
Patterns for text classification (Part 1)

MICHAEL WEISS, Carleton University
SWARUPINI BATHULA, Carleton University
STEVEN MUEGGE, Carleton University
ALI NAZARI, Carleton University

This paper describes patterns for text classification. The patterns address problems related to creating machine
learning models for a corpus of documents and describe common solutions to solve those problems. The target
audience for these patterns includes developers who are familiar with basic machine learning algorithms, but
do not have much experience with applying machine learning to text classification.

CCSConcepts: • Information systems→Content analysis and feature selection; •Computingmethod-
ologies →Machine learning; • Software and its engineering→ Patterns;

Additional Key Words and Phrases: text classification, labeling data

ACM Reference Format:
Michael Weiss, Swarupini Bathula, Steven Muegge, and Ali Nazari. 2019. Patterns for text classification (Part
1). 1, 1 (October 2019), 9 pages. https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

1 INTRODUCTION
This paper is the first part of a pattern language for text classification. The patterns will address
problems related to creating machine learning models for a corpus (see glossary at the end) of
documents and describe common solution to solve those problems. The focus of the patterns in
this paper is on feature extraction. Unlike numerical or categorical features often used in
machine learningmodels, we need to preprocess textual data before we can use them as features.
For example, we can extract features from a document by determining the frequency of the words
in the document, or by looking for certain key phrases and words associated with sentiments.

Fig. 1 shows a map of the patterns that focus on feature extraction.1 Arrows between the patterns
indicate the order in which the patterns are typically applied.
The first step in creating a model from a corpus of documents is, typically, to separate each

document into tokens (for example, words or phrases) using Tokenization. Using Bag of Words, we
can then count the frequency of the tokens and obtain a set of potential features. Often, there will
be too many features, and we need to reduce their number using a technique like Rank. We can
also improve the output of Tokenization by Normalizing the tokens, removing Stopwords that are
not relevant for the analysis, or by combining groups of consecutive tokens into N-grams.

1The patterns Normalization, Stopwords, and N-grams will be described in a future paper.

Authors’ addresses: Michael Weiss, Carleton University, Ottawa, Canada, michael_weiss@carleton.ca; Swarupini Bathula,
Carleton University, Ottawa, Canada, SwarupiniBathula@cmail.carleton.ca; Steven Muegge, Carleton University, Ottawa,
Canada, smuegge@sce.carleton.ca; Ali Nazari, Carleton University, Ottawa, Canada, ali.nazari@carleton.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
XXXX-XXXX/2019/10-ART $15.00
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

, Vol. 1, No. 1, Article . Publication date: October 2019.

https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

2 M. Weiss et al.

Tokenization

Bag of words Stopwords

Rank

N-gramsNormalization

Fig. 1. Pattern map

The target audience for these patterns includes developers who are familiar with basic machine
learning algorithms, but do not have much experience with applying machine learning to text
classification. The “you” in the pattern description refers to those developers. The description
follows the Alexandrian format: this means they consist of a context, followed by problem and
forces, solution, consequences, known uses, and related patterns (visually separated by ∗ ∗ ∗’s).

2 EXAMPLE
To explain the use of the patterns, we will use a running example in which we create a model that
classifies issues in the bug tracker of an open source project by their type. Each entry in a bug
tracker contains information about an issue, such as the title of the issue, its status, the date when
the issue was created/modified, the developer assigned to the issue, a description of the problem,
and a description of the solution, if the issue has already been resolved.

Many projects do not categorize issues. In order to be able to determine the likely type of an issue
for such a project, we want to train a model on a set of issues from a project that does organize its
issues by type. Fortunately, several large open source projects are quite diligent about labeling issues.
As an example, we will be using the bug tracker of the Chromium project (bugs.chromium.org).

Suppose, we want to be able to separate security-related from non-security-related issues. To
identify security bugs, we can search for bugs within All issues that have the tag label=security. To
obtain a list of non-security bugs, we can simply search for bugs that are not tagged as security
bugs by using the search term -label=security. By scraping the issue tracker site, we can obtain a
sample of security-related and non-security-related issues, which gives us labeled data to train our
model. You may also want to limit your search to a time range and by bug status.

Table 1 shows examples of security-related issues from the Chromium project.

ID Summary
798173 Use-of-uninitialized-value in SkMatrix::postConcat
798163 Security: privileged XSS in chrome-devtools://devtools/remote with old

frontend (insufficient validation of remoteFrontendUrl)
798150 Crash in v8::internal::Invoke

Table 1. Examples of security-related issues (just ID and summary are shown)

Table 2, by comparison, shows examples of non-security-related issues.

, Vol. 1, No. 1, Article . Publication date: October 2019.

bugs.chromium.org

Patterns for text classification (Part 1) 3

ID Summary
798174 GLSL bug: s=vec2(1) , m=mat2(s,s) give wrong result
798172 Google Cloud Print should select the correct Google Drive account de-

pending on the Gmail account
798169 Extension APIs should be also exposed under ‘browser.*’ to match the

WebExtensions spec

Table 2. Examples of non-security-related issues (just ID and summary are shown)

We want the machine learning model to be able to classify a new issue into either one of those
two categories based on just the summary of the issue. Of course, it is possible to include other
features, for example, the name of the developer associated with the issue may be a good indicator of
whether or not the issue is security-related, given the different level of security expertise developers
have. However, we also want to create a model that we can apply to a different corpus of issues
from another project. Thus, we do not want to use features that are project-specific.

3 TOKENIZATION
You are creating a machine learning model for a corpus of documents. Before you can extract
features from the documents, you need to find the tokens inside each document.

∗ ∗ ∗

You need to separate the text of a document into its component tokens.
Usually, tokens are separated by spaces or punctuation.
However, sometimes it can be difficult to define what a token is, for example, the “words” in

source code may contain numbers or capitalized letters.
∗ ∗ ∗

Separate the text by delimiters or patterns.
In many natural languages like English or German, words are separated by spaces. In this case,

we can use a space as a delimiter to split the text into tokens. Sometimes, more complex heuristics
are required, for example, to extract numbers from a document or split variable names in a source
code document into their components. In this case, a token can be defined by a pattern or regular
expression. For example, the regular expression \d+ matches whole numbers in the text.2

As a straightforward example, consider the following document:
Google Cloud Print should select the correct Google Drive account

Splitting the text on the spaces produces this list of tokens:
Google, Cloud, Print, should, select, the, correct, Google, Drive, account

A more complex example is a document that contains text, numbers and special symbols:
GLSL bug: s=vec2(1) , m=mat2(s,s) give wrong result

In this case, we want to use a pattern that extracts all text, but discards numbers and special
symbols. The regular expression [a-zA-Z]+ produces:

GLSL, bug, s, vec, m, mat, s, s, give, wrong, result

2To learn more about regular expressions or to experiment with specific regular expressions, there are various online
resources like regular expressions 101 (https://regex101.com) with tutorials and editors for regular expressions.

, Vol. 1, No. 1, Article . Publication date: October 2019.

https://regex101.com

4 M. Weiss et al.

Sometimes, though, you want to retain special symbols. For example, for analyzing source code,
symbols like + or = may carry special significance and you want to represent them by a token.

∗ ∗ ∗

Subsequent steps of analysis have access to the significant components of the text.
Some information is lost when converting the text into tokens (for example, punctuation or

whitespace could be significant to some types of analyses).
∗ ∗ ∗

Tokenization is a well-documented technique [Weiss et al. 2015]. A simple tokenizer can be
created by using the split function provided by many string processing libraries to break the text
on whitespaces. Yet, the tokens created in this simple manner will include punctuation marks.
The StandardTokenizer in Apache Solr splits text into its component words using punctuation

symbols [Ingersoll et al. 2013]. OpenNLP’s english.Tokenizer will also account for the grammatical
roles words play [Ingersoll et al. 2013]. For example, it will split can’t into can and n’t.
In Orange [Demšar et al. 2013], an open source machine learning and data visualization plat-

form that has gained popularity among educators and practitioners (https://orange.biolab.si), text
documents can be pre-processed by applying regular expressions and various transformations (for
example, changing the text to lower-case), as shown in Fig. 2.

Fig. 2. Defining a tokenization pattern and transformations in Orange

∗ ∗ ∗

Generally, tokenization is combined with Normalization to remove arbitrary differences between
the tokens. For example, you usually want tokens to be lower-case.
Common words like “the” are often not relevant for further analysis. Use Stopwords to exclude

such tokens, as well as other uninformative tokens from the documents.
Bag of Words is typically used next to convert a set of tokens into features.
To identify what should be included in a token (for example, is punctuation significant), validate

the tokenization pattern by Testing it on a Subset3 of the corpus.

4 BAG OFWORDS
You are creating a machine learning model for a corpus of documents. You used Tokenization to
remove punctuation and separate the tokens in each document.

∗ ∗ ∗

You need to extract features from the tokens in a document.
Features should represent salient aspects of the document.
Features should allow the model to distinguish between documents.

3Test on a Subset will be described in the future as one of several general patterns for developing machine learning models.

, Vol. 1, No. 1, Article . Publication date: October 2019.

https://orange.biolab.si

Patterns for text classification (Part 1) 5

∗ ∗ ∗

Count the frequency with which each token appears in the text.
The outcome is a table of the frequencies of the tokens in the document. This is also referred

to as a “bag” of words,4 a collection in which each tokens can occur multiple times. Each token
becomes a potential feature in the machine learning model. Its frequency is the value of the feature.
Formally, the table of frequencies can be represented as a vector.

Consider the following example document:
This site is insecure and is harmful to visit error

The bag-of-words representation for this document is shown in Table 3.

Word Frequency
this 1
site 1
is 2
insecure 1
and 1
harmful 1
to 1
visit 1
error 1

Table 3. Bag-of-words representation

The basic bag-of-words approach equates the importance of each token with the frequency with
which it occurs in a document, also known as its term frequency. However, this only measures
the local importance of a token. A more sophisticated approach would be to also account for the
frequency of each token across the corpus of documents.
Tokens that appear in most of the documents should not be given as much weight as tokens

that are used only in only some of the documents. Such “rare” tokens are better for distinguishing
documents from each other. Therefore, the term frequency is typically weighted with the inverse
document frequency, which measures how relatively unique each token is in the corpus.

∗ ∗ ∗

A bag of words can be considered a summary of the contents of the document.
However, neither word order nor grammar is preserved by the features.

∗ ∗ ∗

The representation of a document as a bag of words was first used in the area of information
retrieval [Weiss et al. 2015]. In this representation, each token or word is associated with its
frequency in the document. The CountVectorizer in Scikit-learn5 converts a collection of documents
into a matrix of token frequencies. Each document is represented by a row in this matrix.

Fig. 3 shows how a bag-of-words model can be defined in Orange [Demšar et al. 2013]. Here, we
count the term frequency in a document and weigh it with the inverse document frequency.

∗ ∗ ∗

4While the bag can contain any kind of token, historically, the name “bag of words” has become common usage.
5https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

, Vol. 1, No. 1, Article . Publication date: October 2019.

6 M. Weiss et al.

Fig. 3. Defining a bag-of-words model in Orange

A bag of words creates a feature per unique token in the document. This can results in a large
number of features. To reduce the number of features consider Rank.

Token position is lost in a bag of words. Sometimes you want to maintain it. To capture more of
the context in which each token appears in the document consider N-grams.
N-grams is also useful when groups of tokens are semantically meaningful. For example, the

words buffer and overflow often co-occur and combined form the concept buffer overflow.

5 RANK
You are creating a machine learning model for a corpus of documents. You used Bag of Words to
extract features from the documents, but are left with a large number of features.

∗ ∗ ∗

You need to reduce the number of features.
The more features there are, the more documents are needed to train the model.
Not all features are equally suitable for distinguishing documents from one another.
However, too few features will make the model unspecific.

∗ ∗ ∗

Rank the features by their significance and focus on the top-ranked ones.
A common method for ranking features is to rank them by information gain. The greater the

information gain of a feature, the better suited it is to distinguish between different classes of
documents. You therefore want to choose the features with the greatest information gains. Other
methods include statistical measures such as the correlation and chi-squared statistics.

∗ ∗ ∗

Focusing on the top-ranked features reduces the number of documents needed in your training
set and reduces the computational effort it takes to train the model.

Excluding less significant features will make the model easier to understand.
To determine the right number of features, you need to experiment with different numbers of

features to include and assess their impact on the quality of the model.
∗ ∗ ∗

Ranking features according to their ability to predict the class of a document is a common
technique for feature selection [Weiss et al. 2015]. The SelectKBest6 class in Scikit-learn selects the
k best features given a scoring function. Scikit-learn implements a range of scoring functions.

Fig. 4 shows how a ranking of features can be defined in Orange [Demšar et al. 2013]. Here, we
rank the features by information gain and chi-squared. We can compare the impact of each scoring
function and select which one we want to apply to the list of features.

∗ ∗ ∗

6https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html

, Vol. 1, No. 1, Article . Publication date: October 2019.

Patterns for text classification (Part 1) 7

Fig. 4. Defining a ranking of features in Orange

Eliminating features by ranking assumes that features are not interdependent: interdependent
features may rank low individually, but could be significant when used in combination.

6 EXAMPLE RESOLVED
Let’s apply the patterns to the example of classifying issue into security-related and non-security-
related issues. The solution involves two stages (this paper focuses on the first stage):
• Identify features for training the machine learning model.
• Select a machine learning algorithm that best fits the initial corpus of issues (training data)
and evaluate its performance on a corpus of issues from another project (test data).

The corpus of issues contains both security-related and non-security-related issues scraped from
the Chromium project website. Assume there you have collected 1,000 issues of each type and that
the training data contains three fields for each issue: ID, summary, and type of issue.

The first step in identifying the features for the machine learning model is to import the corpus
and Tokenize each issue summary. This is accomplished by the first three steps (from the left) in the
Orange workflow in Fig. 5. Corpus loads the issues, Select Columns defines the type as the target
variable to be predicted, and Preprocess Text separates the summaries into tokens.

Subsequently, Stopwords are removed from the list of tokens that would otherwise limit the
generalizability of the model. These include common English words and words like android,
chrome, and google that would only be used frequently in describing issues for the Chromium
project. Next, the tokens are Normalized by converting them to lower case and stemming them to
common roots. To identify common combinations of tokens, we also opted to create N-grams of up
to two tokens. All of this is accomplished as part of the Preprocess Text step.

The next step creates a Bag of Words from the preprocessed summaries. To emphasize distinctive
tokens, we alsoweight their frequencies by their inverse document frequency. The features identified
in this way are then Ranked by information gain, and we cut off after the first 100 features.
Fig. 6 shows a list of the 10 top-ranked features. As one would expect, keywords like secur,

and vulner, and cve7 used in a summary are indicative of security-related issues, but so are word
combinations like buffer overflow (a common source of vulnerabilities).
These features can then be used to train and evaluate different machine learning algorithms.

Here we compare Naïve Bayes (commonly used for text classification) and Random Forest.

7The term cve refers to Common Vulnerabilities and Exposures.

, Vol. 1, No. 1, Article . Publication date: October 2019.

8 M. Weiss et al.

Fig. 5. Orange workflow for the example

Fig. 6. Ranked list of features for classifying issues

ACKNOWLEDGMENTS
I want to thank my shepherd Cecilia Haskins for her generous feedback and subtle nudges.

GLOSSARY
Categorical feature Categorical features have discrete values, for example, a feature sexwith

values male and female. They can also be created from numerical features by binning.
Corpus In text analysis, a collection of documents is often referred to as a corpus.
Feature A characteristic of the training data used to create a machine learningmodel. Features

often do not exist in the raw data, but need to be extracted from it.
Feature extraction The process of extracting features from the training data.
Information gain Information gain is a statistical measure of how much information a feature

provides about a class, that is, how much entropy or uncertainty it removes.
Model In this paper, the term “model” refers to a machine learning model. A machine learning

model is the outcome of training a machine learning algorithm such as Naïve Bayes.

, Vol. 1, No. 1, Article . Publication date: October 2019.

Patterns for text classification (Part 1) 9

Numerical feature Numerical features are features like size or duration. Categorical fea-
tures can be converted into numerical features through one-hot encoding.

Token A token is the unit of interest in a text document. It is typically a word, but could be a
phrase, a whole sentence, or any text that matches a specified pattern.

REFERENCES
J Demšar, T Curk, A Erjavec, Č Gorup, T Hočevar, M Milutinovič, M Možina, M Polajnar, M Toplak, A Starič, M Štajdohar, L

Umek, L Žagar, J Žbontar, M Žitnik, and B Zupan. 2013. Orange: Data Mining Toolbox in Python. Journal of Machine
Learning Research 14 (2013), 2349–2353.

G S Ingersoll, T S Morton, and A L Farris. 2013. Taming Text: How to Find, Organize, and Manipulate It. Manning.
S M Weiss, N Indurkhya, and T Zhang. 2015. Fundamentals of Predictive Text Mining (2 ed.). Springer.

, Vol. 1, No. 1, Article . Publication date: October 2019.

	Abstract
	1 Introduction
	2 Example
	3 Tokenization
	4 Bag of Words
	5 Rank
	6 Example resolved
	Acknowledgments
	References

