. Gittler, S. De Panfilis, and K. Pohl,
“Creating a Reference Architecture for Service-Based Systems — A Pattern-Based Approach,” in
Towards the Future Internet - Emerging Trends from European Research, G. Tselentis, A. Galis,
A. Gavras, S. Krco, V. Lotz, E. Simperl, B. Stiller, and T. Zahariadis, Eds. IOS Press, 2010.

[Universaal, 2015] UNIVERSAAL PROJECT, “The UniversAAL Reference Architecture,"
[Online], World Wide Web, 2013, Available in http://www.universaal.org/ (Access in
07/30/2015).

[Yoder and Foote, 1998] J. W. Yoder and B. Foote, "Metadata and Active Object Models,"PLoP
‘98, Monticello, USA, 1998, p. 022-A22.

[Yoder and Johnson, 2002] J. W. Yoder and R. Johnson, "The Adaptive Object Model
Architectural Style," in WICSA ’02, Montreal, Canada, 2002, p. 3-27.

[Welicki et. al, 2007] L. Welicki, R. Wirfs-Brock, and J. W. Yoder, "Rendering Patterns for
Adaptive Object-Models,"PLoP '07, Monticello, USA, 2007, p. 12:1-12:12.

[Welicki et. al, 2009] L. Welicki, R. Wirfs-Brock, and J. W. Yoder, "Adaptive Object Model
Builder," in PLoP ’09, Chicago, USA, 2009, p. 4:1-4:8.

