
The Multi-tenant Pattern
SUMIT KALRA, Indian Institute of Technology Kanpur
PRABHAKAR TV, Indian Institute of Technology Kanpur

Traditional multi-user applications are designed to provide the same functional and non-functional responses to all the users. However,
customers of the contemporary applications may have different expectations from the application. To design an application with the ability to
meet diverse requirements of customers, is a recurring problem in various domains including software applications. This paper presents a
pattern called “Multi-tenant” that can be employed to cater such diverse set of requirements. We present a reference architecture of the pattern
along with examples and known uses. Our analysis of the various use cases shows that the pattern is useful in designing applications for
heterogeneous consumers.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures—(Design) Patterns

General Terms: Design

Additional Key Words and Phrases: Multi-tenant, Reference Architecture, Cloud Computing

1. INTRODUCTION

A conventional multi-user application assumes that all the users have the same functional and non-functional
requirements. It does not cater to the specific needs of the users. Whereas tenant (consumer) of a contemporary
cloud service may differ in functional and non-functional responses such as user interface, resource demand, and
response time. A tenant is different from a traditional user as it expects highly customizable services from the
application [Bezemer and Zaidman 2010]. It can be an individual or an organization with multiple end users. For
example, Dropbox [Drago et al. 2012], which offers cloud storage, is a tenant of Amazon Web Service (AWS)
[AWS-EC2 2016]. AWS also has other tenants such as Netflix, Nokia, and Samsung which expect a different set of
responses from the service [Services 2016]. This paper presents multi-tenant as a design pattern to develop such
applications. In contrast with multi-user applications, a multi-tenant application allows its tenants to have diverse
sets of functional and non-functional requirements. Internally, such requirements are handled by a single execution
instance. Thus the service provider of a multi-tenant application benefits from the reduced overhead of managing
multiple application instances. Therefore, operational cost per tenant is less in multi-tenant application compared
to a scenario where each tenant is handled by a dedicated instance [Warfield 2007].

2. EXAMPLE

Massive Open Online Course (MOOC) is an online course which leverages the web to provide education across
the globe. Recently there has been quite a surge in MOOCs. A typical MOOC consists of video lectures, discussion
forums, assignment and various other activities. Each MOOC would vary in size (number of enrollments), duration
of the course, intensity (lectures per week), user interaction, and many such features. MOOC have specific
management system which is typically called as MOOC management systems e.g. Open edX [Edx 2016] or
mooKit [Prabhakar 2015]. Such MOOC management systems are designed to cater the specific requirements of
MOOC and can usually handle multiple MOOCs simultaneously. Each MOOC may have a different emphasis on
the services offered by the MOOC management system. In this context, we can term MOOC management system
as a case of multi-user application. Here a MOOC would be termed as “Tenant” which has varied requirements.

3. MULTI-TENANT PATTERN

3.1 Context

A service provider offers hosted services such as SaaS, PaaS, and IaaS (Software, Platform, and Infrastructure -
as a Service) to its tenants (service consumers). A tenant authorizes its end users to avail the services.

3.2 Problem

When a service hosts heterogeneous tenants, there are the following two primary issues to be handled:

(1) How to satisfy diverse requirements of heterogeneous tenants.

(2) How to optimize the overhead of hosting multiple tenants.

3.3 Solution

Design the application in such a way that it can host tenants with different requirements on a single execution
instance. Components of such multi-tenant applications are generic enough to deliver a set of diverse requirements.

Fig. 1: Reference architecture of the Multi-tenant pattern: Multiple tenants with different requirements shares a single instance of an application.

Structure: Figure 1 depicts the reference architecture for using multi-tenant pattern to share a single instance
of the application among multiple tenants. Tenants are oblivious of the fact that application instance is shared with
other tenants and deployed on a dedicated server. The reference architecture has following two key conceptual
entities: Tenant Manager works as a proxy between the application and its tenants, and Execution Stack consists
of generic components which accept parameters to deliver variations in responses.

The Multi-tenant Pattern — Page 2

(a) IaaS: Virtualization stack

(b) A typical multi-tenant application stack

Fig. 2: Instances of multi-tenant reference architecture

For example, Figure 2 depicts two instances of the reference architecture of the multi-tenant pattern. Figure
2a shows IaaS as an example of the multi-tenant pattern. In this example, hypervisor or Virtual Machine Monitor
is the tenant manager which takes care of multiple tenants at hardware and operating system layers. Each
VM(tenant) may have a different configuration based on requirements. Another example in Figure 2b shows
a typical multi-tenant application stack. Application specific tenant manager handles different tenants and the
underlying computation stack is shared via a single execution instance of the application.

Dynamics: Figure 3 shows interaction among the components of the multi-tenant pattern as described below:

(1) A tenant sends a request to the tenant manager to use application functionality.

(2) The tenant manager reads the requirement configuration file.

(3) The tenant manager includes the appropriate parameters corresponding to the requesting tenant.

(4) Modified tenant request is forwarded to the multi-tenant application instance.

(5) The application returns the results to the tenant manager conforms with tenant’s functional and non-functional
requirements.

(6) Tenant Manager forwards the results to intended tenants.

In this example, the configuration file is used as a repository to store requirement specifications of all the tenants.
The application may also directly respond to tenants by-passing the tenant manager in some scenarios.

The Multi-tenant Pattern — Page 3

Fig. 3: Interaction among tenants and multi-tenant application components such as Tenant Manager, Tenant QoS configuration and the
multi-tenant application

3.4 Implementation

The pattern has two key conceptual entities- Tenant Manager and Execution Stack. These entities can be mapped
to single or multiple modules. There are independent implementation concerns related to each of these entities as
follows:

Acquire requirements of the tenants: This concern is related to the tenant manager entity. There are multiple
approaches to acquire the different requirements of tenants. Some of them are:

—Tenant mentions the requirements in each request explicitly. These requirements are mapped to parameters of
the generic components at runtime.

—Using configuration files or database records, requirements are specified at the time of tenant creation. Tenant
manager refers to configuration files for each request.

—Use of a semantic knowledge graph based approach for specifying complex requirements of tenants [Brandt
et al. 2008].

Handle tenant requests in compliance with the requirements: This concern impacts the design of generic
components of the execution stack. Some of the tactics to design such generic components are:

—Using time-shared resources with different time slices and priorities

—Using software-defined resources such as virtualization, SDN (Software Defined Networking) [Kirkpatrick 2013],
SDA (Software Defined Architecture) [Natis 2014] and Network Function Virtualization [Fernandez and Hamid
2015].

The Multi-tenant Pattern — Page 4

4. KNOWN USES

In this section, we will mention some of the known uses from where the pattern has been abstracted out.

—Salesforce.com: salesforce.com has improved the SaaS service by implementing multi-tenant applications
and bringing down the maintenance cost. They used a meta-data driven architectural approach to design
polymorphic applications [Weissman and Bobrowski 2009].

—Free trials versus premium services: Various web applications like Github [Dabbish et al. 2012], Dropbox
[Drago et al. 2012], Sharelatex [Oswald et al. 2014], and Grammarly [Ubsdell 2012] use a single instance of the
application to provide services to the different categories of users such as free users and premium users with
different quality. Here, the types of users are tenants in our context.

—Twitter Alerts: Twitter has the facility to create alerts and delivers critical information promptly to intended
recipients. These alerts are similar to other tweets. Apart from showing alerts differently to the users, alerts
are propagated at a much faster rate with time-bound guaranteed delivery. In this case, ordinary tweets and
alerts are handled by two different tenants. It makes the Twitter platform a multi-tenant application, which is
capable of handling different kinds of tenants (ordinary tweet handler and alert handler) with various functional
and non-functional requirements using a single instance of the Twitter application [Twitter 2013].

—Facebook Promoted Posts: Facebook has two categories of posts. One is a regular post created by the
standard users. Other is a promotional post created by business entities. Promoted posts propagate faster and
spread quickly to a larger audience as compared to regular posts. The underlying execution stack is common for
both kinds of posts. In this scenario, Facebook is multi-tenant applications whereas regular user and business
entities are tenants with different requirements of posts [Inc. 2016].

5. CONSEQUENCES

The pattern has the following advantages:

—Multi-tenancy as a design concern: The pattern highlights the issues of handling multiple tenants with different
requirements during the design phase. It also makes architects aware of the fact that a multi-tenant concern can
be incorporated at various layers such as infrastructure, platform, and software.

—Higher degree of resource sharing: The multi-tenant pattern allows co-hosting of tenants with different varying
requirements resulting in higher degree of resource sharing as compared to a multi-user scenario. Hence, the
operational cost per tenant also goes down.

—Lower maintenance overhead: Since the service provider needs to take care of a single application instance,
it can bring down the maintenance overhead.

—Dynamic requirements: The multi-tenant pattern also facilitates handling of dynamic requirements of the
tenants through a tenant manager by implementing it as a runtime entity.

Some of the liabilities of the pattern include::

—Resource overhead for a multi-tenant pattern: Use of multi-tenant patterns consumes resources. Although
the resource usage overhead can be optimized with efficient implementation, it remains non-zero.

—Scalability: Tenant manager becomes a bottleneck if the number of tenants grows. There are implementation
variations to handle the scalability issue. Distributed implementation of a tenant manager is possible.

—Interference: A tenant can interfere with others if it grows in size or its requirements become more demanding.
Tenant Manager keeps track of each tenant and whether their requirements are met or not. It also identifies the
tenant who is causing the interference and initiates appropriate actions.

—Generic application components: Multi-tenancy requires the design and develop application component to
be generic enough to meet variable functional and non-functional requirements. Application components should

The Multi-tenant Pattern — Page 5

also accept parameters related to quality apart from traditional functional parameters. It may result in increased
code complexity.

6. EXAMPLE RESOLVED

Fig. 4: An example of a multi-tenant message communication system which provides chat and email services

In this section, we show how two widely used systems (email and chat) can be addressed by the proposed
multi-tenant pattern. These systems are described as follows.

(1) An intra-domain push email system (IDPES) is used to exchange email only within a domain. It uses
push-based approach to deliver a message to the receiver (last mile delivery).

(2) An instant messaging (IM) system is also a message exchange system. IM systems use push technologies to
deliver messages.

From a high-level view, IDPES and IM systems have similar functional requirements. However, they differ in
non-functional requirements such as the response-time of the message delivery. The IDPES is expected to deliver
a message with high response-time. On the contrary, the IM system delivers messages in real-time.

In our example, an organization offers both IDPES and IM services. To reduce the operation overhead it can use
the multi-tenant pattern to offer both the services. To realize the same we design a generic application component
which uses push technologies to deliver messages. This component can handle the functional requirements of

The Multi-tenant Pattern — Page 6

both IDPES and IM systems. However, this application should provide lower response-time to users of the IM
system.

In our design, as shown in Figure 4, the tenant manager maintains two thread pools front-ended by queues.
Each of the thread pool is responsible for a particular response time. The number of thread in a pool is inversely
proportional to its related response-time. Each thread in any pool would represent the generic application
component. Upon receiving a request, the tenant manager redirects the request to particular thread pool depending
on whether it belongs to the IPDES tenant or the IM tenant. Thus this example shows the applicability of the
multi-tenant pattern in such scenario.

7. RELATED PATTERNS

—Network Function Virtualization: Network node functions such as load balancer, firewalls are software entities.
This design reduces the complexity and increases the ability to control the network functionality dynamically. It is
useful in managing the network related services to meet quality requirements of multiple tenants [Fernandez
and Hamid 2015].

—Software Container: Multiple applications shares a single host operating system, binaries, libraries, etc. and
containers allow to run these applications in strongly isolated manner. Considering the applications as tenants
and the single host as a multi-tenant application, this pattern is a subset of the multi-tenant pattern [Syed and
Fernandez 2015].

8. CONLUSIONS

The multi-tenant pattern brings the issues of handling different requirements of tenants using a shared instance as
a primary concern during the design phase. In this paper, we abstract out the multi-tenant pattern from known
uses and present a reference architecture for the same. Applications built using this pattern can handle multiple
tenants efficiently. The pattern facilitates to host multiple tenants on a single execution instance of the application.
At the same time, it also ensures that these co-hosted tenants do not interfere with each other and meet with their
functional and non-functional requirements.

REFERENCES

AWS-EC2. Retrieved: August 2016. Elastic Computer Cloud (EC2). http://aws.amazon.com. (Retrieved: August 2016).
Cor-Paul Bezemer and Andy Zaidman. 2010. Multi-tenant SaaS applications: maintenance dream or nightmare?. In Proceedings of the Joint

ERCIM Workshop on Software Evolution (EVOL) and International Workshop on Principles of Software Evolution (IWPSE). ACM, 88–92.
Sebastian C Brandt, Jan Morbach, Michalis Miatidis, Manfred Theißen, Matthias Jarke, and Wolfgang Marquardt. 2008. An ontology-based

approach to knowledge management in design processes. Computers & Chemical Engineering 32, 1 (2008), 320–342.
Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding in GitHub: transparency and collaboration in an open

software repository. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work. ACM, 1277–1286.
Idilio Drago, Marco Mellia, Maurizio M Munafo, Anna Sperotto, Ramin Sadre, and Aiko Pras. 2012. Inside dropbox: understanding personal

cloud storage services. In Proceedings of the 2012 ACM conference on Internet measurement conference. ACM, 481–494.
Edx. Retrieved: August 2016. Online courses for free at edX. http://www.edx.org/how-it-worksRetrieved:2016. (Retrieved: August

2016).
Eduardo B. Fernandez and Brahim Hamid. 2015. A Pattern for Network Functions Virtualization. In Proceedings of the 20th

European Conference on Pattern Languages of Programs (EuroPLoP ’15). ACM, New York, NY, USA, Article 47, 9 pages.
DOI:http://dx.doi.org/10.1145/2855321.2855369

Facebook Inc. Retrieved: August 2016. Facebook Business. https://www.facebook.com/business/. (Retrieved: August 2016).
Keith Kirkpatrick. 2013. Software-defined networking. Commun. ACM 56, 9 (2013), 16–19.
Yefim V. Natis. 2014. Software-Defined Architecture: Application Design for Digital Business. http://www.gartner.com/webinar/2698619 (2014).
Henry Oswald, James Allen, and Brian Gough. 2014. ShareLaTeX, the Online LaTeX Editor. (2014). https://www.sharelatex.com/about
TV Prabhakar. 2015. mooKit Architecture Diagram. (2015).
Amazon Web Services. 2016. All AWS Customer Stories. (2016).

The Multi-tenant Pattern — Page 7

http://aws.amazon.com
http://www.edx.org/how-it-works Retrieved: 2016
http://dx.doi.org/10.1145/2855321.2855369
https://www.facebook.com/business/
https://www.sharelatex.com/about

Madiha H Syed and EB Fernandez. 2015. The Software Container pattern. In Proceedings of the 22nd Conference on Pattern Languages of
Programs.

Bridget Coyne Twitter. 2013. Introducing Twitter Alerts. Available in: https://blog.twitter.com/2013/introducing-twitter-alerts (2013).
Gary Ubsdell. 2012. English proofreading software–Grammarly the better choice. (2012).
Bob Warfield. 2007. Multitenancy Can Have a 16:1 Cost Advantage Over Single-Tenant. Smooth Span Blog (2007).
Craig D Weissman and Steve Bobrowski. 2009. The design of the force. com multitenant internet application development platform.. In

SIGMOD Conference. 889–896.

PLoP’16, OCTOBER 24–26, Monticello, Illinois, USA. Copyright 2016 is held by the author(s). HILLSIDE 978-1-941652-03-9

The Multi-tenant Pattern — Page 8

	Introduction
	Example
	Multi-tenant pattern
	Context
	Problem
	Solution
	Implementation

	Known Uses
	Consequences
	Example Resolved
	Related Patterns
	Conlusions

