
Vulnerability Anti-Patterns: A Timeless Way to Capture Poor
Software Practices (Vulnerabilities)

TAYYABA NAFEES, Abertay University, Dundee
NATALIE COULL, IAN FERGUSON, ADAM SAMPSON, Abertay University, Dundee

There is a distinct communication gap between the software engineering and cybersecurity communities when it comes to addressing
reoccurring security problems, known as vulnerabilities. Many vulnerabilities are caused by software errors that are created by software
developers. Insecure software development practices are common due to a variety of factors, which include inefficiencies within existing
knowledge transfer mechanisms based on vulnerability databases (VDBs), software developers perceiving security as an afterthought, and
lack of consideration of security as part of the software development lifecycle (SDLC). The resulting communication gap also prevents
developers and security experts from successfully sharing essential security knowledge. The cybersecurity community makes their expert
knowledge available in forms including vulnerability databases such as CAPEC and CWE, and pattern catalogues such as Security Patterns,
Anti-Patterns, and Software Fault Patterns. However, these sources are not effective at providing software developers with an understanding
of how malicious hackers can exploit vulnerabilities in the software systems they create. As developers are familiar with pattern-based
approaches, this paper proposes the use of Vulnerability Anti-Patterns (VAP) to transfer usable vulnerability knowledge to developers. The
primary contribution of this paper is twofold: (1) it proposes a new pattern template – Vulnerability Anti-Pattern – that encapsulates
knowledge of existing vulnerabilities to bridge the communication gap between security experts and software developers, and (2) it
proposes a catalogue of Vulnerability Anti-Patterns (VAP) based on the most commonly occurring vulnerabilities that software developers
can use to learn how malicious hackers can exploit errors in software.

Categories and Subject Descriptors: Security and privacy~Vulnerability management • Security and privacy~Software security
engineering • Software and its engineering~Design patterns

Additional Key Words and Phrases: Vulnerability, Anti-Pattern, Vulnerability Database (VDB), Vulnerability Anti-Pattern (VAP), Security
Pattern, Attack Pattern, Software Development Lifecycle (SDLC)

1 INTRODUCTION

To date, software developers have overlooked security issues throughout the software development lifecycle [1,
2]. The principal reason for this is a lack of understanding about how common errors in software development
result in exploitable vulnerabilities in software systems [3]. Existing software design and engineering processes
provide little guidance about security, and the communication disconnect between software developers and
cybersecurity experts has led to widespread software vulnerabilities [4].

There is no single software engineering technique that guarantees the creation of 100% secure software.
Mistakes made by software developers are generally seen as the primary cause of security flaws in software
systems. We argue instead that the fault lies with the process: developers lack understanding of how malicious
hackers can exploit software flaws, and this understanding is necessary for the creation of secure software.

In our previous work [5], we concluded that software developers do not understand security because
their focus is on delivering features, rather than on ensuring security. Accordingly, developers often consider
security as something to be added to a system as a bolt-on component in later stages of development. Based on
our work that proposed “Caution before Exploitation”, we developed an approach based upon the improved use
of anti-patterns that encapsulates necessary knowledge about how malicious hackers exploit vulnerabilities.

1.1 Problem Description

The frequency and recurrence of commonly discovered vulnerabilities in databases such as CVE confirms that
software developers make the same errors consistently during the development process. Thus, it would be
fruitful to study failures, identify the recurring poor software practices and suggest solutions to these problems.
This concept is known as a negative pattern or an anti-pattern. Arguably, malicious hackers know a lot more
about systems than the developers who created them, indicating that the effectiveness of attackers can be traced
back to their extensive knowledge sharing [6]. However, security experts and software developers fail to share
this knowledge with each other and, although the problem of frequently recurring software vulnerabilities is
very well known, no standard solution has been universally adopted [7]. To solve these problems, it is necessary
for experts from both communities to capture and share their knowledge of poor software practices in a form
that is suitable for the other party, with clarity, rationale, and context, in a way, which could be applied to a new
solution – a pattern.

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 2

1.2 Vulnerability Anti-Pattern Objectives

The Vulnerability Anti-Pattern is a hybrid solution, which encapsulates knowledge of vulnerabilities from VDBs
and presents this knowledge to developers so that they can understand how poor software practices can be
exploited. This increased understanding and awareness of malicious hackers’ techniques will contribute to the
development of more secure software and aid developers’ understanding in the prevention of software
vulnerabilities. In essence, Vulnerability Anti-Patterns will:

 Provide software developers with a conscious understanding of common vulnerabilities using a
pattern based approach: The Vulnerability Anti-Pattern template is based on the anti-pattern
approach [8], which will be easily understood by developers. Utilising a pattern-based approach will
enable concepts traditionally understood by the security community to be transferred to the software
development community, helping developers to identify underlying root causes of vulnerabilities.

 Bridge the knowledge gap: The catalogue of Vulnerability Anti-Patterns will provide a common
ground to bridge the security awareness gap between both communities’ experts – software developers
and cybersecurity experts – so they can communicate and work together with confidence in their ability
to mitigate vulnerabilities [9, 10].

1.3 Vulnerability: A Commonly Reoccurring Flaw

A Vulnerability may be defined as a commonly reoccurring flaw (also known as an error, mistake, weakness or
bug) [11], which generally occurs due to development mistakes, insufficient quality assurance or inadequate
security concerns. The work of Martin, Brown et al [12] on the “Top 25 Most Dangerous Software Errors”
describes that some software errors occur more frequently in development practices, regardless of whether
developers are amateurs or experts, or whether the software is intended for commercial or private use. When
coupled with the extensive knowledge sharing in the security community, these frequently occurring errors
allow attackers to exploit systems with more efficiency and ease.

1.4 Anti-Patterns: Poor Software Practice

Anti-patterns are derived from design patterns, which capture good practice in software development. Akroyd
[13] introduced the idea of anti-patterns as a way of codifying existing practice in the software industry [8]: anti-
patterns capture poor practices in software development, along with their causes, solutions and related concerns.
The use of anti-patterns allows developers to recognize commonly occurring problems, which may result from
a lack of knowledge, insufficient experience in solving a particular type of problem, or applying a correct pattern
in the wrong context [14, 15].

In our context, anti-patterns can be used to capture poor software practices that may be exploited by a
malicious hacker. Furthermore, they present a framework for the transfer of essential vulnerability knowledge
to aid developers in understanding vulnerabilities and identifying appropriate mitigations.

1.5 An Anti-Pattern Perspective for Software Developers

The intended audience for Vulnerability Anti-Patterns are developers who are creating software systems. These
developers have other concerns in addition to security: ensuring that industrial standards are met, delivering
system features, and meeting time-to-market expectations. It has previously been explained that for software
developers, security is the responsibility of “someone else”, such as pen-testers and ethical hackers. However,
developers have a different set of priorities, and they often misunderstand the importance of security issues [16].

Vulnerability Anti-Patterns aim to provide a solution to this problem through a three-step process
integrated into the software development lifecycle: 1) identify the poor software engineering practices which
resulted in a particular vulnerability, and understand how the vulnerability can be exploited by an attacker; 2)
show the developer how to mitigate this vulnerability; 3) motivate the developer to adopt better security
practices in future development, reducing the incidence of future vulnerabilities.

1.6 The Analogy between Anti-Patterns and Vulnerabilities

Our Vulnerability Anti-Pattern template is based on that proposed in Brown et al [14]. However, existing anti-
patterns are not intended to capture relationships between poor practices and vulnerabilities, and do not
provide mechanisms for capturing cybersecurity domain knowledge.

We argue that existing pattern-based techniques – security patterns [17], software fault patterns [18] and
attack patterns [19] – are ineffective at capturing and transferring necessary knowledge of vulnerabilities. Anand,
Ryoo et al. (2014) and Hafiz (2011) report that security patterns are harder for developers to use than
conventional design patterns. Dimitrov [20] finds that the structure and semantics of SFPs do not adequately

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 3

capture all classes of vulnerabilities, and do not align well with existing formal notations used by software
engineers. In addition, NIST report that SFPs as used in the CWE database do not appropriately describe the
causes or consequences of related vulnerabilities [21]. Faily, Parkin et al [22] evaluated the use of both security
patterns and attack patterns within the software development process, and found problems with the
identification of specific vulnerabilities in the system, and the complex interactions between security and attack
patterns; they report that there is “a dearth of work” evaluating the use of attack patterns by software engineers.
The intended audience for security patterns is security experts rather than developers [23, 24], and the need for
usable and accessible knowledge about vulnerabilities is highlighted by Van, McGraw [9], Fahl, Harbach et al [25]
and Acar, Backes et al [26].

As Vulnerability Anti-Patterns are intended to capture recurring errors that lead to vulnerabilities, we
extended the template to include knowledge extracted from vulnerability databases in a form usable by software
developers. As an example, the “Use of Potentially Dangerous Function” Anti-Pattern describes the use of
functions within a software system that are likely to result in exploitable behaviour, when a safer alternative is
available. An instance of this anti-pattern is the use of C’s strcpy function, which provides no inherent safeguards
against incorrect source or target buffer sizes, frequently resulting in faults such as buffer-overflow
vulnerabilities [27]. Vulnerabilities resulting from improper use of strcpy are so common – as evidenced in the
CVE database [28] – that some standards prohibit its use entirely [29]. The “Use of Potentially Dangerous
Function” pattern is proposed as a corresponding solution. This Vulnerability Anti-Pattern captures security
expert knowledge extracted from these sources in a form that is usable by software developers during the
development process.

2 TERMS

2.1 Glossary

Term Definition
Anti-Pattern An anti-pattern describes a “general form, the primary causes which led to the general form; symptoms describing

how to recognize the general form; the consequences of the general form; and a refactored solution describing how
to change the Anti-Pattern into a healthier situation”[14].

Exploit/ Misuse A “technique to breach the security of a network or information system in violation of security policy” [30].
Vulnerability A “weakness in a system, application, or network that is subject to exploitation or misuse” [31].
Software Fault
Pattern

The Software Fault Patterns (SFP) are a clustering of CWEs into related weakness categories. Each cluster is
“factored into formally defined attributes, with sites (footholds), conditions, properties, sources, sinks, etc. This
work overcomes the problem of combinations of attributes in CWE” [32].

Penetration
Tester

A tester who is “used to test the external perimeter security of a network or facility to find vulnerabilities that an
attacker could exploit” [33].

2.2 Acronyms

VDB Vulnerability Database
VAP Vulnerability Anti-Pattern
SP Security Pattern
CWE Common Weakness Enumeration
CVE Common Vulnerabilities and Exposures
CAPEC Common Attack Pattern Enumeration and Classification
SDLC Software Deployment Lifecycle
SFP Software Fault Pattern

3 OVERVIEW

3.1 The Notion of a Vulnerability Anti-Pattern

A “Vulnerability Anti-Pattern” may be used to describe ineffective practices or poor solutions, which aid the
process of identifying and communicating about unsuccessful design intents, and introduces refactored
solutions, which suggest safe, alternative procedures. Thus, it can be suggested that these identifiable anti-
pattern of poor practices [34] need to be refactored in order to generate safe solutions. The key objective is to
stop or mitigate software security flaws from being exploited by attackers. This awareness discrepancy could be
attributed to a higher exposure to latent vulnerabilities, which benefits attackers. A possible explanation could
be that the prevalent software errors (vulnerabilities) occur, due to established software practices, which have

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 4

a negative impact during the software development lifecycle; for example, the use of dangerous function calls.
These kinds of practices typically lead to prevalent vulnerabilities.

The scope of anti-patterns has been extended to include vulnerabilities, and introduces another form of
anti-patterns termed for the purpose of this research as “Vulnerability Anti-Patterns”. The use of anti-patterns
for finding and understanding vulnerabilities has not been explored sufficiently, particularly for software
developers. This study set out to investigate the use of anti-patterns to provide software developers with the
necessary understanding of vulnerabilities. The advantage of adopting Vulnerability Anti-Patterns during the
software development lifecycle (SDLC) is that it bridges the knowledge gap between software developers and
security experts about commonly occurring software errors. This work has important implications for
developing secure training methods.

3.2 A Definition of Vulnerability Anti-Patterns

A Vulnerability Anti-Pattern identifies a problem (i.e. a poor practice that negatively causes a security flaw) and
a solution (i.e. a set of refactoring actions that can be carried out to mitigate or stop flaws). The above definition
is useful to capture common poor or ineffective practices, which may occur due to the use of design patterns or
software development processes in an inappropriate context. Traditionally, it has been argued that software
developers have software design and implementation expertise, but lack awareness of security concerns [10, 35,
36].
Table 1 shows the relationship between the anti-pattern and the corresponding pattern in terms of the sources
of the information captured by the Vulnerability Anti-Pattern.

Table 1 Relationship between Anti-Pattern and Pattern to describe vulnerability

Anti-Pattern Pattern

Vulnerability information

Vulnerability Characteristics

Mitigation

CWE-
ID

CVE Generally
known as

Context Lifecycle SFP STRIDE
Threat
Model

SP AP

CWE-
89

CVE-2016-1393,
CVE-2015-0161,
CVE-2008-5817

SQL
Injection

Developing a
system with
database-driven
web sites and save
user inputs in a
database.

Design
Phase

CWE-990: SFP
Secondary
Cluster:
Tainted Input
to Command

Spoofing Intercepting
Validator

CAPEC-7,
CAPEC-66,
CAPEC-
108,
CAPEC-
109,
CAPEC-110

3.3 Vulnerability Anti-Pattern (VAP) Template and its Structure

VAPs as presented in this paper follow the standard structure of anti-patterns as shown in Table 2, which
includes the following: a general description of the anti-pattern and how it could be exploited, real-world
examples sourced from the CVE database and sample vulnerable code, and a risk pattern within SDLC. To
mitigate each anti-pattern, a corresponding pattern is proposed, which comprises the following: context,
problem, forces, and mitigation. Together, the anti-pattern and pattern can enable developers to recognise the
root causes of a vulnerability and help them understand how this vulnerability can be exploited by malicious
hackers.

Table 2 Formal VAP Template and its Description

Pattern Main-Division Pattern Sub-Division Description
1. Vulnerability Anti-Pattern

General info

This section describes the general information of the vulnerability

1.1. Anti-Pattern Name Name of the pattern

1.2. Also Known as Other related names that are used to describe this
vulnerability

1.3. Frequently Exposed
in SDLC

Mentions the phase of SDLC in which this vulnerability is
originally exposed, such as Requirement Specification,
Design, Implementation/Coding

1.4. CWE Mapping: CWE-
ID, General Name

Relates this vulnerability to a CWE entry in terms of its ID
and name.

1.5. CVE Example Reference CVE to give some examples of the related
vulnerability

2. Anti-Pattern (Problematic
Solution)

This section explains the poor or ineffective development practices that are captured by
this VAP.

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 5

2.1. Anti-Pattern Example Explanation of exploitable scenarios

2.2. Unbalanced Forces Unbalanced forces related to meeting requirements,
controlling technology changes, and project management. 

2.3. Typical Causes Causes of this vulnerability as they may be perceived by
developers during the SDLC

3. Known Exploitation:
Related Anti-Patterns

This section gives examples of attacks against this particular vulnerability.

3.1. Attack Patterns Examples of attacks, in reference to CAPEC [19]

Pattern: Solution Against Anti-Pattern

1. Context Relates this pattern to the corresponding Anti-Pattern.

2. Problem Brief Description about the vulnerability.

3. Forces This section explains root causes and forensic details of the vulnerability, such as risk
patterns and software fault patterns, which formally define attributes and relationships
among vulnerabilities.

3.1. Risk patterns and
Consequences

Explains the root causes which lead to this vulnerability,
including consequences, using the STRIDE model and a
description of the vulnerable example.

3.2. Software Fault
Pattern

Links to existing SFPs, sourced from CWE [37]

4. Solution/Mitigation

(Refactor the problem)

This section explains solutions to the vulnerability.

4.1. Solution Steps in
SDLC

This portrays all possible solution steps and their mapping
within SDLC phases with detailed explanations.

4.2. Refactored Solution
Type

Explains how to refactor this problem by adopting the
following patterns. For example, software pattern,
technology pattern, process pattern and role pattern.

4.3. Vulnerable Example
(Real-world Patch
Example)

An example of how this vulnerability was identified and
fixed in a real-world application.

4.4. Related Patterns This section demonstrates other related solutions, such as
security patterns [38] and language-specific techniques.

3.4 Vulnerability Anti-Patterns (VAP) Catalogue

Table 3 describes our Vulnerability Anti-Patterns (VAP) catalogue.
Table 3 Catalogue of Vulnerability Anti-Patterns

Poor Software Practice Vulnerability Name
(sourced from CWE [39])

Vulnerability Anti-Pattern

1 Software fails to correctly escape special elements used in SQL
commands

SQL Injection SQL Injection

2 The software does not perform any authentication for
functionality that requires a provable user identity or consumes a
significant amount of resources.

Missing Authentication Missing Authentication for
Critical Functions

3 The software does not perform an authorization check when an
actor attempts to access a resource or perform an action.

Missing Authorization Missing Authorization

4 The program copies data to a buffer without checking the size of
the input.

Buffer Overflow Buffer Overflow

5 The program uses a deprecated function call that is prohibited
due to known vulnerable behaviour.

Deprecated Function Call Use of Deprecated Function

6 The program uses a potentially dangerous function that may
introduce a vulnerability if used incorrectly.

Use of Potentially
Dangerous Function

Use of Potentially Dangerous
Function

7 The software performs a calculation that can produce an integer
overflow or wraparound.

Integer Overflow Integer Overflow

8 The software does not correctly calculate the size to be used
when allocating a buffer, which could lead to a buffer overflow.

Incorrect Calculation of
Buffer Size

Incorrect Calculation of
Buffer Size

9 The software does not properly escape attacker-provided data
when generating HTML content.

Cross-Site Scripting (XSS) Cross-Site Scripting

10 The web application does not sufficiently verify that the source of
the request is the same as the target of the request. This enables a

Cross-Site Request Forgery Cross-Site Request Forgery

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 6

command (triggered from a malicious application) to be sent to a
trusted website using the user’s browser.

11 The software uses formatted output functions with a format
string controlled by an attacker.

Use of Externally-
Controlled Format String

Use of Externally-Controlled
Format String

12 The software does not properly escape the special elements used
in an operating system command, which may enable execution of
arbitrary commands by an attacker.

Shell injection OS Command Injection

4 VULNERABILITY ANTI-PATTERN EXAMPLES

The first two examples of Vulnerability Anti-Patterns from Table 3 Catalogue of Vulnerability Anti-Patterns are
presented below:

1) SQL Injection Vulnerability
I. Anti-Pattern

II. Pattern (Solution)
2) Missing Authentication for Critical Functions Vulnerability

I. Anti-Pattern
II. Pattern (Solution)

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 7

5 SQL INJECTION VULNERABILITY

5.1 Anti-Pattern

5.1.1 Vulnerability Anti-Pattern General Information

Anti-pattern Name: SQL Injection Anti-Pattern
Also known as: Improper Neutralization of Special Elements used in an SQL Command
Frequently Exposed in SDLC: Design Phase
CWE Mapping:

 CWE-ID: CWE-89
 General Name: SQL Injection

Related CWEs [39]:
CWE-ID Name

CWE-90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')
CWE-564 SQL Injection: Hibernate
CWE-566 Authorization Bypass Through User-Controlled SQL Primary Key
CWE-619 Dangling Database Cursor ('Cursor Injection')

CVE Examples: CVE-2016-1393, CVE-2015-0161, CVE-2008-5817

5.1.2 Anti-Pattern Example

System Specifications that may be Vulnerable to this Example
Software System Type Any Web-based system with a database

Coding Language PHP

Example
The scenario described here shows how an SQL injection attack could be carried out, using a user
authentication webpage as an example. User details (name and password) are stored in a database, and
users are required to enter name and password via input fields (Figure.1).

Figure 1 User login web page
DB Scheme
The web page is linked with an “accounts” table in the database. The “accounts” table stores the values
of authenticated users:
Code Description
When users select “View Account Details”, the following query is executed to retrieve the relevant
account details from the database:
$lQuery = "SELECT * FROM accounts WHERE username='". $lUsername ."' AND password='" .
$lPassword . "'";
Misuse
This section describes user input values from two different perspectives: software developers’ (ideal
inputs) and malicious hackers’ (exploitation inputs), and the corresponding outputs.

Ideal Case

Input Description Screen shot

Ideal input
Name: gghhg
Password: 1234

Alphanumeric characters in name
and password fields.

http://cwe.mitre.org/data/definitions/90.html
http://cwe.mitre.org/data/definitions/564.html
http://cwe.mitre.org/data/definitions/566.html
http://cwe.mitre.org/data/definitions/619.html

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 8

Ideal output If the user information is valid, the
user’s account details are
displayed; if not, an error message
(Figure 3) is displayed.

Figure 3 Output screen

Exploitation Case
Input Description Screen shot

Exploitation input
Name: ' OR 1=1 #

Malicious input is
interpreted as SQL
commands rather
than username data.

Exploitation output The SQL statement

constructed by the
program returns all
records from the
database table, rather
than just the intended
record.

Unbalanced Forces: Management of performance and complexity

Unbalanced
Forces

Attack Description Example(C#)

Lack of input
validation

The program is not validating the input
data and the SQL query is constructed
dynamically based on external input
data. This allows the attacker to change
the semantics of the SQL query.

1. Sql.Open();

2. String sqlstring= “ SELECT ccnum” + “ FROM

cust WHERE id=” +Id;

3. SqlCommand cmd= new SqlCommand

(sqlstring,sql);

4. Ccnum=(string)cmd.ExecuteScalar();

Lack of
intercepting filter

An attacker can easily construct
malicious input to inject an SQL query
and get access to critical information
stored in the database, such as
passwords.

1. string userName =

ctx.getAuthenticatedUserName();

2. string query = "SELECT * FROM items WHERE

owner = '" + userName + "' AND itemname = '" +

ItemName.Text + "'";

3. sda = new SqlDataAdapter(query, conn);

4. DataTable dt = new DataTable();

5. sda.Fill(dt);

Typical Causes [14]
 Lack of experience: This is especially common in software developers who lack understanding

of secure coding practices. 

 Lack of Input Validation: The system does not validate external input data coming from all
other sources.

5.1.3 Known Exploitation (Attack Patterns [19])

CAPEC-7, CAPEC-66, CAPEC-108, CAPEC-109, CAPEC-110

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 9

5.2 Pattern

5.2.1 Context

The context, in which the SQL Injection Pattern can be applied is already explained in SQL Injection Anti-
Pattern.

5.2.2 Problem

The system does not correctly escape special characters used in the construction of an SQL query that may
alter the meaning of the query passed to the database. Attackers can easily inject their own SQL code into the
executed query, allowing a wide variety of actions. For example, when SQL queries are used in security
contexts such as authentication, attackers may modify the logic of those queries to gain unauthorized access
by adjusting authentication rules, or deleting or updating database records. SQL injection attacks may target
SQL queries being constructed by application code directly, or queries performed by client- or server-side
stored procedures. Several well-known attacks involve compromising a system by injecting SQL queries
containing malicious code or database content.

5.2.3 Forces

Risk patterns Consequences Context Description

 No sanitisation of input data when building the SQL statement.
 No separation between data and code while building the SQL

statement.
 Not validating SQL statement parameters for boundary checking, data

size and format.
 No internal validation check on database queries and transactions.

Spoofing A system with a database that takes
external user inputs.

SFP Secondary Cluster [40]: Tainted Input to Command
 Mitigation Pattern: Sanitize External Input

Developer must use the input validation strategy to sanitize all external user provided inputs during
the construction of SQL queries and must follow the corresponding language input validation
approaches.

5.2.4 Mitigation

Solution Steps in SDLC [41]
SDLC phase Solution
Design Phase Secure the UML design to validate data supplied by clients for malicious code or malformed content. The data

could be form-based, queries, or XML content.
 Select a vetted library or framework that does not allow this weakness to occur or provides constructs that

make this weakness easier to avoid. Example: using persistence layers such as Hibernate or Enterprise Java
Beans.

Implementation
Phase

 Verify all external inputs before use. Use a pluggable filters approach and apply declarative filters based on
URL. Restrict filter tasks to do pre-processing of all requests and provide validation. Perform sever side
validation, because client side validation is not secure and open to spoofing. Renegotiate trust between users
after a specific interval of time. Log queries performed and identify irregular behaviour.

 Dynamic query construction is generally considered as an insecure development practice, but in some
contexts, it may be unavoidable. In these cases, always perform careful sanitization of query arguments with
correct escaping of special characters within those arguments.

Refactored Solution Name: Sanitizing Input data
Refactored Solution Type [17] :
 Technology Pattern: The J2SE 1.4 regular expression package provides classes that allow

developers to perform regular expression matches. These classes can be used for data validation
prior to its use in query generation.

 Software Pattern: Intercepting filter pattern (CJP2) for data validation.
 Process Pattern: Many programming languages provide dynamic facilities to intercept, scrub and

validate data prior to its use during the construction of queries; for example, the Oracle
DBMS_ASSERT package.

Vulnerable Examples [37]

Vulnerable Example Information

Product Versions Name CVE-ID

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 10

Cisco Cloud Network Automation Provisioner
Releases 1.0 and 1.1.

Cisco Cloud Network Automation Provisioner SQL
Injection Vulnerability

CVE-2016-1393

Vulnerable code/
Attack Method

An attacker could exploit this vulnerability by sending crafted URLs that include SQL statements to a targeted
system. A successful exploit could allow the attacker to modify or delete entries in some database tables.

Misuse of the
vulnerable code

This vulnerability occurred due to a failure to validate user input in constructing SQL queries, in the web
framework of Cisco Cloud Network Automation Provisioner. CNAP could allow an authenticated, remote
attacker to affect the integrity of an affected system by executing arbitrary SQL queries.

Patch (Solution) Cisco has not released software updates that mitigate this vulnerability.

Related Patterns

 Intercepting Validator
 Message Interceptor Gateway
 J2EE Applications Solution
 Message Interceptor
 Interceptor (POSA)

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 11

6 MISSING AUTHENTICATION FOR CRITICAL FUNCTIONS VULNERABILITY

6.1 Anti-Pattern

6.1.1 Anti-pattern General Information

Anti-Pattern Name: Missing Authentication Anti-Pattern
Also known as: Missing Authentication
Frequently Exposed in SDLC: Design Phase
CWE Mapping:

 CWE-ID: CWE-306
 General Name: Missing Authentication for Critical Functions

Related CWEs [39]:
CWE-ID Name
CWE-302 Authentication Bypass by Assumed-Immutable Data
CWE-307 Improper Restriction of Excessive Authentication Attempts

CVE Example: CVE-2002-1810, CVE-2008-6827, CVE-2004-0213

6.1.2 Anti-Pattern Example

System Specification that may be Vulnerable to this Example
Software System Type Web Application

Coding Language Any scripting language capable of interacting with authentication functionality.

Example
The presented scenario indicates how a system could be exploited by malicious hackers due to lack of
authentication, thereby granting access to the critical parts of the system to illegitimate users. As shown
in Figure.1, the login page has two input fields: “Login” and “Password”.

Figure 1 Login web page
Misuse
This section examines login (critical) function inputs from two different perspectives – software
developers’ (ideal inputs) and malicious hackers’ (exploitation inputs) – and the corresponding outputs.

Ideal Case

Input Description Screen Shot

Ideal input According to the developer’s ideal case, the user
requests to log_in function (critical function) of the
system by providing valid username and password in
input fields “Login” and “Password”.

Ideal output As shown in Figure 2, according to the developer’s

ideal output, if the user inputs valid information, the
log_in function successfully permits access to the
system.

Figure 2 Login function output message

http://cwe.mitre.org/data/definitions/302.html
http://cwe.mitre.org/data/definitions/307.html

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 12

Exploitation Case
Input Description Screen Shot

Exploitation
input

However, during the implementation of the log_in
function, the developer forgets to implement user
authentication, allowing the attacker to input any random
value in the input fields “Login” and “Password” instead of
valid user credentials.

Exploitation
output

Web_View of login function shown in Figure 3: after
passing the invalid credentials to the log_in function,
because this function has no authentication mechanism to
validate the user information, the attacker can get access
to the system as a legitimate user.

Figure 3 Login function

Unbalanced forces: Management of Performance, Complexity and IT resources

Unbalanced
forces

Attack Description Example

Lack of
authentication
enforcement

Attacker can simply bypass
authentication and misuse system
resources.

A security-critical system is implemented for testing purposes without user
authentication, and is later used within a production environment without
the lack of authentication implementation being identified during testing.

Typical Causes [14]
 Lack of Architecture, or Non−Architecture Driven Development: This is especially prevalent

with transient development teams, which may lack awareness of the overall architecture of a system
and the rights of the actors within that system.

 Limited Intervention: In iterative projects that extend a legacy system, developers may prefer to
add little pieces of functionality to existing working code, rather than revising the system design for
more effective allocation of rights for the new actors.

 Lack of Authorization Architecture Enforcement: When the implementers are not aware of the
need for authorization enforcement, it does not matter how effective the system design is in terms
of authentication; developers may implement their own authentication approaches, in ways that
are not consistent with the system design.

 Lack of configuration: The system lacks configuration management or compliance with process
management policies.

6.1.3 Known Exploitation (Attack Patterns [19])

CAPEC-225, CAPEC-12, CAPEC-36, CAPEC-40, CAPEC-62

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 13

6.2 Pattern

6.2.1 Context

The context, in which the Missing Authentication for Critical Functions Pattern can be applied is already
explained in the Missing Authentication for Critical Functions Anti-Pattern.

6.2.2 Problem

It is critical to prevent a system or its resources from illegitimate access. A malicious attacker may try to
impersonate as a legitimate user to gain access to system critical resources. This may be particularly serious
if the user impersonated has high level of privileges. This flaw originates mostly during the design phase,
when the software developer neglects to require user authentication before giving access to valuable
resources, and does not make use of a centralized authentication system, or when the developer does not
consider the need to verify user identity from all potential communication channels.

6.2.3 Forces

Risk Patterns Consequences Context Description

 Lack of a centralized user authentication system.
 Lack of identity verification when users access the system or

resources from some communication channels.
 Lack of use of authentication facilities provided by an

implementation framework or operating system.
 Lack of separation between authentication tasks and

authorization tasks.

Spoofing A software system that needs to
protect valuable resources for its
users or their institutions.

SFP Secondary Cluster [40]: Missing Authentication
 Mitigation Pattern: Enforce Actor Management and Authentication

Developer must restrict access of the system only to valid users with preassigned privileges.
The authentication mechanism must be properly enforced throughout the development of the
system.

 Mitigation Pattern: Missing Endpoint Channels Authentication
There may be multiple entry points into the system, such as client and administrator interfaces;
each of these must assure authentication of the user.

6.2.4 Mitigation

Solution Steps in SDLC [39]
SDLC Phase Solution
Requirement Specification Phase Secure UML design includes misuse use-cases, possible attack methods and appropriate security

patterns.
Design Phase Divide the software authentication into guest, normal, privileged, and administrative

parts. Identify and verify which of these parts require a verified user identity, and
implement a centralized authentication capability.

 Avoid executing custom authentication routines. Where possible, use authentication
capabilities as provided by the implementation framework or operating system.

 Provide a well-defined separation between authentication and authorization tasks – in
online systems, authentication and authorization are usually not well separated. If the
system lacks a centralized authentication system, then verification must be explicitly
applied for all interactions with system resources.

Refactored Solution Name: Safeguard legitimate users and critical resources
Refactored Solution Type [17]:

 Technology pattern: Java Authentication Enforces: In J2EE applications, the Java Authentication
Enforces pattern provides a consistent and structured way to handle authentication and verification
of requests across and within web-tier components, and supports a Model-View-Controller (MVC)
architecture without code duplication.

 Process pattern: Ensure that all user interactions with the system pass through a single point of
access, and apply a standard authentication protocol (such as CHAP) to verify the identity of the user.
The use of protocols may be simple or complex, depending on the needs of the application and
domain.

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 14

Vulnerable Example [37]
Vulnerable Example General Information
Product Versions Name CVE-ID
Drupal 6.x before version 6.2. Drupal-Menu_System-Security-Bypass CVE-2008-1729

Vulnerable code/
Attack Method

Attackers can exploit the Menu System in versions of Drupal 6 prior to 6.2, which has incorrect menu settings.
It allows remote attackers to edit the profile pages of arbitrary users and obtain sensitive information from the
tracker, and allows remote authenticated users with administration page view access to edit content types.

Misuse of the
vulnerable code

The Drupal Menu System could allow a remote attacker to bypass security restrictions, caused by improper
restrictions on certain pages. An attacker could exploit this vulnerability to edit user profile pages, edit content
types on administrative pages, and obtain tracker and blog page information when access content permission
is disabled

Patch (Solution) The vendor has released updates that address this vulnerability. Refer to DRUPAL-SA-2008-026 for the patch.

Related Patterns
 Authentication Enforcer
 Single Access Point
 Policy Enforcement Point
 J2EE Applications Solution

o Container Authentication strategy
o Authentication Provider-Based strategy (using third party product)
o JAAS Login Module strategy

7 CONCLUSION

To mitigate vulnerabilities, we anticipate that Vulnerability Anti-Patterns will encourage developers to maintain
a deeper understanding and conscious understanding of vulnerabilities in their future development practices.
We propose a template for anti-patterns, and using this template we are able to produce a catalogue of
Vulnerability Anti-Patterns against 12 vulnerabilities (Table 3 Catalogue of Vulnerability Anti-Patterns), chosen
from the OWASP list of “Top 25 Most Dangerous Software Errors”. These proposed VAPs are currently being
evaluated to measure their effectiveness in providing real-world software developers with awareness of
common software vulnerabilities.
8 REFERENCES

1. Mansourov N., Campara D.: System assurance: beyond detecting vulnerabilities. Elsevier (2010).

2. Shiralkar T., Grove B.: Guidelines for secure coding. (2009).

3. Morgan S.: Is poor software development the biggest cyber threat?. http://www.csoonline.com/article/2978858/application-

security/is-poor-software-development-the-biggest-cyber-threat.html (2016).

4. Hans K.: Cutting edge practices for secure software engineering. 4, 403-408 (2010).

5. Nafees T., Coull N., Ferguson R.I., Sampson A.: Idea-caution before exploitation: The use of cybersecurity domain knowledge

to educate software engineers against software vulnerabilities. , 133-142 (2017).

6. Mansourov N., Campara D.: Why hackers know more about our systems. , 1-21 (2011).

7. Aslam T., Krsul I., Spafford E.H.: Use of a taxonomy of security faults. (1996).

8. Akroyd M.: Anti patterns session notes. (1996).

9. Van Wyk K. R., McGraw G.: Bridging the gap between software development and information security. 3, 75-79 (2005).

10. McGraw G.: Software assurance for security. 32, 103-105 (1999).

11. Ilyin Y.: Can we beat software vulnerabilities?. https://business.kaspersky.com/can-we-beat-software-

vulnerabilities/2425 (2015).

http://www.csoonline.com/article/2978858/application-security/is-poor-software-development-the-biggest-cyber-threat.html
http://www.csoonline.com/article/2978858/application-security/is-poor-software-development-the-biggest-cyber-threat.html
https://business.kaspersky.com/can-we-beat-software-vulnerabilities/2425
https://business.kaspersky.com/can-we-beat-software-vulnerabilities/2425

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 15

12. Martin B., Brown M., Paller A., Kirby D., Christey S.: 2011 CWE/SANS top 25 most dangerous software errors. 7515 (2011).

13. Akroyd M.: AntiPatterns: Vaccinations against object misuse. (1996).

14. Brown W.H., Malveau R.C., McCormick H.W., Mowbray T.J.: AntiPatterns: refactoring software, architectures, and projects

in crisis. John Wiley & Sons, Inc. (1998).

15. Foote B., Yoder J.: Big ball of mud. 4, 654-692 (1997).

16. McGraw G.: Software security: building security in. Addison-Wesley Professional (2006).

17. Steel C., Nagappan R.: Core Security Patterns: Best Practices and Strategies for J2EE", Web Services, and Identity

Management. Pearson Education India (2006).

18. Mansourov D. N.: Software fault patterns: Towards formal compliance points for CWE. (2011).

19. MITRE Corporation: Common attack pattern enumeration and classification. http://capec.mitre.org/index.html (2014).

20. Dimitrov V.: Toward formalization of software security issues. (2016).

21. Black P. E.: SARD: A software assurance reference dataset. (2017).

22. Faily S., Parkin S., Lyle J.: Evaluating the implications of attack and security patterns with premortems. In: Cyberpatterns,

pp. 199-209. Springer (2014).

23. Bunke M.: Software-security patterns: Degree of maturity. , 42 (2015).

24. Fernandez-Buglioni E.: Security patterns in practice: designing secure architectures using software patterns. John Wiley &

Sons (2013).

25. Fahl S., Harbach M., Perl H., Koetter M., Smith M.: Rethinking SSL development in an appified world. , 49-60 (2013).

26. Acar Y., Backes M., Fahl S., Kim D., Mazurek M.L., Stransky C.: You get where you're looking for: The impact of

information sources on code security. , 289-305 (2016).

27. Howard M.: Security development lifecycle (SDL) banned function calls. 2011 (2011).

28. MITRE Corporation: Cve-2016-8820. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8820 (2016) 2017.

29. OWASP: Buffer overflows. https://www.owasp.org/index.php/Buffer_Overflows (2015).

30. Instruction C.: 4009,“National information assurance glossary,” committee on national security systems, may 2003. 4009

(2003).

31. Kissel R.: NIST IR 7298 revision 2: Glossary of key information security terms. 7, 2013 (2013).

32. Mansourov D. N.: Software fault patterns: Towards formal compliance points for CWE. (2011).

33. CERT: Common cyber security language - ICS-CERT - US-CERT. (2015).

34. Julisch K.: Understanding and overcoming cyber security anti-patterns. 57, 2206-2211 (2013).

35. Viega J., McGraw G.: Building Secure Software: How to Avoid Security Problems the Right Way, Portable Documents.

Pearson Education (2001).

36. McGraw G.: Software security. 36, 662-665 (2012).

http://capec.mitre.org/index.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8820
https://www.owasp.org/index.php/Buffer_Overflows

Vulnerability Anti-Patterns: A Timeless Way to Capture Poor Software Practices (Vulnerabilities): Page - 16

37. MITRE Corporation: Common vulnerabilities and exposures (CVE). https://cve.mitre.org/ (2015).

38. Schumacher M., Fernandez-Buglioni E., Hybertson D., Buschmann F., Sommerlad P.: Security patterns. In: Security

patterns: Integrating security and systems engineering. John Wiley & Sons (2013).

39. MITRE Corporation: Common weakness enumeration. http://cwe.mitre.org/ (2015).

40. MITRE Corporation: CWE-888: Software fault pattern (SFP) clusters (2015). Accessed 08 2014.

41. MITRE Corporation: CWE-89: Improper neutralization of special elements used in an SQL command ('SQL

injection'). (2012).

https://cve.mitre.org/
http://cwe.mitre.org/

