

 Permission to make digital or hard copies of all or part of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific

permission. A preliminary version of this paper was presented in a writers' workshop at the 23rd

Conference on Pattern Languages of Programs (PLoP). PLoP'16, OCTOBER 24-26, Monticello,

Illinois, USA. Copyright 2016 is held by the author(s). HILLSIDE 978-1-941652-04-6

Implementation Patterns for Microservices Architectures

KYLE BROWN, IBM Corporation
BOBBY WOOLF, IBM Corporation

Abstract In this paper we describe a set of implementation patterns for building applications using microservices. We discuss the
application types and requirements that lead to the n eed for microservices, examine different types of microservices, and discuss patterns
required for implementing data storage and devops in a microservices environment.

Categories and Subject Descriptors: • Software and its engineering~Software design engineering

General Terms: Software Architectures

Additional Key Words and Phrases: Microservices, Agile Development, Pattern Languages

ACM Reference Format:

Brown, K. and Woolf, B., 2016. Implementation Patterns of Microservices Architectures. HILLSIDE Proc. of Conf. on Pattern Lang. of Prog.
22 (October 2016), 35 pages.

1. INTRODUCTION: PURPOSE OF THE PATTERN LANGUAGE

The microservices architecture is one of the most rapidly expanding architectural paradigms in

commercial computing today. Since its introduction in a white paper by Martin Fowler and James

Lewis [Fowler] it has since become a de-facto standard for developing large-scale commercial

applications.

But despite the clear descriptions of the principles of this architecture in the Fowler whitepaper,

and also in later works such as Newman’s that elaborate on the architecture, many development

teams still struggle with basic practical questions about how to implement systems using the

microservices architecture. In particular, they struggle with questions of how the microservices

are invoked from a client application, how different client application styles affect their

microservices implementation, and, most important, how to build their microservices efficiently.

It is that last point that is perhaps the most troublesome in practical microservices

implementations. A benefit and a drawback of Services Oriented Architectures (including the

microservices approach) is that services are implemented as simple HTTP endpoints – but the

simplicity and power of HTTP is sometimes outweighed by the latency inherent in process-to-

process communication using HTTP. Overcoming that latency requires forethought and planning

in your architecture in order to reduce unnecessary overhead.

Another issue with microservices architectures is that while they make it possible for developers

to have more choices – for instance, by allowing for both Polyglot programming and Polyglot

persistence -- in fact the set of choices facing developers is too large – with too few guidelines in

place for helping navigate. The result is that developers find it hard to decide where to start, and

find few good examples of template applications of different styles that use microservices

effectively. In this paper, we will help address a few of those issues by introducing a set of simple

Implementation Patterns for Microservices Architectures: Page - 2

patterns that can help developers understand how to apply microservices in a variety of different

situations.

This paper is intended for use by Architects, Lead Developers or Senior Developers who are

thinking about adopting the microservices architecture in their projects. It is intended to provide

guidance on how microservices should be designed, how they fit into a larger architectural picture,

and how they can be built to operate efficiently. While it specifically addresses issues of systems

design, microservices design and microservices efficiency, it does not cover issues of security or

development process. Those nonfunctional requirements will have to be covered in later papers.

1.1 What is a Microservice?

Microservices is an application architectural style in which an application is composed of many

discrete, network-connected components, termed microservices. The microservices architectural

style can be seen as an evolution of the SOA (Services Oriented Architecture) architectural style.

The key differences between the two are that while applications built using SOA services tended

to become focused on technical integration issues, and the level of the services implemented were

often very fine-grained technical APIs, the microservices approach instead stay focused on

implementing clear business capabilities through larger-grained business APIs. An applicable

rule in this case is that any microservice API should be directly related to a business entity.

But aside from the service design questions, perhaps the biggest difference is one of deployment

style. For many years, applications have been packaged in a monolithic fashion – that is a team of

developers would construct one large application that does everything required for a business

need. Once built, that application would then be deployed multiple times across a farm of

application servers. By contrast, in the microservices architectural style, several smaller

applications that each implement only part of the whole are built and packaged independently.

Microservices have applicability in both new application development and in refactoring. While

many teams prefer to apply the microservices approach in new or “greenfield” development, the

approach can be applied stepwise to existing applications as part of an application refactoring

effort. In cases like this, approaches such as Fowler’s “Strangler Application” [Fowler2] pattern

apply, although that lies outside of the scope of this paper.

When you look at the implications of packaging services independently, you see that five simple

rules drive the implementation of applications built using the microservices architecture. They

are:

 Deploy applications as sets of small, independent services -- A single network-

accessible service is the smallest deployable unit for a microservices application. Each

service should run in its own process. This rule is sometimes stated as “one service per

container”, where “container” could mean a Docker container or any other lightweight

deployment mechanism such as a Cloud Foundry runtime, or even a Tomcat or

WebSphere Liberty server.

 Optimize services for a single function – In a traditional monolithic SOA approach a

single application runtime would perform multiple business functions. In a microservices

approach, there should be one and only one business function per service. This makes

Implementation Patterns for Microservices Architectures: Page - 3

each service smaller and simpler to write and maintain. Robert Martin [Martin] calls this

the “Single Responsibility Principle”.

 Communicate via REST API and message brokers – One of the drawbacks of the SOA

approach was that there was an explosion of standards and options for implementing SOA

services. The microservices approach instead tries to strictly limit the types of network

connectivity that a service can implement to achieve maximum simplicity. Likewise,

another rule for microservices is to avoid the tight coupling introduced by implicit

communication through a database – all communication from service to service must be

through the service API or at least must use an explicit communication pattern such as the

Claim Check Pattern from [Hohpe].

 Apply Per-service CI/CD -- When building a large application comprised of many

services, you soon realize that different services evolve at different rates. Letting each

service have its own unique Continuous Integration/Continuous Delivery pipeline allows

that evolution to proceed at is own natural pace – unlike in the monolithic approach where

different aspects of the system were forced to all be released at the speed of the slowest-

moving part of the system.

 Apply Per-service HA/clustering decisions – Another realization when building large

systems is that when it comes to clustering, not one size fits all. The monolithic approach

of scaling all the services in the monolith at the same level often led to overutilization of

some servers and underutilization of others – or even worse, starvation of some services by

others when they monopolized all of the available shared resources such as thread pools.

The reality is that in a large system, not all services need to scale and can be deployed in a

minimum number of servers to conserve resources. Others require scaling up to very large

numbers.

The power of the combination of these points (each of which will be referenced in the patterns

below) and the benefits obtained from following them is the primary reason why the

microservices architecture has become so popular.

As an example of this approach, let’s look at a very simplified view of an airline website. In

traditional technologies, the only way to deploy an application would be as a monolith that is

scaled to the maximum extent of any possible request – so if booking drove the most traffic to

your website, the entire application must be deployed as many times as you need just to handle the

booking traffic (see Figure 1: Traditional Monolithic deployment).

Implementation Patterns for Microservices Architectures: Page - 4

Figure 1: Traditional Monolithic deployment

However, in a microservices approach, each individual business purpose; Booking Flights,

Customer management, the Rewards program, etc., is broken down into separate microservices

that can be deployed and managed independently. What’s more, you need only deploy as many

copies of each service as is actually required to handle the traffic for that specific business area.

So, if Loyalty is only used by 10% of your customers, you may be able to deploy a drastically

smaller number of servers for that business function than you would for flight booking. An

example of this kind of architecture is shown below (see Figure 2: Airline application as

microservices).

Customer
SQL DB

Rewards
NoSQL

Mobile
Gateway

Booking
Legacy DB

Legacy

API

Web server Content
Management

x60

Booking GUI
Booking Business Logic

Rewards GUI
Rewards Business Logic

Customer GUI
Customer Business Logic

Browser Mobile

Browser

Implementation Patterns for Microservices Architectures: Page - 5

Figure 2: Airline application as microservices

1.2 How this pattern language is constructed

This pattern language is split into four parts; the first part, Modern Web Architecture Patterns,

refers to those patterns that are helpful in understanding how the front end of an application built

using a microservices Architecture can be effectively implemented. The second part,

Microservice Architecture Patterns, refers to patterns specifically related to building

Microservices and making them run efficiently. The next part, Scalable Store Patterns, relate to

decisions about data storage that are necessary to build systems that are both responsive and

highly available. The final part, Microservices DevOps Patterns discusses decisions around

managing and debugging microservices applications.

The patterns are written in a simplified POSA
1
 style with explicit sections for Context, Problem,

Forces, Solution and Results.

One of the lessons that we learned when writing Enterprise Integration Patterns [Hohpe] is that

when you are working in large problem domains there is often the need for a Root Pattern to

introduce the overall problem domain. That allows you to set the larger context of your domain

without directly jumping into the details. Since our pattern language has four separate sections

that each describe a different aspect of the microservices approach, we need four root patterns. In

our pattern language we introduce each section with one of these four root patterns: Modern Web

Architecture, Microservices Architecture, Scalable Store and Microservices DevOps.

1 e.g. following the pattern style used in Pattern Oriented System Architecture [Buschmann]

Customer
Service

Rewards
Service

Booking
Service

Customer
SQL DB

Rewards
NoSQL

Mobile
Dispatcher

Web
Dispatcher

Booking
Legacy DB

Booking

Cache

Legacy

API

Web server Content
Management

x20 x40 x4

SPAs Native Mobile

Applications

Implementation Patterns for Microservices Architectures: Page - 6

1.3 Pattern Map

The following pattern map (Figure 3: Pattern Map) shows the split of the patterns into the four

sections described above, as well as the connections between related patterns.

Figure 3: Pattern Map

2. MODERN WEB ARCHITECTURE PATTERNS

As described in the previous section, the Modern Web Architecture Patterns begin with the root

pattern Modern Web Architecture. Adopting a Modern Web Architecture will lead you to

different potential implementation choices such as a Single Page Application or a Native Mobile

Application. A Near Cache is commonly implemented in Modern Web Applications in order to

improve performance and to allow for some functioning when the client is disconnected from

back-end systems.

Implementation Patterns for Microservices Architectures: Page - 7

2.1 Modern Web Architecture

Title: Modern Web Architecture

Context:

You are building a new application or refactoring an existing application that needs to provide a

rich user interface that can be usable on many different devices such as smartphones, tablets, or

laptops.

While the dynamic page approach is perhaps the most common application style on the Web,

dating back to technologies like Active Server Pages (ASP), Java Server Pages (JSP), and PHP,

the major drawback of this style is that the page-at-a-time semantics of these systems limit the

type of interfaces that can be effectively developed with them. It is difficult if not impossible to

write highly interactive user interfaces that take advantage of the user interface capabilities of

mobile devices, tablets and touchscreens using only the capabilities of HTML.

Problem:

How do you design an application that meets the needs of your users, while still working within

the capabilities of the different interface devices that now exist?

Forces:

 Web developers want to be able to take advantage of the capabilities of the JavaScript

engines built into modern web browsers.

 Modern Devices have more user-interaction capabilities than previous generations of

devices that only supported mice and keyboards

 Users expect more from their applications and websites today than they did when the web

was first introduced.

Solution:

Adopt a Modern Web Architecture that combines intelligent front-end components with general-

purpose back-end components. In contrast to the page-at-a-time dynamic page solutions that were

common in the early days of Browser technology, with Modern Web Architecture there is no

longer a need to have an explicit one-to-one map between a web page and a back-end server call.

Picture:

Implementation Patterns for Microservices Architectures: Page - 8

Figure 4: Modern Web Architecture Components

In the Modern Web Architecture (see Figure 4: Modern Web Architecture Components) you see

that there is a division between the front-end application (written in Javascript for a Single Page

Application, or written in Swift or Java for iOS or Android Native Mobile Applications) and the

back-end Server logic. Essentially, this corresponds to a division between the “V” in a Model-

View-Controller (MVC) Architecture, which can now remain entirely on the client side, and the

“M” in the MVC, which can now remain mostly on the server side. Another aspect of the Modern

Web Architecture shown here is that most application now rely on a separate content server to

provide ephemeral aspects of the GUI (e.g. graphics, explanatory text, or even style sheets).

Result:

The Modern Web Architecture takes advantage of the fact that nearly all Browsers now support

Javascript as a client programming language. This allows you to make multiple back-end server

calls within the context of a single logical page. But the overall approach does not end at the

Browser. You can build intelligent front-ends either as Native Mobile Applications or Single Page

Applications that interface with more general-purpose back-end services representing the services

within a business domain, e.g. Business Microservices. By assuming that you can execute

programs at the client end then you can structure your architecture much more around serving data

to an intelligent front-end application than around a specific user interface design. That allows the

front-end and the back-end to evolve at different rates. To facilitate this evolution, you can use

Javascript
Swift or
Java

Browser

Native iOS or

Android

Application

Retrieve HTML, CSS,
Media, Javascript

Retrieve
Media

Back-end

Server

Logic

Query or

Update

Domain

Data

Content

Server

Implementation Patterns for Microservices Architectures: Page - 9

Backends for Frontends where needed to adapt between the needs of specific Native Mobile

Applications, Single Page Applications and Business microservices. Near Caches can improve

the performance of your intelligent front-ends.

Implementation Patterns for Microservices Architectures: Page - 10

2.2 Single Page Application

Title: Single Page Application

Context:

You are developing a new web application or you are refactoring a section of a web application to

make it more modern.

Problem: How do you design the front end of your application to take advantage of the

programmability of modern browsers and provide the best mix of client responsiveness and server

optimization?

Forces:

 You want to provide the user with a very responsive application that they can interact with

easily despite network lags.

 You want the user to be able to interact with the application naturally, without arbitrary

restrictions in user interface design.

 You want to enable your designers to provide the cleanest, most attractive user interface

possible, and to be able to make design modifications without requiring them to work

through your development team.

 You want to allow your application developers to focus on application development issues

and not have to inordinately concern themselves with the minutiae of user interface

component layout and design.

 Solution: Design your application as a Single Page Application using HTML5, CSS3 and

JavaScript, which are natively implemented in modern browsers. Store page state within the

client and connect to the backend through REST services. This approach is called the “Single

Page Application” because all of the HTML, CSS and JavaScript code necessary for a complex set

of business functions, which may represent multiple logical screens or pages, is retrieved as a

single page request. The JavaScript that manipulates the logical screens will handle all of the

manipulation of the HTML DOM, the page navigation and the access to back end data.

Picture:

The following picture (Figure 5: SPA overview) shows the interaction between the different

components of the Javascript within an SPA and the back-end systems that implement it

communicates with.

Implementation Patterns for Microservices Architectures: Page - 11

Figure 5: SPA overview

Result: The main benefit of the Single Page Application approach is that it allows much more

responsive and intuitive application designs than the dynamic page approach. JavaScript code that

executes within a web page can control not only the look and feel of the application by generating

and manipulating the client-side DOM in any way it chooses, but can request information from the

server at any point based on user interactions – resulting in more responsive user interfaces.

Single Page Applications often are written to take advantage of Responsive Design principles (see

[Brown]) to optimize user experience for screen layout and size. CSS Media queries are often

used to include specific blocks that only apply for specific screen types. This technique allows a

different set of CSS rules to be specified for tablets, mobile phones or laptops, resulting in screens

that are laid out and configured specifically for those devices.

In a complex business application you may implement several Single Page Application instances.

Each one represents a single logical set of screen interactions that perform a business function.

This approach maps extremely well into the microservices approach, as you can match an SPA to

the capabilities of one or more Business Microservices. However, you may need to perform some

translation or conversion of the results of a Business Microservice in order to match the unique

user interface requirements of your SPA.

Content
Server

Data Services
(BFF)

UI (DOM
Manipulation)
Javascript

Navigation
Javascript

Data Access
Javascript

HTML, CSS

Browser Server

Implementation Patterns for Microservices Architectures: Page - 12

2.3 Native Mobile Application

Title: Native Mobile Application

Context: You are building applications that need to support on a variety of platforms. At the

same time, most of your customers are going to use a Mobile device as their primary means of

accessing your application.

Problem: How do you provide the most optimized user experience on a mobile device and take

advantage of the features that make mobile computing unique?

Forces:

 Mobile device capabilities change and evolve quickly

 Applications that are built to emulate a mobile device look and feel often seem outdated

when the native user interface libraries of the Mobile OS changes

 Mobile devices, while rapidly improving, often do not have the same processing capability

that larger desktop or tablet devices do.

Solution: Write a Native Mobile Application for each of the two major platforms (iOS and

Android).

While Single Page Applications provide a good user interface that can be adapted to different

screen sizes and orientations using Responsive Design no browser-based application can take

advantage of all the features and capabilities of a mobile device. What’s more, even though

advances have been made in the speed and performance of Javascript in many browsers, the

performance of browser-based applications still noticeably falls behind those of native

applications. Another drawback of browser-based applications is that the user must remember to

bookmark the webpage of the application – it is not present on their device home screen in the

same way that native applications are present.

For these (and other) reasons, developers have found that constantly used, highly interactive

applications, should be implemented as native applications using the tools and capabilities provide

by the native development tool suite. This allows the developer to take maximum advantage of

the platform’s capabilities, and at the same time allows users to easily locate and download the

application through the platforms application store.

That is not to say, however, that the two patterns can’t be used together. There are certain

situations in which it may not be absolutely required that you take advantage of the performance

of a Native Mobile application in all parts of a large mobile application. In those cases, a hybrid

approach in which the most performance-intensive parts of the application are implemented using

native mobile components, while the less performance-intensive pieces are implemented as a

Single Page Application that runs within an embedded mobile browser, may be an effective

tradeoff of development time for runtime performance.

Implementation Patterns for Microservices Architectures: Page - 13

Result: Just as with Single Page Applications, microservices are a good match to Native mobile

applications since the business-oriented capabilities of a Business Microservice map cleanly to the

complex screen flow and interaction capabilities of a Native mobile application.

However, Native Mobile Applications have their own drawbacks that necessitate additional

architectural decisions – most notably the limited screen real estate of an application and the

potentially poor Internet connectivity over a mobile network may necessitate the use of other

patterns such as a Near Cache or Backend for Frontend.

Native Mobile Applications often are paired with Backend for Frontends that can filter and

translate results to data format that are specific to the Mobile platform. Likewise, Native mobile

applications may benefit from a Near Cache when Internet connectivity is slow or unreliable.

Implementation Patterns for Microservices Architectures: Page - 14

2.4 Near Cache

Title: Near Cache

Context: You are writing either a Single Page Application or a Native Mobile Application. The

application must be able to operate efficiently even when Internet connectivity is not available at

the highest speeds.

Problem: How do you reduce the total number of calls to back-end microservices (particularly

Backend for Frontend’s) for repeated information?

Forces:

 You don’t want to cross the network any more than necessary, especially when network

bandwidth is at a premium in a mobile device.

 You don’t want to make the user wait any more than is absolutely necessary.

Solution: Use a Near Cache located within the client implementation. Cache the results of

calling the Backend for Frontend services so as to reduce unnecessary round trips to the server.

The simplest type of near cache is a globally scoped variable containing a hashtable data structure

- something that is easily supported by JavaScript for Single Page Application or Java or Swift for

Native Mobile Applications. However that may not always be the best solution -- for instance in a

Single Page Application, the application can also use HTML5 Local Storage for storage of cached

information.

Near caches are easily implemented in Native Mobile Applications – for instance in iOS, Core

Data or Property Lists can easily be used to store cached data locally. SQLite can be used on both

iOS and Android as a fast, local structured data store.

Result: The benefit of a Near Cache is that it reduces the total number of times you must call a

Backend for Frontend to retrieve repeated information. The drawback is that you must now

manage the lifetime of the information in the cache to avoid it becoming stale, which can add

complexity to your application code.

Implementation Patterns for Microservices Architectures: Page - 15

3. MICROSERVICES ARCHITECTURE PATTERNS

Microservices Architecture Patterns deal with the nuts and bolts of identifying and implementing

Microservices. Microservices Architecture is the basic root pattern that you begin your design

journey by following. That will lead you to implement multiple Business Microservices. You

may have to implement Adapter Microservices if you are required to communicate with existing

back-end systems. The Backend for Frontends patterns is a key component for implementing a

Microservices Architecture in the context of a Modern Web Architecture in connecting different

client types to your Business Microservices. Finally, Page Caches and Results Caches are

commonly used approaches to improve Microservice performance.

3.1 Microservices Architecture

Title: Microservices Architecture

Context: You’re designing a server-side, multi-user application. You want your application to be

modular, and you want the modules to be independent. Your application modules need to be

capable of composition, scalability, and continuous deployment.

Problem: How do you architect an application as a set of independent modules?

Forces:

 Modular code doesn’t tend to stay modular when it’s being developed by one big team and

runs in one monolithic process.

 You don’t want to have to wait until development of all modules is complete in a large

system before releasing some of the functionality if it is independently useful to the

business.

 When a single business function is divided into separate modules, those modules must

evolve in lockstep.

 Separate business functions can evolve at different rates.

 For a component to be modular, not only must its code be modular, but its data must be

isolated and logically cohesive as well.

Solution: Design the application with a Microservices Architecture, which is a set of modules

where each is an independent business function with its own data, developed by a separate team

and deployed in a separate process. For instance, a large retailing website may have separate

microservices for different functions, such as catalog item search, cart checkout, and customer

service. These can be developed and released on different timelines.

By developing a large application as a set of independent microservices, the individual services

can be released and likewise evolve at their own pace. You don’t have to wait for the entire

system to be complete before the business can begin to realize value from the system. There are

different styles of microservices for different needs, for instance adapting to existing systems vs.

Implementation Patterns for Microservices Architectures: Page - 16

implementing new business logic, but all share the same traits of independent scaling and

independent development.

In fact, the microservices approach gives you better control over scalability than a traditional

approach can give you. By only scaling each microservice to the level at which they are required

in order to handle the requests made for that specific service, you will be able to more efficiently

use your computing resources than in the traditional model of scaling the entire monolith to the

largest number of instances needed to handle requests for the most commonly used functions.

Result: Splitting up business functions into multiple small Business Microservices, allows each

microservice to be developed independently by a small team. Where you need to adapt an

existing interface such as a SOA service, you can write an Adapter Microservice. Backends for

Frontends (BFFs) are used to mediate between different client types and Business Microservices.

Microservices can be deployed independently with zero downtime for continuous deployment.

Microservices can scale and fail independently. Microservices developed and deployed

independently will tend to become and remain separate modules.

One monolith is easier to monitor and manage than multiple microservices, so you’d better get

good at Microservices DevOps.

Picture: The following diagram (Figure 6: Typical Microservices Architecture) shows a typical

style of connection between a number of microservices comprising both a Single Page

Application for Web clients and a Native Mobile Application.

Implementation Patterns for Microservices Architectures: Page - 17

Figure 6: Typical Microservices Architecture

Mobile BFF Web BFF

Adapter

Microservices

Backend SOA

 Systems

Web

Server

Native

app

SPA in

Browser

Business

Microservices

Document
Store

Implementation Patterns for Microservices Architectures: Page - 18

3.2 Business Microservice

Title: Business Microservice

Context: You are implementing an application using the Microservices Architecture style or

refactoring an application to use that architectural style. The application may run in either the

cloud or on-premise.

Problem: Ho do you isolate and implement business logic in an application built using a

Microservices architecture?

Forces:

 Attempting to implement more than one business function in a component results in

compromises in scaling (you may scale functions to levels greater than they are required)

and introduces unnecessary coupling between functions.

 Component API’s should be business oriented rather than technically oriented. A

business-oriented component API can be more readily understood by

Solution: Develop each business function as a Business Microservice that encapsulates the

business logic and makes it composable. Each Business Microservice should solve one and only

one business problem. That business problem should be addressed in single deployable

component that has a business-oriented API. In this way, you can not only allow for evolution of

your implementation of each business function (as long as the API remains the same or upwardly

compatible, the implementation is immaterial) but you allow for the evolution of the system as a

whole as new Business Microservices can be developed to meet new business needs or the system

can recombine existing Business Microservices in new ways.

As an example, let’s return to the Retailing website described in the Microservices Architecture

pattern. Let’s say that today we implement the three microservices described there. The catalog

item search microservices may be implemented initially using a technology like Apache SOLR. If

you provide a business-oriented API on that microservice that does not expose internal technical

details then you can entirely replace the implementation of catalog item search with a new version

that implements the same API but uses a newer technology like ElasticSearch easily without

having to retest the entire system. Since you have isolated the technology and data dependencies

within the microservice you can allow the team building that microservice to evolve it

independent from other parts of the system. Note that this only works if each microservice is only

related to other microservices through its published interface – if there is hidden coupling (such as

through a shared database) then independent evolution and scaling is not possible.

Result: The business functionality of an entire application is composed of individual business

functions implemented as business microservices. Deciding to implement each business entity as

a microservice is not the end of your design problems, however. You must also think about how

you would implement the microservice and how that microservice relates to the other services in

your overall business application.

One of the microservices principles described by [Fowler] and referenced above is that you should

avoid indirect communication between microservices through a database. One of the

Implementation Patterns for Microservices Architectures: Page - 19

ramifications of that principle is that each individual microservice will usually store its own data

in a separate database. In order to allow those databases to scale at the same rate as the

microservices, the decision is often made to use a Scalable Store (e.g. a NoSQL Database of some

sort) instead of a relational database. This is usually because the native data representation that

the microservice presents to the outside world in its REST interface (JSON or possibly XML) is

more easily stored and retrieved in that format.

Earlier in this paper we referred to the development benefits that are accrued from following the

microservices principles of Per Service CI/CD and Per-Service HA and clustering. Unfortunately

these two benefits come with a shared drawback - adopting an approach of building multiple

Business Microservices means that you will have more operational complexity in your application

than you might have if you followed a more traditional monolithic approach.

In particular, the increase in the number of application servers running your microservices means

that there are more application logs to gather and correlate than you might have in a monolithic

architecture. Likewise, this same increase means that monitoring the status of each individual

microservice and debugging problems that may occur also becomes more complex. Thus, when

building Business Microservices, you may need to employ a Log Aggregator together with an

approach like Correlation ID’s.

Implementation Patterns for Microservices Architectures: Page - 20

3.3 Backend for Frontend

Title: Backend for Frontend

Context: You are designing an application using a Microservices Architecture. You realize that

the Business Microservices that encapsulate individual business functions do not map cleanly to

the channel-specific needs of your client applications. You have multiple different channels (e.g.

front-end application types, such as mobile applications and web applications) that you must

support.

Problem: How do you represent a channel-specific service interface that is consistent with a

microservices architecture but allows enough uniqueness that it can be adapted to the needs of a

specific client type?

Forces:

 Microservices break one set of functionality into multiple APIs.

 The easiest way for a client to interface with a server is through a single API.

 Different types of clients—browser, mobile, CLI—want different APIs for the same

functionality.

 Business logic is rarely specific to a single client type. It should be implemented such that

all client types can share it.

Solution: Build a “Backend for Frontend” (e.g. a BFF or Dispatcher) that acts as a single API for

a client. Implement different BFFs for different types of clients, each with an API that is

customized to what that client type needs. Each Backend for Frontend will then interface

Results: A BFF can perform the following actions:

 Orchestration – It can orchestrate several calls to business microservices that result from

a single client action.

 Translation – It can translate the results of a microservice into a channel-specific

representation that more cleanly maps to the needs of the user experience of that client.

 Filtering – It can filter results from a business microservice that are not needed by a

particular client type.

A BFF should not contain any business logic. Because it’s specific to a single client type, any

business logic implemented in BFFs won’t be shared across all client types. This is the single

biggest potential pitfall of the BFF pattern – there is a risk that business logic becomes embedded

in the BFF instead of within the underlying business microservices where it should be

implemented, making that logic inaccessible to other channels.

This pattern was introduced in [Newman] and is a key part of building microservices architectures

that have dynamic front-ends such as Native Mobile Applications or Single Page Applications.

Both of these patterns introduce unique translation or filtering requirements that often necessitate

the use of a Backend for Frontend. For instance, in a native application you may need to filter

Implementation Patterns for Microservices Architectures: Page - 21

long data sets in order to fit on the limited screen real estate of the mobile application. Likewise a

Single Page Application may require orchestration of several calls to individual Business

Microservices to return a particular set of information needed to represent a screen flow.

An important point about implementing the Backend for Frontend pattern is that in most cases, it

is the same team that is responsible for building both the client application and the Backend for

Frontend. This leads to some particular development efficiencies; the first is that it is often

convenient to use the same programming language for both. Thus, many times JavaScript

developers building a Single Page Application will also want to develop their Backend for

Frontend services using JavaScript and Node on the server side. Likewise, Java developers

building an Android native application may want to develop their Backend for Frontend services

with Java.

Backend for Frontend’s often use Page Caches to store long results obtained from Business

Microservices so that the results can be obtained a page at a time from a client. A Service

Registry may help the client code that makes up the bulk of a Backend for Frontend to be resilient

in the face of changes to the physical address of the Business Microservices that it depends on.

Implementation Patterns for Microservices Architectures: Page - 22

3.4 Adapter Microservice

Title: Adapter Microservice

Context: You are designing an application using a Microservices Architecture. You want it to

incorporate existing services (e.g. SOAP, JMS, or mainframe-based services) but their APIs do

not use the RESTful or queue-based approach that is consistent with the microservices

architecture.

Problem: How do you handle translation of existing service implementations into good

microservices APIs?

Forces:

 If you have existing services that run well enough as is, you don’t want to rewrite them,

you want to reuse them instead.

 Changing the APIs of existing services can break existing clients.

 If an existing service doesn’t have a good microservice API and that’s inconvenient to

change, it’s also inconvenient for each client microservice to use that existing service via

its legacy API. The components in a microservices architecture should integrate via good

microservice APIs.

Solution: Build simple Adapter Microservice that converts the existing service’s non-

microservice API to an API that client microservies will expect. An Adapter Microservice

follows the Adapter pattern from [Gamma] in that it converts one API to another.

Results: In many cases, it's a straightforward exercise to convert a function-based interface (for

instance one built using SOAP) into a business-concept-based interface. In many ways this can be

thought of as moving from a verb-based (functional) approach to a noun-based (entity) approach.

Often, the functions exposed in a SOAP endpoint correspond one-to-one to CRUD (create, read,

update, delete) operations on a single business object type, and therefore can map easily to a

REST interface where the URL represents the type of object, and the GET, POST, PUT and

DELETE methods correspond to read, create, update and delete for that type respectively. These

operations would then simply send the corresponding SOAP messages to the existing SOAP

endpoint and then translate the XML datatypes from the corresponding SOAP operations to JSON

datatypes for the new REST interface.

However, there are cases where this mapping falls down that must also be handled. An example

of this case is a bank transfer - which is an operation between two bank accounts that does not

correspond to a CRUD operation on either account. In this case, the simplest solution is often the

same one taken in relational databases for the corresponding problem - you create a new type that

represents the transfer itself - analogous to creating a relationship table in a relational database.

Implementation Patterns for Microservices Architectures: Page - 23

So in this case you would build a new REST interface whose URL represents the Transfer type,

with a POST operation corresponding to performing a transfer, a GET operation that could return

information about a transfer, and a DELETE operation that is a (hopefully well-controlled) undo.

Adapter Microservices are a special type of Business Microservice - they are often transient

solutions, which only last until the underlying existing services can be replaced by a natively

implemented microservice.

Due to their special nature of converting one interface to another, Adapter Microservices often use

Results Caches in order to reduce the number of times they have to invoke the underlying SOA

service that they convert.

Implementation Patterns for Microservices Architectures: Page - 24

3.5 Results Cache

Title: Results Cache

Context: You are building clients for services, particularly in a Microservices Architecture.

Making network calls to remote databases or services are expensive. Latency can be added by

distance, layers or simply by long processing in a service.

Problem: How do you improve the performance of your application or microservice when it

makes many repeated calls to services?

Forces:

 Some services, when called repeatedly, return the same data every time and don’t cause

any side effects. Example: A read-only database query.

 Some services produce side effects. Example: A query that writes data or increments

counters.

 Caches can become very complex – especially if you try to anticipate what may need to be

cached ahead of time.

 Caching is optional. It should improve the performance of a system, but shouldn’t change

behavior.

Solution: Use a Results Cache that shortcuts the need to make repeated calls to the same service.

Results: A Results Cache can be as simple as a Key-Value Store (either in-memory or in a

Scalable Store). For this to work, the cache client must be able to derive the key from the

parameters of the database query or services call. Then the value is the last result returned from

the service.

Determining what to cache is often as difficult as setting up a cache itself. A common approach

that is sometimes taken is to try to reproduce the data in a database locally to the application that

is making requests of that data. The logic here is that if the problem is that database calls are

expensive and slow, then by making those calls locally (perhaps in-memory) then you can reduce

that overhead.

The problem is that if you simply reproduce the same data structures you have in a database

locally to your program that you will have to also be able to reproduce the same type of operations

on that data that your database is capable of making. The downside of that is that it's not easy or

obvious to determine how to do the equivalent of a multi-way SQL JOIN statement together with

database query optimization either in a language like Java or Node, or in a simple Key-Value Store

like Redis!

So instead, use a Results Cache. A Results cache can be as simple as a Key-Value store (either in-

memory or in a Scalable Store) in which the key is easily derived from the parameters of a

Database query or services call and the value is the last result returned from the service.

Implementation Patterns for Microservices Architectures: Page - 25

Probably the hardest issue to resolve in implementing a Results Cache is how to keep it from

becoming stale
2
. In many cases, the solution is simply to have a relatively low timeout value - in

most interactive business applications it is relatively rare to have any cached data need a lifetime

beyond that of a user session, which is usually measured in minutes -- so a short cache lifetime of

a few minutes or less can significantly improve performance while still maintaining a minimal risk

of the cache growing stale.

2 For help with that problem, see [Fernandes]

Implementation Patterns for Microservices Architectures: Page - 26

3.6 Page Cache

Title: Page Cache

Context: You are building a web or mobile application using a Microservices Architecture. You

are applying the Backend for Frontends Pattern to build dispatchers for a web or mobile

application.

Problem: A single microservice that represents a business entity or concept may return more

information that can be easily displayed, particularly on a mobile application, without a great deal

of scrolling.

Forces:

 You don’t want to re-fetch all of the data in a long list each time the list needs to be paged

 You don’t want to spend unnecessary network bandwidth transmitting data that may never

be viewed

 You don’t want the user to have to wait a long time for data to be fetched before it is

displayed.

Solution: Use a Page Cache with your Backend for Frontend. The Backend for Frontend will

present an interface that allows for the client application to request a limited subset of a much

larger set of data. The information can be indexed by page number based on the total size of the

dataset and the number of elements per page that can be displayed on the device.

Results: For very long datasets, a Page Cache is preferable to fetching all the data at once and

storing it in a Near Cache since you can render the first set of information more quickly – and in

many cases, the user will never scroll past the first page of information. However, when you do

use a page cache in conjunction with a Near Cache it makes it possible to scroll backwards

through the list more quickly – otherwise you would need to re-fetch the page data from the

Backend for Frontend on both page down and page up requests.

Implementation Patterns for Microservices Architectures: Page - 27

4. SCALABLE STORE PATTERNS

A key part of the microservices architecture is that wherever possible each microservice should

control or “own” its own data. However, microservices are also expected to be scalable and

stateless. This combination of requirements leads to the need for Scalable Stores, which is the

root pattern of this section. A Scalable Store can come in many different types, such as a Key-

Value Store or a Document Store. The choice for which you need depends upon the type of data

you are storing.

4.1 Scalable Store

Title: Scalable Store

Context: You are developing an application using Business Microservices. However, your

application will need persistent state to represent current and previous user interaction.

Problem: How do you represent persistent state in an application?

Forces:

 Storing application data inside the memory of an application runtime leads you to require

routing solutions like sticky sessions that make building highly available systems difficult.

 You don’t want to limit the scaling of your application by forcing the application to store

state inside a data store that cannot scale linearly.

Solution: Put all state in a Scalable Store where it can be available to and shared by any number

of application runtimes.

The key here is that the database must be naturally distributed and able both to scale horizontally

and to survive the failure of a database node. For the last several years, that has driven developers

to the concept of “NoSQL” databases as described in [Sadalage]. Examples of this type of

database include Redis, Cloudant, Memcached.

However, quite recently a number of new distributed databases based on the relational model and

collectively called “NewSQL” have also become available. These include options like Clustrix,

MemSQL, or even MySQL cluster. NoSQL databases are typically less efficient at SQL-like

queries because of differences in approaches to query optimization. So, if your application

depends on SQL-centric complex query capability then a solution such as a NewSQL database or

a distributed in-memory SQL database may be more efficient.

In the end it does not matter which particular database you choose – so long as you choose the

right database structure and retrieval mechanism for the job you are trying to perform. If the

driving forces in your application are scalability and redundancy either a NoSQL or NewSQL

Implementation Patterns for Microservices Architectures: Page - 28

database would suffice, but other application requirements will determine the particular type of

database you must choose.

Results:

Result Caches and Page Caches are usually implemented with a Scalable Store.

Implementation Patterns for Microservices Architectures: Page - 29

4.2 Key Value Store

Title: Key Value Store

Context: You are building an application with a Microservices architecture.

Problem: How do you store data that is naturally accessed through a simple key lookup such as

cache entries?

Forces:

 You want to use the simplest tool for the job at hand.

 You want to make your accesses (Cache lookups or other accesses) as fast as possible.

Solution: Store your data in a scalable Key-Value Store. The principal advantage of a key value

store over other types of Distributed Store is its simplicity. Most Key-Value Stores act, in

principle, like a hash map. For example, Redis has simple GET and SET commands to store and

retrieve string values. What’s more, for simple key lookup operations, Redis offers O(1)

performance.

If, on the other hand, you used a more complex store type such as a Document store for storing

cache entries, then you would find that the performance of such solutions is often not as good.

That is because other distributed store types optimize for more complex cases such as searching

by the contents of the documents stored.

Results:

There is no magic in using a Key-Value store. In many cases such as EhCache, they are in-

memory stores, and as such only can provide Consistency and Availability but not Partition

tolerance (as per Brewer’s CAP Theorem). This limits the size of the cache. The mechanism

used by many others (e.g. Redis with clusters) is to map keys to specific distributed nodes, and to

route requests to the appropriate server, which then stores that corresponding set of values in

memory. In order to maintain Availability, this means that you must have copies (slaves) of each

node. This means that by the CAP theorem you can gain Partition tolerance, but at the potential

loss of Consistency while the master synchronizes with the slave.

Implementation Patterns for Microservices Architectures: Page - 30

4.3 Document Store

Title: Document Store

Context: You are building applications with a Microservices Architecture. You are using

RESTful API’s and representing the contents of your HTTP requests and responses as JSON

(Javascript Object Notation) documents.

Problem: How do you most efficiently store and retrieve the data corresponding to your HTTP

responses?

Forces:

 You don’t want to have to translate the on-the-wire representation of an entity into another

form just to store it in a database.

 You want to build your solution quickly, and don’t want to have to add lots of additional

libraries or code to manipulate a database.

Solution: Store your JSON documents in a data store that is designed to quickly and efficiently

retrieve and store JSON documents – a Document Store.

Results:

In a microservice, the requests and responses that for the values accepted and returned by the

microservice are most commonly presented as JSON values. JSON has emerged as the lingua-

franca of REST, quickly eclipsing and replacing XML for most service schemas. When a

resource is thus represented naturally by a JSON document developers want to use the most

efficient database they can for storing and retrieving that information. Increasingly, this choice is

a Document Store such as MongoDB or CouchDB.

For instance, in MongoDB the basic construct is a collection of JSON documents – and adding a

JSON document to that collection is as simple as obtaining a reference to the collection and

calling an add method. This type of simplicity is what makes this approach attractive to

developers building microservices in Javascript.

Implementation Patterns for Microservices Architectures: Page - 31

5. MICROSERVICES DEVOPS PATTERNS

While not absolutely required in order to implement a Microservices Architecture, teams soon

find that the greatly increased number of runtimes needed in a microservices architecture lead to

new challenges in managing that proliferation. This leads to the need for Microservices DevOps,

which is the root pattern of this section. Microservices Devops will lead you to implement

patterns such as a Log Aggregator and Service Registry. Debugging long chains of

Microservices may lead you to implement Correlation ID’s.

5.1 Microservices DevOps

Title: Microservices DevOps

Context: You are building a complex application with a Microservices Architecture. You need

to be able to put that system into production.

Problem: How do you balance the needs of developers (which want to work on small, easy-to-

modify artifacts) and operations teams, which need to minimize the impact of changes on critical

systems in order to maintain availability?

Forces:

 If you deploy microservices in the same way you deployed a monolithic application, you

will not obtain the benefits of a microservices architecture.

 If you let each team go off and follow their own approach without setting guidelines on

how microservices are deployed, modified and managed, it will be impossible to debug the

resulting system.

Solution:

Follow a Microservices DevOps approach that allows you to isolate each Microservice as much

as possible, while being able to easily and quickly identify and resolve issues with the

Microservices. Applying unique CI/CD pipelines to each Microservice will allow you to build

and deploy each microservice individually. However, having a common approach allows you to

set guidelines on how microservices interrelate and interact with each other.

Results:

Since changes to a microservice can occur at any time, other microservices need to be isolated

from the results of that change through a Services Registry.

What’s more, microservices cannot function completely independently – since each microservice

will depend on other microservices or other downstream services (such as a DocumentStore) you

need to apply techniques such as a Log Aggregator and Correlation ID’s to understand the

interaction between different microservices and debug issues.

Implementation Patterns for Microservices Architectures: Page - 32

5.2 Log Aggregator

Title: Log Aggregator

Context: You are building applications using a Microservices Architecture and need to be able

to debug problems that cross the different components of that architecture.

Problem: How can you effectively view and search all of the different log files that emerge from

all of the different distributed runtimes that comprise your collection of microservices?

Forces:

 A Microservices Architecture can span dozens or even hundreds of individual application

server processes. This results in hundreds of individual log files.

 Microservices are often (but not always) implemented using cloud solutions that limit the

lifetimes of the individual application server processes. When you use a solution like

Cloud Foundry or docker, when an individual server container dies, any state within that

container is lost.

Solution: Use a Log Aggregator that pulls all of the files together into a single, searchable

database. The Log Aggregator will “listen for” or tail each individual log file and forward the log

entries to an aggregated collection point as they are made.

Examples of Log Aggregators include: Splunk, Logstash and ElasticSearch, and the Cloud

Foundry Loggregator.

Results:

Once you have collected log entries together, then the database of the entries can be searched in

order to make debugging more meaningful. For instance, you can look for occurrences of the

same log entry, perhaps a particular error message across multiple log files from multiple servers

in order to see if a problem is sporadic or widespread.

But the most helpful debugging approach is to take entries that are connected by a single thread of

control that spans multiple microservices and correlate them together to find problems that cross a

network of microservices in a particular call graph. That problem can be solved through the

combination of a Log Aggregator and Correlation ID’s.

Implementation Patterns for Microservices Architectures: Page - 33

5.3 Correlation ID

Title: Correlation ID

Context: You are building an application in a Microservices Architecture. Your application may

use Backends for Frontends and multiple Business Microservies and Adapter Microservices, and

may have complex call graphs as a result.

Problem: How do you debug a complex call graph when you do not know where in the set of

microservices along that call graph the problem may have been introduced?

Forces:

 You don’t want to overly burden your developers with complex requirements for logging

and monitoring

 You need to be able to trace a call regardless of how complex or simple that call is.

Solution:

The simplest and most effective debugging tool for a complex microservices web is consistent use

of correlation id’s. A correlation ID is a simple identifier (usually just a number) that is passed in

to every service request and passed along on every succeeding request – when any service logs

something for any reason, the correlation id is printed in the log entry. This allows you to match

or correlate specific requests to one service to other service requests in the same call chain.

Implementing correlation id’s correctly requires four consistent actions:

1. Create correlation ID if none exists and attach it as a header to every outgoing Service

Request

2. Capture the incoming correlation ID on every incoming request and log it immediately

3. Attach the correlation ID to the processing of the request (through a threadlocal

variable…) and make sure that the same correlation ID is passed on to any downstream

requests

4. Log the correlation id and timestamp of *any* messages that are connected to that thread

of processing

Results:

Once you have implemented a Correlation ID you can then use a Log Aggregator to gather

together all of the logs across all of the dependent systems in your Microservices Architecture and

can perform a query for the Correlation ID against the aggregated log. When placed into

timestamp order the results of this query will show the call graph of the solution and allow you to

put errors into the appropriate context in terms of which microservice instance and thread handled

the calls, and what the parameters to the calls were at the time that the problem was encountered.

Implementation Patterns for Microservices Architectures: Page - 34

5.4 Service Registry

Title: Service Registry

Context: You are building applications using a Microservices Architecture. You have many

different Business Microservices comprising your application.

Problem: How do you decouple the physical address (IP address) of a microservice instance from

its clients so that the client code will not have to change if the address of the service changes?

Forces:

o You don’t want to have to change client code each time you update a microservice, for

instance, if you update the version of the microservice, which may change the URL

o You don’t want to have to hard-code the physical addresses of a microservice into client

code – that would make it difficult, for instance, to move code between development and

production when the physical addresses of the systems change.

Solution: Use a Service Registry to map between a unique identifier and the current address of a

service instance in order to decouple the physical address of a service from the identifier. The

Service Registry pattern was first introduced in [Daigneau] and remains useful in a microservices

implementation – perhaps even more so given the number of individual services in a

Microservices Architecture.

At its simplest, a Service Registry is just a repository for information about services. However,

many implementations add other metadata about the service along with the physical address, such

as a generic server name (useful when you have multiple instances of a service) and health

information such as status or uptime.

Examples include IBM Bluemix’s Service Discovery, Netflix Eureka and the Amalgam8 Registry.

Results: Not all microservices projects will require a Services Registry – if you have only a

handful of services in your application then the setup and management of the registry

infrastructure is often more trouble than it’s worth. But if you have more than a half a dozen

services then it may become useful when alternative ways of managing service location (such as

configuration files) become cumbersome.

Implementation Patterns for Microservices Architectures: Page - 35

REFERENCES

[BUSCHMANN] BUSCHMANN, FRANK, ET. AL., PATTERN ORIENTED SYSTEM ARCHITECTURE: A SYSTEM OF
PATTERNS, JOHN WILEY AND SONS, 1996

[BROWN], BROWN ., MODERN WEB APPLICATION DEVELOPMENT WITH IBM WEBSPHERE, IBM PRESS, UPPER
SADDLE RIVER, NJ, 2014

[Daigneau] Daigneau, Rob, Service Design Patterns, Addison-Wesley, Nov 2011

[Fernandes] Fernandes, Benedict, Architectural Patterns for Dealing with Stale Data, IBM

DeveloperWorks,, http://www.ibm.com/developerworks/websphere/techjournal/1506_fernandes/1

506_fernandes-trs.html, dated June 2015, retrieved 14 June, 2016

 [Fowler] Fowler, Martin and Lewis, James, Microservices: A Definition of a new Architectural Term,

http://martinfowler.com/articles/microservices.html, originally dated 25 March 2014, retrieved 18 May

2016.

[Fowler2] Fowler, Martin, The Strangler Application,

https://www.martinfowler.com/bliki/StranglerApplication.html, originally dated 30 June 2014,

retrieved 18 February 2017

[Gamma] Gamma, Erich, et. al., Design Patterns: Elements of Reusable Object Oriented Software,

Addison-Wesley, 1994

[Hohpe] Gregor Hohpe, et. al., Enterprise Integration Patterns, Addison-Wesley Professional, Upper

Saddle River, NJ, 2003

[Martin] Martin, Robert, Principles of Object Oriented Design,

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod, retrieved 18 February 2017

[Newman] Newman, Sam, Building Microservices, O’Reilly Media, February 2015

[Sadalage] Sadalage, Pramod, and Fowler, Martin, NoSQL Distilled, Addison-Wesley Professional,

August 18, 2012

https://www.martinfowler.com/bliki/StranglerApplication.html
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

