
 A Pattern for a Virtual Machine Environment
Madiha H. Syed and Eduardo B. Fernandez

Dept. of Computer and Elect. Eng. and Computer Science

Florida Atlantic University, Boca Raton, FL 33431, USA

msyed2014@fau.edu, ed@cse.fau.edu

Keywords: virtual machine, architecture patterns, security, virtualization, security patterns, software

container

Abstract

 A Virtual Machine environment provides Virtual Machines which are isolated units of

execution with access to virtualized hardware resources. VMs are created and managed by the

VME upon user requests. VMs are not new, but their significance has increased tremendously

with the use of clouds as a means to offer sharing of resources and providing inexpensive, on-

demand, isolated units of execution. A VME enables users to execute different types of operating

systems and application stacks in each VM. We present a pattern for a Virtual Machine

Environment which describes benefits and liabilities of the VME. Alternate solutions for portable

and faster execution environments have appeared, like software containers, but still VMs

continue to be the most versatile and flexible among the virtualization solutions.

Introduction

Developing system programs, in particular operating systems, requires direct access to the

hardware. For a company developing an operating system intended to run in several varieties of

hardware, the only choice was to buy several hardware servers, which is expensive and limited

this type of work only to big companies. When hardware meant mainframes, even large

companies could not afford this development. This problem lead to Virtual Machine Operating

systems which provided a set of replicas of the hardware architecture (Virtual Machines). VMs

were first used in IBM mainframes so that designers could develop new system programs

without crashing the whole shared system; these were implemented as the VM/360 and VM/370

architectures. We presented a pattern for VM Operating Systems in [Fer05 and Fer13]. Later, VMs

were used to share expensive hardware, such as web servers, which hosted web sites isolated

from other sites. Now they have become the fundamental execution units (instances) of cloud

systems and for a while they were the only unit of execution in this type of systems. Recently,

containers have appeared and they can provide basically the same functions but using a fixed

execution environment [Sye15]; they trade off flexibility for speed. A Software Container provides

an execution environment for applications sharing a host operating system, binaries, and libraries

with other containers. Containers are lightweight, portable, extensible, reliable, and secure.

As shown in Figure 1, VMs and Containers are elements of cloud ecosystems [Fer16]. An

ecosystem is a collection of software systems, which are developed and co-evolve in the same

environment. The Cloud Reference Architecture (RA) is the main pattern (hub) that defines this

ecosystem. A Reference Architecture (RA) is an abstract software architecture, based on one or

more domains, with no implementation aspects. Identified security threats can be controlled by

adding security patterns to Cloud RA, this results in the Cloud Security RA (SRA). See [Fer16] for

the rest of the patterns in this figure.

We describe here a Virtual Machine Environment, a system able to create and manage virtual

machines according to user requests. Our audience here are designers and administrators of

cloud systems or shared servers.

Figure 1. Partial Cloud Ecosystem

Virtual Machine Environment (VME)

Intent
Provide units of execution (virtual machines), which have access to virtualized hardware

(processor, memory, and networks). A VME creates and manages virtual machines according to

user requests.

Example
A new company wants to develop application programs that need to run in Linux and Unix

supported by different hardware platforms. Doing this development requires access to a variety

of hardware, all of them running Linux and/or Unix. This is expensive and requires additional

time and expertise to set up these processing environments. We just don’t have enough money to

do this work.

Context

Many companies and individuals need access to inexpensive processing power. Many companies

develop software intended to run in multiple hardware platforms, where their software needs to

be developed and tested.

Problem
How do we provide inexpensive computing power to many users? Real processors can be

purchased and used to host applications; however, this is expensive and most of the resources

they provide will most likely go under-utilized.

The possible solution is constrained by the following forces:

Access to hardware features: Some applications may need access to a complete set of hardware

features to support its execution.

Flexibility: we would like to run different types of operating systems or systems software in each

execution instance.

Isolation: There should be no way for a user in an execution environment to get access to the data

or functions of another environment, either by error or intentionally. When an OS crashes or it is

penetrated by a hacker, the effects of this situation should not propagate to other OSs in the same

hardware.

Modularity: execution instances should have a well-defined interface to the software that will

execute on them; this can improve interoperability.

Usability: Configuring an execution environment should be simple.

Portability: We want execution instances to be portable across hardware processors; that is, they

should be able to be moved or copied from one processor to another processor without special

handling.

Extensibility: It should be possible to dynamically provide additional services to the hosted

applications like logging/auditing, filtering, persistence, and others.

Elasticity: It should be possible to dynamically increase or reduce the resources needed by an

execution instance.

Solution
Create execution instances (processes) where application developers can think they are

interacting with the real hardware, i.e., a virtualized processor with all the features of a hardware

processor, this is a Virtual Machine (VM). In this case, the software or even the hardware can be

chosen so as to support the application and optimize or improve a non-functional requirement. A

variety of software, e.g., databases, CAD/CAM, analytics packages, can be obtained from the

Service Provider (SP) and loaded in the VM using a menu-like approach (Binaries/libraries).

Structure

Figure 2 shows the class diagram of the VM Environment. Each VM runs under the control of a

Virtual Machine Monitor (VMM) (a.k.a Hypervisor), which provides a replica of all the features

of some Hardware architecture. A VMI Repository is a collection of VM images (VMI), which

are prepackaged software templates used by the VMM to instantiate VMs. We can run any type

of Guest Operating System and Binaries/Libraries in each VM. The diagram show a Host OS

but this is not used in some implementations (see Section Implementation).

 Figure 2. Class diagram of a VM Environment

Dynamics
Use cases for VMs include: Creation and Deletion of VMs, Selecting access control for VMs,

Adding resources to a VM, VM Migration, VM Replication, and others.

Patterns like Creation of a VM by a cloud system require use of the IaaS functions: a user needs

an account, the user needs to ask for a location, the VM is assigned to a node, etc. Several patterns

of this type are shown in [Fer13] but we do not consider them as part of the VM Environment.

We show below a use case to create a VM by a user. The final objective for a user is to build a VM

with a set of selected software units (Figure 3), typically an operating system, a DBMS,

development tools, etc. The size of memory, location, and other features can be also selected, as

well as access control rules. The sequence diagram of Figure 4 shows this use case.

VM

OS DBMS tool

…
* *0…*

Figure 3. Final objective of a VM creation

Figure 4 shows the sequence of steps performed when user creates a VM. For the creation of a

VM, a user can create a VM image with the required set of resources or select an existing VMI

from VMI repository. For this use case, we assume that the user selects the already existing VMI

from the repository.

1. A consumer selects a VMI from the repository based on required resources.

2. The VMI repository provides the requested image.

1. The consumer sends request to the VMM along with the VMI to create a VM.

3. The VMM instantiate the VMI to creates a VM with the requested resources

4. The VMM assigns required hardware resources to the VM.

2. The VM is assigned to the consumer and acknowledgement is sent to them that the VM

has been created.

As a post-condition of this use case, a VM is created and assigned to a consumer account and to

the required hardware.

Figure 4. Sequence diagram to Create a VM by a user.

Implementation

VMs are created by a Virtual Machine Monitor (VMM). VMMs can run on real hardware (bare

metal VMM) or on a host operating system (Types 1 and 2 hypervisors, respectively). In the latter

case the I/O drivers of the guest operating systems run in the Host Operating System. This

reduces memory needs and improves performance but it makes the virtual environment more

complex which makes it more vulnerable to attacks. Figure 5 shows the stack of the VM

execution environment with type 1 and 2 hypervisors.

Figure 5. Stack of the VM execution environment. Bare metal VMM and Hosted VMM

respectively

VMs can be created from Virtual Machine Images (VMIs) or in an ad hoc way by the user. VMIs

are kept in a VMI Repository [Fer15]. VMIs load VMs with different amounts of storage, specific

software, or other features. Communication between VMs and users or external systems can be

done using real or virtual networks. Virtual networks can use physical devices (switches, routers)

or can be virtualized functions (NFVs) [Fer15b].

There are several types of virtualization which can have an influence on the speed and security of

the corresponding VMs []:

Full or Native Virtualization—The guest operating system is presented with a full hardware

instruction set and executes all instructions either directly or through the hypervisor. Some

instructions do not trap and need extra binary code to be executed. This problem can be solved

using Hardware-assisted Virtualization, where all privileged instructions trap to the hypervisor.

Paravirtualization—Paravirtualization presents a software interface to VMs intended to reduce

the portion of the guest's execution time spent performing operations which are substantially

more difficult to run in a virtual environment compared to a non-virtualized environment

(Wikipedia). It requires specially tailored guest operating systems running in the VMs.

Operating System Virtualization—allows the resources of a computer to be partitioned via the

kernel's support for multiple isolated user space instances, which are usually called containers

and may look and feel like real machines to the end users.

Library Level Virtualization - produces a different virtual environment working above the OS

layer by implementing a specialized application binary/programming interface (ABI/API).

Figure 6 shows the stack for containers. It can be seen that containers operate with a lesser

number of layers and therefore offer a lightweight execution environment as compared to VMs.

However, since containers share the Host OS the resulting solution offers less flexibility (we

cannot run together applications that need different operating systems). Of course, we can mix

together in a cloud system VMs and containers.

Figure 6. The Stack for a Software Container

Example resolved
The company is now renting VMs from a service provider (SP) and only pays for the

computation time they use. The SP has a variety of hardware environments and the company can

switch from one to another in no time. The availability of different hardware architectures, the

speed of change, and the flexibility of this approach results in shorter development times and

lower costs.

Known uses
• IBM VM/370 [Cre81]. This was the first VMOS, it provided VMs for an IBM370

mainframe.

• VMware [Nie00]. This company provides VMs for Intel x86 hardware.

• QEMU (Quick Emulator) is an open-source VMM which runs on x86 systems [Qem16]. It

can be run as a pure emulator or native VM.

• Xen is a VME for the Intel x86 developed as a project at the University of Cambridge, UK

[Bar00].

• VirtualBox is a free and open-source VME from Oracle for x86 hardware. [Vir16].

• Some smart phone operating systems use a few specialized virtual machines to separate

the user’s private system from her work environment. These include the L4 Microvisor

[Hei10] and RIM’s Black Berry 10 OS [Bla16].

Consequences
The Virtual Machine Pattern has the following advantages:

• Access to hardware features: Each operating system or other system software has access to a

complete set of hardware features to support its execution. Not all users may require this

type of access.

• Flexibility: we can run different types of operating systems or systems software in each

VM.

• Isolation: The VMM intercepts and checks all system calls. The VMM is in effect a

Reference Monitor and provides total mediation on the use of the hardware. This can

provide a strong isolation between virtual machines [Ros05].

• Modularity: execution instances can have standards for their interface to the software that

will execute on them; in fact, there is already an standard for this interface [OVF].

• Usability: Configuring an execution environment requires only to select software

packages from a menu.

• Portability: We can move a VM from one processor to another by just moving its process

descriptor. We can also replicate VMs in this way to provide fault tolerance.

• Extensibility: It is possible to dynamically provide additional services.

• Elasticity: The SP has tools to dynamically increase or reduce the resources needed by a

VM.

The use of Virtual Machines has the following liabilities:

• There is a time overhead compared to running on a real processor.

• There is some time and complexity overhead compared to containers.

• There is a need to control the use of VMs for which we need an administration structure

[Fer13b].

Related patterns
• Container [Sye15]. A Software Container provides an execution environment for

applications sharing a host operating system, binaries, and libraries with other

containers. Containers have less execution overhead but are less flexible than VMs.

• Reference Monitor. As indicated, the VMM includes a concrete version of a Reference

Monitor [Fer13a].

• Cloud Security Reference Architecture [Fer15].

• NFV [Fer15b]. Network Functions Virtualization (NFV) is an architecture for the

construction of network services using software building blocks. The building blocks,

Virtual Network Functions (VNFs), are typically created from cloud services using

virtual machines or containers.

• Secure Virtual Machine Image Repository [Fer13b]: Avoid the poisoning of VM images

during creation and the leaking sensitive information accidentally left in the VMI by

enforcing access control to the repository.

• Cloud Policy Management Point [Fer13b]: Provide an administrative dashboard for

security functions, including authentication, authorization, cryptography, logging, and

control of VM images.

Acknowledgements
We thank Jason Yip for his comments that have improved this paper. Although he was not the

official shepherd, he provided many useful comments.

References

[Bar00] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A.

Warfield, “Xen and the art of virtualization”, Procs. of the ACM Symp. on Operating System Principles,

SOSP’03.

[Bla16] Black Berry 10, https://en.wikipedia.org/wiki/BlackBerry_10

[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-

Oriented Software Architecture: A System of Patterns, Volume 1. Wiley, 1996.

[Fer05] E.B.Fernandez and T. Sorgente, "A pattern language for secure operating system architectures”,

Procs. of the 5th Latin American Conference on Pattern Languages of Programs, Campos do Jordao, Brazil,

August 16-19, 2005.

[Fer13a] E.B.Fernandez, “Security patterns in practice: Building secure architectures using software

patterns”, Wiley Series on Software Design Patterns, 2013.

[Fer13b] E.B. Fernandez, Raul Monge, and Keiko Hashizume, "Two patterns for cloud computing: Secure

Virtual Machine Image Repository and Cloud Policy Management Point", 20th Conf. on Pattern Languages

of Programs (PLoP 2013)

[Fer15a] E.B.Fernandez, Raul Monge, and Keiko Hashizume, “Building a security reference architecture for

cloud systems”, Requirements Engineering. Doi: 10.1007/s00766-014-0218-7, 2015

[Fer15b] E. Fernandez and Brahim Hamid, “A pattern for Network Functions Virtualization”, 21st European

Conf. on Pattern Languages of Programs (EuroPLoP 2015)

[Fer16] E.B. Fernandez, N. Yoshioka, H. Washizaki and M.H.Syed, “Modeling and security in cloud

ecosystems”, Future Internet 2016, 8(2), 13; doi:10.3390/fi8020013

(Special Issue Security in Cloud Computing and Big Data)

[Gam94] E. Gamma, R. Helm,R. Johnson, and J. Vlissides, Design patterns –Elements of

reusable object-oriented software, Addison-Wesley 1994.

[Gol06] D. Gollmann, Computer security, 2nd Ed., Wiley, 2006.

[Hei10] Gernot Heiser and Ben Leslie. “The OKL4 Microvisor: Convergence point of microkernels and

hypervisors”. Proceedings of the 1st Asia-Pacific Workshop on Systems (APSys), pages 19–24, New Delhi,

India, August 2010.

[Nut03] G. Nutt, Operating systems (3rd Ed.), Addison-Wesley, 2003.

[OVF] https://en.wikipedia.org/wiki/Open_Virtualization_Format

[Qem16] QEMU. 2016. https://en.wikibooks.org/wiki/QEMU. Accessed: 08/10/2016.

[Ros05] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: Current technology and future trends”,

Computer, IEEE May 2005, 39-47.

[Sch06] M. Schumacher, E.B. Fernandez, D. Hybertson, F. Buschmann, and P.

Sommerlad, Security Patterns: Integrating security and systems engineering, J. Wiley & Sons, 2006.

[Sil08] A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts (8th Ed.), John Wiley & Sons, 2008.

[Sye15] Madiha H. Syed and Eduardo B. Fernandez, “The Software Container pattern”, 22nd Conference on

Pattern Languages of Programs 2015, Pittsburgh, PA, October 24-26, 2015

[Tan08] A. S.Tanenbaum, Modern Operating Systems (3rd Ed.), Prentice Hall, 2008.

[Vir16] VirtualBox. 2016. https://www.virtualbox.org/wiki/VirtualBox. Accessed: 08/10/2016

[Wikipedia} https://en.wikipedia.org/wiki/Paravirtualization

,

