
Elephants,	Patterns,	and	Heuristics:	Page	 1	

Elephants,	Patterns,	and	Heuristics	
	
Rebecca	Wirfs-Brock	and	Christian	Kohls	
	
Abstract	
This	essay	discusses	the	challenge	we	face	when	we	try	to	capture	the	wholeness	of	
design	solutions.	It	is	argued	that	patterns	are	observable	phenomena	of	solutions.	
To	represent	these	phenomena,	a	pattern	author	needs	to	generalize	and	omit	
information.	Heuristics	play	a	central	role	to	fold	and	unfold	information	in	the	
design	process.	Thus,	they	can	explain	how	an	experienced	designer	can	generalize	
from	existing	solutions;	and	they	can	explain	how	an	experienced	designer	can	
unfold	and	generate	new	solutions	based	on	patterns.	As	this	folding	and	unfolding	
of	information	and	knowledge	seems	to	be	quite	an	abstract	concept,	we	have	
chosen	to	make	our	point	by	discussing	elephants.	Like	patterns,	elephants	are	an	
observable	phenomenon,	a	pattern	in	nature.	Many	different	descriptions,	
representations	and	accounts	of	elephants	exist.	Many	people	would	claim	to	know	
what	an	elephant	is	while	they	have	actually	only	little	or	limited	knowledge	about	
elephants.	This	analogy	helps	to	understand	how	at	the	same	time	we	know	and	do	
not	know	what	a	thing	is.	

1.	Introduction	
Patterns	are	recurrent	phenomena	that	can	be	found	in	all	domains	of	design.	We	
can	directly	observe	and	experience	these	phenomena	both	as	designers	and	users.	
However,	very	often	it	is	very	difficult	to	find,	generalize,	explain	and	understand	
these	phenomena.	The	literature	genre	of	pattern	descriptions	tries	to	capture	
patterns	by	not	only	discussing	the	solution	form.	Context,	problem,	forces,	solution	
and	consequences	are	required	perspectives	that	should	be	taken	on	each	pattern.	
This	holistic	analysis	is	based	on	Christopher	Alexander’s	design	theory,	as	outlined	
in	A	Pattern	Language	[AISJFA77],	The	Timeless	Way	of	Building	[Alex79],	and	other	
works.	
	
Yet	little	discussion	takes	place	about	the	challenges	all	authors	and	pattern	
researchers	face	when	they	try	to	preserve	the	wholeness	of	the	observed	solution	
phenomena.	As	each	pattern	is	a	generalization,	authors	have	to	skip	details.	They	
have	to	pack	their	available	information	in	a	way	that	it	is	useful	to	other	designers.	
And	other	designers,	to	use	particular	patterns	need	to	be	able	to	unfold	new	
solutions	based	on	both	on	the	pattern	descriptions	and	an	understanding	of	their	
design	context.	This	is	where	personal	design	heuristics	are	required.	Patterns	do	
not	provide	all	details	because	each	situation	is	different.	To	unfold	a	specific	
solution	from	a	general	solution	requires	implicit	knowledge,	design	experience,	
and	the	ability	to	make	a	series	of	tactical	design	decisions	based	on	personal	design	
heuristics.	
	



Elephants,	Patterns,	and	Heuristics:	Page	 2	

The	level	of	detail	a	pattern	descriptions	provides	depends	on	the	target	audience.	
Experts	have	a	huge	set	of	personal	design	heuristics.	Hence,	they	are	capable	of	
unfolding	new	solutions	from	general	descriptions.	Novices,	on	the	other	hand,	need	
much	more	guidance.	Thus,	pattern	descriptions	written	for	them	need	to	be	very	
specific	–	up	to	an	extent	where	they	describe	example	solutions	rather	than	a	
generative	pattern.	
	
The	information	we	have	and	the	information	we	provide	about	patterns	is	
therefore	a	critical	factor.	Likewise,	the	representation	of	information	and	our	
research	tools	for	gathering	this	information	are	critical.	
	
And	this	is	where	elephants	enter	the	stage.	Like	patterns,	elephants	are	phenomena	
in	the	world.	We	can	observe	them,	we	think	we	know	a	good	deal	about	them,	and	
there	are	many	different	ways	to	describe	and	represent	elephants.	Yet	there	are	
many	misunderstandings,	myths	and	missing	information	about	elephants!		
	
If	we	understand	the	challenges	(and	solutions)	in	capturing,	communicating	and	
using	knowledge	about	elephants,	we	can	get	some	insights	about	how	to	better	
capture	and	share	patterns.	Because	elephants	are	a	pattern	in	nature.	And	
everything	we	can	say	about	the	science	on	elephants,	we	can	say	about	research	on	
patterns.	Thus,	in	this	paper	we	want	to	talk	a	lot	about	elephants.	
	
We	will	first	discuss	the	“elephants	in	the	room”	in	the	pattern	community.	That	is	
we	will	address	common	challenges	this	community	is	aware	of	but	often	ignores.		
Then	we	will	use	the	phenomena	of	elephants	to	illustrate	how	descriptions	and	
representations	can	be	used	to	share	knowledge	in	different	ways.	We	will	draw	
analogies	between	accounts	about	elephants	and	accounts	on	patterns.		
	
As	we	have	to	reduce	the	information	when	we	describe	complex	phenomena	(both	
in	nature	and	design),	we	discuss	what	we	learn	from	asking	the	right	questions	and	
how	heuristics	fill	the	knowledge	gap.		
	
Finally,	we	will	discuss	how	stories	are	often	used	to	distill	the	wholeness	of	a	
phenomenon	into	a	textual	form.	However,	we	will	also	see	how	stories	can	be	
misleading	and	build	myths.		

2.	The	Elephant	in	the	room	
Various	meanings	of	“elephant	in	the	room”	are:		

• An	obvious	problem	
• An	inconvenient	truth	
• Something	that	is	taboo	
• Something	deliberately	ignored	
• Something	that	is	obvious	(so	obvious	to	everyone	that	we	don’t	mention	it)	

	



Elephants,	Patterns,	and	Heuristics:	Page	 3	

We	believe	that	the	elephant	in	our	PLoP	room	has	all	these	meanings.	Nobody	is	
talking	about	the	elephant	in	the	room.	Or	if	they	are,	they	aren’t	speaking	very	
loudly.	
	
We	hope	to	address	some	of	these	meanings	of	elephant	in	the	room	and	offer	some	
paths	for	patterns	authors,	educators,	and	software	developers	to	explore.	

2.1	Let’s	talk	about	the	elephant	in	the	room	
Let’s	start	out	by	stating	an	obvious	problem:	The	way	experts	absorb	
information	differs	from	novices.	Historically,	software	patterns	were	written	for	
practitioners	and	not	novice	developers.	Ironically,	it	is	the	GOF	patterns,	written	by	
experts	for	experienced	developers	that	were	and	still	are	taught	to	novices.	If	we	
want	software	patterns	to	have	a	lasting	impact,	they	need	to	appeal	to	a	broader	
audience.	There	needs	to	some	way	that	a	broader,	more	useful	number	of	software	
patterns	are	coherently	organized	and	easily	found.	
	
Here’s	another	obvious	problem:	Researchers	find	that	experts,	while	they	may	
not	agree	with	each	other,	are	logically	self-consistent	in	their	individual	opinions.	
Patterns	written	by	single	individuals	or	a	tight-knit	group	of	collaborators	are	
cohesive.		Patterns	from	different	corners	are	not.	Experts	can	absorb	differences	of	
style	and	substance	with	some	effort	and	even	reconcile	conflicting	patterns’	advice;	
this	is	a	much	harder	task	for	those	new	to	patterns	or	to	software	design.	
	
An	inconvenient	truth:	We	mostly	write	patterns	for	people	like	ourselves	or	
whom	we	think	are	like	us.		This	limits	our	patterns’	reach	and	impact.	
	
Something	that	is	taboo:	The	body	of	software	patterns	over	time	has	become	
disorganized,	stale,	outdated,	and	largely	irrelevant	to	many	software	developers.	
While	new	patterns	are	being	written,	they	are	largely	ignored	unless	they	are	about	
a	popular	trending	technology	(e.g.	microservices,	event-sourced	architectures).	
When	these	new	patterns	are	published	they	aren’t	located	within	the	overall	pre-
existing	software	pattern	landscape.	Consequently,	they	are	disconnected	from	prior	
work.	There	is	no	overall	coherence	to	the	large	body	of	software	patterns.	
Furthermore,	there’s	a	wealth	of	useful,	specific,	concrete	design	advice	being	
written	and	communicated	to	broad	audiences	that	are	not	written	as	patterns.	If	
we	want	to	encourage	pattern	literacy,	relevancy,	and	have	a	long-term	impact,	
something	needs	to	change.	
	
Another	taboo:	The	word	pattern	may	be	the	wrong	word	for	what	we	write.	Most	
people	(outside	of	software)	think	of	patterns	as	being	something	different	than	
what	we	create	when	we	write	our	software	patterns.	
	
Merriam	Webster	lists	several	meanings	for	pattern.	The	first	definition	is	“a	form	or	
model	proposed	for	imitation,	an	exemplar.”	The	second	definition	is	“something	
designed	or	used	as	a	model	for	making	things.”	While	our	software	patterns	



Elephants,	Patterns,	and	Heuristics:	Page	 4	

often	provide	simple	solutions,	are	they	exemplars	or	models	for	makers?	Or	
are	they	something	less,	e.g.	gists	or	essences?	
	
Something	deliberately	ignored:	Different	audiences	for	software	design	patterns	
need	different	ways	to	absorb,	comprehend,	and	understand	how	to	apply	them.	
	
Something	obvious:	Simply	reading	patterns	and	learning	pattern	names	doesn’t	
ensure	that	the	reader	can	apply	them	appropriately	(if	at	all).	Moreover,	learning	
about	patterns	may	be	counterproductive	to	learning	how	to	exercise	design	
judgment.	

2.2	Elephants	are	under	stress	
“Elephant	populations	in	India	and	also	in	the	whole	of	Asia	are	under	severe	stress.	
The	captive	ones	are	rendered	jobless	due	to	changes	in	the	mode	of	transport	and	
lifestyle	of	people.	The	ones	in	the	wild	are	also	no	better	off,	as	the	forests	are	
shrinking.”	—Mark	Shand		
	
Are	software	patterns	under	stress?	Most	certainly.	While	captive	(written	patterns)	
may	have	initially	have	been	useful,	over	time	many	have	been	rendered	irrelevant	
due	to	changes	in	technology	and	in	the	way	we	design	and	build	software1.	In	
general,	people,	don’t	read	about	patterns	in	books	in	order	to	learn	how	to	design.	
They	may	find	design	patterns	in	online	sources	or	be	exposed	to	the	idea	of	
patterns	at	school,	but	they	find	design	advice	where	they	will	(and	don’t	expect	to	
read	patterns	in	order	to	learn	about	how	to	design	software).	
	
Patterns	written	in	the	wild	(those	which	have	not	been	reviewed	at	PLoP	writers’	
workshops)	may	be	no	better	off	than	the	pattern	community’s	carefully	
shepherded,	tame	patterns.	While	wild	patterns	may	be	found	by	subcultures	of	
developers.	Regardless	of	their	origins,	both	kinds	of	patterns	are	often	not	
maintained	in	a	sustainable	way	that	allows	for	their	growth	and	evolution	based	on	
feedback	from	a	community	of	users.	

2.3	Thesis	
As	we	have	seen,	patterns	and	elephants	share	a	lot	in	common.	In	fact,	elephants	
are	natural	instances	of	patterns	in	our	world.	Each	specific	elephant	exemplifies	the	
general	pattern	of	ELEPHANT.	However,	as	we	shall	see,	even	for	such	a	common	
category	there	are	a	lot	of	challenges	to	getting	a	sound	picture	of	what	elephants	
are	and	how	to	treat	them.	If	we	face	such	challenges	for	elephants,	how	can	we	
believe	that	pattern	mining	for	the	dynamic	field	of	software	development	is	easier?	
	
																																																								
1	One	exception	of	note,	that	we	are	aware	of,	is	the	pattern	collection	from	Domain-
Driven	Design	[Evan],	where	the	initial	design	patterns	written	by	Eric	Evans	have	
been	embraced	and	extended	by	a	domain	driven	design	community.	These	early	
patterns	have	been	refreshed	with	additional	patterns	and	heuristics	for	modeling	a	
domain	as	well	as	designing	software	systems	using	event-sourced	architectures.	



Elephants,	Patterns,	and	Heuristics:	Page	 5	

Our	discussion	of	elephants	can	show	some	obvious	shortcomings	about	any	
attempt	to	get	an	objective	account	about	things	in	the	world	and	tell	their	story.	
However,	we	will	also	see	that	despite	all	these	challenges,	we	all	share	a	reasonably	
good	understanding	of	what	elephants	are,	and	that	indeed,	there	are	good	stories	
about	elephants.	
	
Everything	we	consider	about	elephants	in	the	next	sections	can	be	said	about	
patterns,	and	more	generally,	to	wider-ranging	software	design	heuristics	not	
documented	as	patterns,	as	well.	We	will	reflect	about	different	ways	to	depict	and	
describe	elephants.	We	will	discuss	representations	in	general	and	the	amount	of	
information	that	is	given	or	missing.	We	will	learn	about	myths,	and	expert	and	
novice	knowledge.	We	will	see	why	stories	help	to	communicate.	And	we	will	draw	
some	practical	implications	from	this	discourse	at	the	end	of	this	paper.	

3.	Sharing	expertise		
If	we	want	to	share	our	expertise,	we	need	to	communicate	our	knowledge	about	
the	phenomenon	in	some	way.	This	is	easier	said	than	done.	We	all	(think	to)	know	
what	an	elephant	is.	But	can	we	describe	in	a	few	words	the	nature	of	an	elephant?		

3.1	Describing	an	elephant	
Ask	different	people,	and	they	will	give	you	different	descriptions	–	yet	all	these	
descriptions	are	based	on	the	same	animals	we	label	as	elephants.	You	can	describe	
an	elephant	with	a	few	words,	a	sentence,	a	paragraph,	a	full	page	or	even	in	a	book.	
The	German	Wikipedia	article	has	50,000	characters;	the	English	Wikipedia	article	
has	100,000	characters.	Yet	both	articles	write	about	the	same	phenomenon.	And	
there	are	books	about	elephants	that	number	in	the	several	hundreds	of	pages.	
	
Likewise,	a	software	pattern	can	be	described	on	a	single	page—sometimes	even	just	a	
single	card—or	on	several	pages2.	It	is	uncommon,	however,	to	find	books	that	cover	
a	single	pattern.	For	some	social	patterns,	such	as	pedagogical	patterns,	sometimes	
there	are	books	that	discuss	one	pattern	in	full	length.	For	example,	the	pattern	of	a	
learning	portfolio	or	the	pattern	of	brainstorming	have	been	described	in	typical	
pattern	style	as	well	as	in	dedicated	books	[Koh14].	
	
However,	even	if	you	go	into	lengthy	details,	each	description	of	elephants	is	
incomplete.	One	of	the	reasons	for	this	is	that	there	are	many	implicit	structures,	
which	are	very	difficult	to	describe	without	seeing	or	even	sensing	on	multiple	
channels	a	real	elephant.	

																																																								
2	And,	in	the	case	of	software	patterns,	not	only	are	pattern	authors	challenged	to	
simply	describe	the	observed	phenomenon;	they	also	attempt	to	describe	how	to	
create	a	reasonable	representation	of	that	phenomenon,	e.g.	a	stylized	or	exemplary	
design	for	that	software	pattern.	



Elephants,	Patterns,	and	Heuristics:	Page	 6	

3.2	Depicting	an	elephant	
Most	descriptions	of	elephants	are	supported	by	visual	representations.	An	image	
implicitly	shows	details	that	verbal	descriptions	can	hardly	cover.	For	example,	the	
spatial	relationship	of	nose,	eyes,	ivory	teeth,	are	shown	as	well	as	their	relative	
sizes.	
	
If	we	see	a	photograph	of	an	elephant	that	should	represent	the	species	of	elephants	
in	general,	do	we	see	an	example	of	an	elephant	or	do	we	see	the	pattern	of	
elephants?	The	answer	is	both.	Obviously	a	photograph	always	depicts	a	specific	
exemplar	of	an	elephant,	an	exemplification	of	the	general	pattern.	However,	we	
also	see	the	pattern	itself.	A	pattern	manifests	itself	in	each	of	its	instances.	Hence	
each	instance	shows	the	pattern.		
	
Sometimes	it	is	hard	to	discriminate	this	pattern,	because	real	things	in	the	world	
are	often	manifestations	of	many	overlapping	patterns.	It	can	be	difficult	to	
distinguish	the	essence	of	the	pattern	and	untangle	it	from	the	surrounding	context.	
In	software	design,	we	often	see	classes	that	participate	in	different	patterns	with	
different	roles	in	each	of	these	patterns	[BHS].	Pattern	descriptions,	however,	focus	
on	one	particular	pattern.	Therefore,	the	essential	structure	of	a	single	pattern	is	
isolated	and	an	abstract	representation	is	chosen.	
	
Instead	of	showing	a	specific	exemplar	of	an	elephant,	we	can	show	a	drawing	of	an	
elephant.	Unique	features	of	a	specific	exemplar,	such	as	shades	of	skin	color	or	
variation	in	ear	size,	may	be	left	out	in	such	an	abstract	representation.	If	we	can	
clearly	perceive	an	elephant,	we	have	preserved	its	essential	structure.	In	this	case,	
the	abstract	representation	still	manifests	the	pattern.		Of	course,	the	drawing	is	not	
an	elephant	itself,	but	photographs	are	also	not	the	elephant.	Representations	that	
are	too	abstract,	however,	do	not	depict	the	pattern	anymore:	if	you	draw	a	box	to	
represent	an	elephant,	then	the	pattern	is	no	longer	discernible.3	
	
An	alternative	to	an	abstraction	is	to	use	a	model.	A	model	is	a	good	and	valid	
instance	that	does	not	obfuscate	the	core	structure	or	the	essence	of	a	pattern	
[Good].	For	example,	to	represent	an	elephant,	a	picture	(or	3D	model)	should	show	
an	archetypical	exemplar	of	an	elephant.		
	
Likewise,	 the	 class	 diagrams	 in	 the	 documentation	 of	 software	 patterns	 are	models	
rather	 than	 abstractions,	 because	 the	 more	 universal	 structure	 of	 a	 pattern	 is	
manifested	in	the	concrete	class	diagram	of	a	pattern.	For	example,	the	class	diagram	
of	 the	 OBSERVER	 pattern	 has	 the	 same	 structural	 quality	 as	 a	 class	 diagram	 of	 an	
actual	 implementation;	 the	 details	 change—such	 as	 method	 names,	 parameter	

																																																								
3	If	you	think	to	label	that	box,	“Elephant,”	then	you	are	introducing	a	more	abstract	
way	to	represent	an	elephant;	one	without	an	obvious	correspondence	to	its	
physical	manifestation.	



Elephants,	Patterns,	and	Heuristics:	Page	 7	

types,	 number	 of	 methods	 etc.—but	 the	 core	 structure	 is	 preserved. 4 	The	
interactions	between	the	pattern	elements	are	also	universal	between	all	instances	
of	a	proper	OBSERVER.		

3.3	Representations	and	our	perceptions	of	them	
Whether	you	describe	or	depict	an	elephant,	each	representation	remains	
incomplete.	Rudolph	Arnheim,	in	Visual	Thinking,	explains	three	different	attitudes	
toward	perceiving	objects.	These	perceptual	attitudes	also	apply	to	seeing	elephants	
and	patterns.	For	purposes	of	this	essay	we	will	call	these	ways	of	perceiving	
“contextually	muddled,”	“contextually	isolated,”	and	“contextually	integrated.”	
	
A	contextually	muddled	perception	is	when	an	observer	“perceives	the	contribution	
of	the	context	as	an	attribute	of	the	object	itself.	…	[The	observer]	sees,	more	or	less,	
what	a	photographic	camera	records,	either	because	he	stares	restrictively	and	
unintelligently	at	a	particular	target	or	because	he	makes	a	deliberate	effort	to	
ignore	the	context	and	to	concentrate	on	the	local	effect.”	When	the	context	changes,	
the	object	is	observed	as	changing	its	character	as	well.	
	
We	might	observe	an	elephant	photographed	in	a	grassy	savannah	and	that	same	
elephant	partially	obscured	by	trees.	When	this	context	changes,	the	elephant	is	
perceived	as	changing	its	character	as	well.	
	
But	contextually	muddled	perceptions	aren’t	just	made	by	naïve	viewers.	Realistic	
painters	are	trained	to	practice	this	form	of	visual	reduction,	purposefully	
narrowing	their	focus	in	order	to	see	how	a	given	color	value	as	it	would	look	
through	a	narrow	peep	hole,	or	the	size	and	shape	of	an	object	as	though	it	were	
flattened	into	two-dimensional	plane.	This	observation	technique	is	difficult	to	learn	
and	requires	practice.		
	
Most	photographs	of	elephants	show	the	front	of	elephant.	But	what	about	the	back?	
What	about	a	view	from	the	top	or	bottom?		
	
In	the	second	way	of	perceiving—contextually	isolated—the	influence	of	the	context	
is	purposefully	“peeled	off	in	order	to	observe	the	object	in	its	pure,	unimpaired	
state.”	The	resulting	object	is	constant,	except	for	whatever	changes	the	object	
initiates	itself.	Arnheim	calls	this	a	scientific	way	of	viewing	that	“seeks	to	establish	
the	nature	of	any	phenomenon	in	itself	in	order	to	distinguish	it	in	each	practical	
case	from	the	conditions	surrounding	it.”		
We	could	observe	an	elephant	photographed	from	different	angles,	removing	it	from	
its	context,	and	thus	piece	together	a	more	complete,	yet	isolated,	depiction	of	that	
elephant.		
																																																								
4	And	because	the	context	is	software	design,	creating	a	box	and	labeling	it	
“Elephant”	in	a	class	diagram	should	not	be	confused	with	an	abstraction	of	a	
physical	elephant,	but	instead	be	interpreted	as	representation	of	a	software	
element	(a	class)	that	is	part	of	the	software	design.	



Elephants,	Patterns,	and	Heuristics:	Page	 8	

	
Software	design	pattern	solutions	are	commonly	presented	as	being	contextually	
isolated.	We	see	a	static	view	of	the	structure	of	the	solution	in	a	class	diagram	and	
sometimes,	if	the	interactions	between	pattern	elements	are	of	interest,	be	shown	a	
dynamic	view	of	those	objects	of	the	pattern	interacting	in	a	stylized	sequence	
diagram.		Even	though	a	richer	context	where	the	pattern	might	be	applied	may	
have	previously	been	explained	in	text,	the	pattern	solution	itself	is	contextually	
isolated.	We	don’t	observe	the	solution	embedded	in	a	rich	or	realistic	software	
context.		
	
How	do	elephants	walk?	How	do	they	behave	in	specific	situations?		Video	footage	
can	cover	more	of	these	questions,	it	can	even	record	sound.	Showing	a	
phenomenon	in	action	is	critical	to	understanding	how	it	behaves	in	the	world.	
	
Contextually	integrated	perception,	according	to	Arnheim,	does	not	attempt	to	
eliminate	the	effect	of	the	setting	on	the	object.	Instead	it	fully	“appreciates	and	
enjoys	the	infinite	and	often	profound	and	puzzling	changes	the	object	undergoes	as	
it	moves	from	situation	to	situation.”	Arnheim	claims	that,	“the	enlightenment	one	
gains	from	such	varying	exposure	goes	beyond	aesthetic.”	Observing	an	object	or	an	
elephant	or	a	software	pattern	in	novel	situations	often	reveals	fresh	information.	
	
Even	so,	any	visual	depiction,	even	showing	an	object	over	a	period	of	time,	is	still	
incomplete.	Some	phenomena	such	as	smell	or	heat	are	not	represented.	Such	
information	could	be	supplied	verbally.	Visual	images	do	not	show	many	details	
about	the	elephant’s	environment	and	social	context.	What	about	its	relation	to	
other	elephants?	How	does	an	elephant	integrate	into	its	herd?	What	is	its	relation	
to	other	animals?	
	
Likewise,	we	can	ask	for	software	patterns	what	other	qualities	do	they	have	and	how	
they	relate	to	other	patterns.	This	is	often	explained	briefly	in	dedicated	description	
fields	in	various	pattern	forms.	But	rarely	do	we	see	descriptions	of	the	actual	
interplay	of	a	pattern	with	real	software	environments.	
	
	



Elephants,	Patterns,	and	Heuristics:	Page	 9	

	

4.	What	we	learn	
What	we	can	know	about	elephants	depends	on	the	questions	we	ask	and	our	
observations.	

4.1	Information	about	elephants	
The	answer	to	each	conceivable	question	we	can	ask	about	elephants	is	information	
about	elephants.	The	answer	is	contained	already	in	the	formation	of	elephants,	one	
only	has	to	ask	the	question	and	find	ways	to	capture	the	answer.	For	example,	if	
you	want	to	know	whether	elephants	sleep	at	3	a.m.,	you	have	to	observe	elephants	
at	that	time	of	the	day.	If	you	want	to	know	the	weight	of	an	elephant,	you	have	to	
put	them	on	a	scale.	Both	observations	(if	properly	done)	will	not	alter	the	nature	of	
elephants—the	facts	about	elephants	have	not	changed.	However,	once	we	capture	
the	answers,	we	have	more	information	about	the	elephants.		
	
Hence,	each	pattern	contains	an	abundance	of	information.	Which	information	we	
capture	depends	on	the	questions	we	ask	[Baey].	The	description	format	of	patterns	
requires	some	information	to	be	explicated.	Each	pattern,	and	each	of	its	actual	
implementations,	has	always	more	implicated	information	than	captured.	However,	
the	description	format	directs	to	different	questions	and	answers.	Context,	problem,	
forces,	solution	and	consequences	each	ask	different	questions.	Very	often	there	are	
more	detailed	questions,	such	as	what	are	known	uses,	what	are	implementation	
details,	which	roles	can	be	identified?	The	more	questions	we	ask,	the	more	we	
learn	about	the	solution.	One	drawback	is	that	there	might	be	fields	where	the	
answer	is	unknown.		

Takeaways	
	
The	patterns	we	observe	in	a	software	design	are	much	richer	than	any	
documentation	or	visual	depiction	could	ever	convey.		
	
A	pattern	description	is	just	one	view	on	the	phenomenon.	
	
Software	pattern	solutions	are	depicted	in	isolation	from	any	realistic	context.	
	
A	pattern	can	be	represented	only	indirectly;	a	pattern	is	the	emergent	
wholeness	that	is	common	to	all	its	exemplars.	It	cannot	be	found	in	one	single	
example,	however	it	is	manifested	in	each	example.	
	
A	good	pattern	description	includes	a	model	as	one	representative	instance	of	
the	pattern.	
	
	



Elephants,	Patterns,	and	Heuristics:	Page	 10	

4.2	Information	about	environments	(contexts)	
We	 may	 understand	 what	 elephants	 are	 but	 do	 we	 understand	 in	 which	
environments	they	thrive?	Can	we	enumerate	or	even	generalize	in	which	contexts	
they	 fit	 in?	Very	often	we	see	elephants	 in	specific	contexts:	 in	 films,	 in	a	zoo,	 in	a	
circus,	 on	 a	 safari	 at	 a	 specific	 time	 of	 the	 year.	 Can	 we	 really	 learn	 from	 these	
snippets	which	environments	elephants	belong	to?	
	
Designers	face	the	same	challenge	when	they	only	observe	patterns	in	a	limited	field	
of	 contexts.	 For	 example,	 if	 a	 designer	 has	 used	 a	 solution	 frequently	 in	 specific	
situations,	 the	 context	 can	 easily	be	described.	However,	 the	designer	may	not	be	
aware	of	other	situations	where	the	pattern	 is	 likely	 to	work	well.	 In	 this	case	 the	
pattern	as	described	is	over	constrained.	Or,	the	designer	may	not	be	aware	of	other	
situations	 where	 the	 pattern	 is	 likely	 to	 fail	 or	 for	 that	 matter,	 other	 suitable	
alternatives.5	In	 both	 these	 cases,	 a	 description	 field	 “Contraindications”	 might	
trigger	unjustified	speculation	

4.3	Information	about	causes	of	form	(problem	and	forces)	
Investigating	the	problem	and	forces	can	be	compared	to	researching	what	has	
caused	the	specific	form	of	elephants.	What	is	their	role	within	the	ecosystem,	how	
do	they	balance	nature?	How	would	their	ecosystem	destabilize	if	they	disappear	
(problem!)	and	how	does	the	specific	organism	of	elephants	fit	to	the	environment	
(forces!).		
		
It	is	important	to	understand	that	elephants	do	have	already	a	specific	role	and	
purpose	within	in	their	ecosystem		even	if	science	still	has	a	lack	of	knowledge	or	
misunderstanding	about	this.	So	we	can	have	fully	“functioning”	elephants	without	
us	understanding	all	the	details.	We	can	still	do	further	research	how	elephants	
evolved	and	how	they	interact	with	their	environment.		
	
Likewise,	we	may	further	investigate	problems	and	forces	of	existing	patterns.	We	
can	identify	a	working	solution	for	a	pattern	without	being	able	to	explain	all	of	its	
causes	and	effects.	The	problem	and	forces	sections	ask	why-questions.	Why	do	we	
use	a	specific	form	for	a	solution?	A	force	explains	the	cause	for	a	specific	design	
decision	by	giving	the	“because”	to	the	“why.”	[Koh12]	But	sometimes	we	know	that	
something	is	working	without	being	able	to	tell	why.	So	should	we	never	write	
patterns	before	we	have	investigated	all	of	the	forces?	Or	should	we	just	continue	to	
search	for	more	forces,	better	explanations,	and	deeper	understanding	of	problems?	

																																																								
5	However,	we	views	patterns	as	simply	a	particularly	informative	form	for	
describing	design	heuristics.	[Wirf17]	Consequently,	we	are	reminded	that	“[a	
heuristic]	provides	a	plausible	aid	or	direction	in	the	solution	of	a	problem	but	is	in	
the	final	analysis	unjustified,	incapable	of	justification,	and	potentially	fallible.”	
[Koen]		



Elephants,	Patterns,	and	Heuristics:	Page	 11	

4.4	Information	about	the	form	(solution)	
As	we	have	seen,	there	are	many	different	ways	to	describe	and	represent	
elephants,	each	varying	in	method	and	detail.	Science	has	established	many	different	
forms	of	representing	phenomena	of	nature.	On	a	walk	through	the	Natural	History	
Museum	in	London,	Chris	found	a	section	that	curated	different	methods	of	science	
to	capture	information	and	knowledge	about	animals,	including	observation,	
recording,	mapping	and	modelling.	At	the	one	hand	we	can	zoom	in	to	see	more	and	
more	details.	On	the	other	hand	we	can	generalize	and	leave	out	information	to	
focus	on	the	core	of	a	form.		
	
A	solution	may	consist	of	the	core	solution	(the	thing),	implementation	details	(the	
process),	and	things	to	take	care	of	(liabilities).	When	we	describe	the	solution	of	a	
pattern	we	also	ask,	what	is	the	general	structure	of	the	solution?	We	can	also	zoom	
in	and	discuss	specific	details	such	as	how	to	generate	or	implement	the	solution,	
what	variations	exist,	where	do	I	have	to	be	careful.	We	can	also	explore	our	
understanding	of	the	benefits,	costs,	drawbacks,	trade-offs,	and	liabilities	of	the	
solution.	Thus,	we	often	ask	explicitly	about	the	consequences	of	a	solution.		

4.5	Missing	information	
The	more	detailed	we	structure	a	pattern	description,	the	more	information	we	
have	to	provide.	Sometimes	as	we	write	these	descriptions,	our	knowledge	gap	
becomes	visible.	We	may	not	understand	the	whole	of	a	context	yet—even	if	we	
have	successfully	applied	a	solution.		
	
These	general	questions	can	also	be	misleading.	For	example,	on	which	level	do	we	
discuss	problems?	Many	software	patterns	address	the	problem	of	implementing	a	
specific	design.	Yes,	it	is	difficult	to	implement	an	Observer.	So,	the	implementation	
is	difficult	and	it	is	a	good	approach	to	present	a	reasonable	solution.	But	there	is	a	
deeper	understanding	that	a	designer	needs	in	order	to	“know”	that	pattern.	What	
problem	does	an	Observer	actually	resolve?	We	are	not	(only)	interested	in	how	to	
solve	the	problem	of	implementing	an	Observer.	We	are	even	more	interested	in	
which	design	problem	an	Observer	solves.	Hence,	a	good	pattern	solution	should	not	
only	ask	“How	to	do	X?”	in	a	problem	statement.	This	“how	to”	is	an	implicit	problem	
that	must	be	addressed	by	each	pattern	anyways!	This	is	because	each	pattern	
should	be	generative	and	describe	how	to	create	a	solution.	But	a	pattern	should	
also	describe	what	this	solution	is	and	which	actual	problem	is	solved	and	answer	
the	question	why	we	need	a	specific	pattern	in	the	first	place.	

4.6	Relevant	information	
There	are	infinite	questions	we	can	ask	about	any	elephant.	Hence,	there	is	infinite	
information	we	can	gather	about	elephants.		
	
To	demonstrate	the	infinity	of	information	about	elephants,	let	us	consider	an	
example.	A	food	designer	wants	to	test	two	new	elephant	foods.	The	designer	
invents	two	new	products.	Now	he	wants	to	know	whether	elephants	like	A	or	B	
better.	If	we	test	this,	we	get	the	answer.	The	information	is	in	the	elephants	already.	



Elephants,	Patterns,	and	Heuristics:	Page	 12	

But	only	by	asking	the	question	and	observing	their	behavior	do	we	get	the	answer	
and	access	to	the	information.		
	
As	there	are	an	infinite	number	of	potential	new	foods,	there	is	an	infinite	number	of	
questions	we	can	ask	about	elephants.	We	can	ask	any	kind	of	strange	questions:	Do	
elephants	like	to	watch	baseball?	The	answer	is	probably	no,	but	you	never	know	
without	testing!		
	
We	can	get	information	even	if	it	is	not	relevant	to	us.	Whether	A	or	B	is	more	
yummy	for	elephants	may	be	of	interest	for	a	food	designer	or	for	the	zoo	
management.	However,	most	of	us	are	more	interested	in	general	facts	such	as	the	
amount	of	food	or	whether	elephants	eat	meat.		
	
Researchers	and	pattern	authors	try	to	hone	in	on	the	“right”	(or	appropriate)	
information.	Yet	it	is	important	to	understand	that	the	pattern	of	an	elephant	is	so	
much	richer	than	any	representation	can	ever	be.	And	that	specific	information	may	
only	be	relevant	in	certain	contexts.	

4.7	Superficial	information	
We	have	seen	that	there	is	an	infinite	amount	of	information	we	can	gather	about	
elephants.	Experts	have	access	to	a	significant	and	relevant	subset	of	this	
information.	Many	novices,	however,	think	they	have	full	information	about	a	
phenomenon	when	they	repeatedly	observe	only	superficial	information.	
	
Many	people	say	they	know	what	elephants	are.	But	do	they?	Do	they	know	their	
weight?	How	many	siblings	they	can	breed	and	feed?	Do	they	know	how	to	react	if	
they	face	an	elephant	in	the	wild?		
	
We	see	the	same	with	many	software	design	patterns.	Just	think	about	the	Model	
View	Controller	(MVC)	pattern.	Many	developers	learn	about	this	pattern	early	in	
their	education.	There	are	more	students	who	(think	to)	know	what	MVC	before	
they	know	what	patterns	are.	
	
However,	most	developers	reduce	the	MVC	pattern	to	simply	a	concept	that	
separates	the	model	from	the	views	and	controllers,	thus	making	the	code	structure	
more	organized	and	the	development	of	each	design	element	more	independent.	
Nothing	wrong	with	that.	However,	we	see	that	even	supposedly	expert	designers	of	
frameworks	implement	MVC	in	many	different	ways	that	often	violate	core	design	
principles.	For	example,	model,	views	and	controllers	are	separated	into	different	
folders	in	the	source	code,	but	still	have	many	dependencies.	And	some	(student)	
developers	claim	to	follow	the	MVC	architecture.	But	if	you	ask	them	how	to	add	
views	or	change	existing	views	without	changing	the	model	they	cannot	provide	
proper	answers.	
	
Their	superficial	observation	is	that	MVC	separates	the	elements	into	different	
folders	so	developers	can	change	the	files	independently.	They	miss	the	important	



Elephants,	Patterns,	and	Heuristics:	Page	 13	

design	principle	of	loose	coupling	between	objects	and	necessary	abstractions.	They	
also	fail	to	recognize	the	Observer	pattern	as	a	mechanism	to	notify	the	views	about	
any	changes	in	the	model.	Students	(think	to)	know	what	the	MVC	pattern	is	without	
knowing	and	understanding	the	Observer	mechanism,	which	is	used	to	achieve	
loose	coupling	between	models	and	views.	
	
This	kind	of	superficial	understanding	of	patterns	is	like	saying:	“I	was	in	the	zoo	
last	week	and	watched	the	elephants	for	a	day.	Believe	me,	now	I	know	all	about	
elephants.”	
	
Seeing	a	pattern	in	action	does	not	make	us	to	experts	about	the	pattern.	We	need	to	
get	a	deeper	understanding.	In	order	to	become	expert,	we	need	to	understand	the	
design	principles	and	values	that	led	to	that	pattern.	

4.8	Some	differences	between	experts	and	novices	
Both	experts	and	novices	need	to	remember	patterns	to	be	able	to	explain	them	to	
others	and	to	use	them	as	shorthand	for	design	ideas.	
	
Novices	should	not	be	exposed	to	the	same	material	that	experts	consume.	So	the	
question	is,	then:	how	might	patterns	best	be	introduced	to	novices?		
	
“We	habitually	observe	by	the	method	of	difference.	Sometimes	we	see	an	elephant,	
and	sometimes	we	do	not.	The	result	is	that	an	elephant,	when	present,	is	noticed.	
Facility	of	observation	depends	on	the	fact	that	the	object	observed	is	important	
when	present,	and	sometimes	is	absent.”	—Alfred	North	Whitehead,	Process	and	
Reality	[Whit]	
	
We	have	to	have	contrast	before	we	can	see.	And	we	have	to	see	that	form	
consistently	over	time.	
	
If	novices	are	also	students,	then	one	plausible	pedagogical	approach	might	be	to	
introduce	them	to	a	particulate	design	problem.	Then	show	them	code	that	solves	
that	problem	that	uses	a	specific	pattern.	After	seeing	that	code	and	understanding	
what	it	does,	then	and	only	then	explain	the	pattern	to	them.	
	
To	understand	a	particular	pattern’s	importance,	they	might	need	to	see	this	pattern	
as	it	is	applied	in	various	different	programming	languages	and/or	technologies.	
And	then,	they	must	be	given	problems	that	they	can	solve	by	applying	that	pattern.	
	
But	somehow,	in	order	to	not	get	stuck	with	the	notion	that	patterns	are	strictly	
applied	in	a	particular	way,	students	of	patterns	need	to	see	various	solutions	to	a	
design	problem	and	learn	that	there	are	many	alternative	ways	to	structure	a	



Elephants,	Patterns,	and	Heuristics:	Page	 14	

solution	even	applying	(or	trying	to	apply)	the	same	pattern.6	Arnheim	argues	that	
the	kind	of	concept	created	by	contextually	integrated	viewing	is	best	suited	for	
productive	thinking.	And	we	speculate	that	this	also	holds	for	applying	a	software	
pattern	in	a	designer’s	particular	software	context.	
	
Experts	also	like	to	know	when	to	use	a	pattern	and	how	it	compares	with	other	
alternatives.		There	are	always	competing	heuristics	and	multiple	ways	to	solve	any	
particular	design	problem.		
	
Experts	also	like	to	get	down	into	the	details:	When	things	work,	what	complexities	
there	are,	and	what	to	expect	during	implementation.	They	also	need	to	locate	
patterns	unfamiliar	to	them	in	multiple	ways	(perhaps	novices	do	so,	too),	but	
tagging	patterns	so	there	could	be	a	multi-faceted	way	to	search	for	them	could	be	
useful.	
	
Practitioners	want	to	solve	a	current	problem	at	hand.	Maybe	they	could	benefit	by	
patterns	organized	by	“how	to	do	x.”	But	most	of	the	time,	what	they	are	seeking	is	
at	a	different	level	(e.g.	specific	coding	details)	than	most	software	patterns	are	
written.	When	they	are	searching,	they	are	being	very	concrete	about	what	
information	they	are	looking	for.	Pattern	descriptions,	however,	are	abstractions.	
	
So	the	question	is	whether	they	are	seeking	an	“exemplar”	to	copy	and	modify	(e.g.	
taking	code	snippets	from	blog	posts	or	stack	overflow),	or	whether	they	also	might	
want	to	know	the	why	behind	the	what	to	do.		Arnheim	remarks	that	a	concept	from	
which	everything	is	subtracted	but	its	invariants	facilitates	definition,	classification,	
learning	and	use	of	that	learning	because	“[t]he	object	looks	the	same,	every	time	it	
is	met.”	[Arn]	But	this	stripped	down,	essential	depiction,	also	leaves	the	person	
lacking	any	concrete,	realistic,	tangible	experience	to	draw	upon.	The	rigidity	of	
such	constancy	can	blind	the	observer	to	any	revelations	offered	by	her	particular	
context	and	prevent	her	from	reacting	in	a	manner	appropriate	to	the	current	
situation.	This	could	lead	to	a	clumsy	misapplication	of	the	pattern.	
	
Which	leads	us	to	consider	whether	personal	software	design	heuristics	(not	
patterns)	are	another	useful	tool	for	sharing	knowledge	among	that	could	enrich	
our	pattern	knowledge	[Wirf18].	The	unique	situations	in	which	a	pattern	is	applied	
lead	designers	to	make	choices	based	upon	their	specific	context	and	their	personal	
preferences	and	design	heuristics.	Applying	heuristics	helps	a	designer	adapt	a	
particular	pattern	to	her	specific	situation.	Knowing	about	others’	design	
approaches	could	broaden	a	designer’s	options.	
	
Most	practitioners,	however,	want	concrete	advice,	not	principles	or	lofty	heuristics	
when	they	are	in	the	thick	of	solving	a	particular	design	problem.	But	there	are	
																																																								
6	This	is	something,	I,	Rebecca	used	to	do	when	teaching	object	design	classes.	I	
would	show	students	several	different	solutions	that	the	students	themselves	would	
come	up	with.6	To	do	this,	they	had	to	solve	a	non-trivial	problem.	



Elephants,	Patterns,	and	Heuristics:	Page	 15	

times	when	they	do	take	a	breath.	Maybe	then	they	might	take	time	to	pause	to	
reflect	on	what	they	are	doing,	and	what	worked	out	well	and	what	others	have	
tried.	
	
As	Whitehead	observes:	“The	true	method	of	discovery	is	like	the	flight	of	an	
aeroplane.	It	starts	from	the	ground	of	particular	observations;	it	makes	a	flight	in	
the	thin	air	of	imaginative	generalization;	and	again	it	lands	for	the	renewed	
observation	rendered	acute	by	rational	interpretation.”	[Whit]	
	
And	that	is	where	distillation	of	personal	heuristic	gists	might	be	useful	to	more	
experienced	designers.	Rather	than	reading	and	learning	others’	patterns	and	
other’s	detailed	design	heuristics,	thoughtful	developers	might	get	in	the	habit	of	
recording	their	own	heuristics	in	a	design	diary.	
	
Besides	showing	a	good	canonical	implementation	that	applies	a	pattern,	for	some	
patterns	might	benefit	from	“how	to	not	do	it”	code	examples.	There	might	also	be	
value	in	recording	many	more	specific	and	detailed		heuristics	for	what	needs	to	be	
considered	(that	is,	personal,	contextualized	heuristics)	for	particular	applications	
of	these	patterns,	along	with	specific,	concrete	examples..	
	
Beginners	need	to	learn	that	there	is	no	one	“right	way”	to	apply	a	particular	
pattern.	They	also	need	to	experience	variations	in	implementation	of	a	particular	
pattern.	To	become	proficient	at	applying	a	pattern	to	solve	a	non-textbook	or	
classroom	problem,	they	need	to	do	more	than	a	cut-and-paste	reuse	of	a	pattern.	
Not	only	that,	but	they	need	to	be	exposed	to	other	equally	valid	design	solutions	to	
their	problem.	In	order	to	learn	to	exercise	the	kind	of	design	judgment,	they	need	
to	be	able	to	see	and	appreciate	the	nuances	of	different	design	approaches.	This	
takes	practice,	experimentation,	and	acute	observation.	
	
Seeing	concrete	examples		may	not	be	enough	to	comprehend	a	general	abstraction.	
Designers	may	need	to	observe	slight	design	variances	that	can	still	be	called	some	
particular	pattern	so	that	they	come	to	know	both	what	this	pattern	means	and	
what	it	means	to	not	be	apply	that	pattern.		
	
As	patterns	writers,	we	too	need	to	stretch	our	imaginations	and	envision	the	
boundaries	and	true	shape	of	our	patterns	through	mentally	exercising	them.	Again,	
from	Whitehead:	“The	reason	for	the	success	of	this	method	of	imaginative	
rationalization	is	that,	when	the	method	of	difference	fails,	factors	which	are	
constantly	present	may	yet	be	observed	under	the	influence	of	imaginative	thought.	
Such	thought	supplies	the	differences,	which	the	direct	observation	lacks.	It	can	
even	play	with	inconsistency	and	can	thus	throw	light	on	the	consistent,	and	
persistent,	elements	in	experience	by	comparison	with	what	in	imagination	is	
inconsistent	with	them.	This	negative	judgment	is	the	peak	of	mentality.”	[Whit]	
	
	



Elephants,	Patterns,	and	Heuristics:	Page	 16	

	

5.	Myths	and	stories	
A	little	expertise	can	be	dangerous.	Thinking	oneself	an	expert	can	be	dangerous.	If	
your	assumptions	about	elephants	are	based	on	TV	shows,	zoos,	and	circus	visits	
you	may	have	constructed	a	wrong	mental	picture.	If	you	face	an	elephant	in	the	
wild	you	may	react	all	wrong.	You	may	provoke	the	elephant	in	spite	of	its	friendly	
nature.	

5.1	Myths	about	elephants	
Let	us	assume	somebody	wants	to	become	an	expert	on	elephants	and	studies	them	
for	a	day	in	the	zoo.	She	observes	that	elephants	get	their	food	at	9	a.m.	in	the	
morning	from	the	zookeeper.	So	she	claims	that	“Believe	me,	elephants	get	their	
food	at	9	a.m.	from	zookeepers.	That’s	the	nature	of	elephants.”	And	if	you	raise	
some	doubts,	our	elephant	expert	says:	“Wait	a	few	weeks	and	I	will	provide	the	
evidence.”	She	then	observes	elephants	for	the	next	30	days	in	the	zoo.	And	guess	
what:	the	elephants	always	get	their	food	at	9	a.m.	More	precisely,	the	observations	
have	shown	some	variations.	Sometimes	elephants	get	the	food	at	9:05	or	even	at	
9:10,	sometimes	even	at	8:58	a.m.	So,	our	expert	adjusts	the	statement	and	claims	
that	elephants	get	their	food	between	8:58	and	9:10	a.m.	She	provides	a	lot	of	
evidence	based	on	30	days	of	observation.	Doing	this	over	a	full	year,	this	data	
becomes	statistically	sound.	What’s	missing?	
	
The	answer	is:	our	expert	has	ignored	the	specific	context.	The	claim	that	elephants	
eat	at	9:00	a.m.	on	every	day	is	only	valid	for	the	specific	zoo	she	visits.	If	she	visits	
other	zoos,	she	will	learn	about	further	variations.	If	she	visits	the	same	zoo	2	years	
later	she	may	also	see	new	data	if	the	zoo	management	has	shifted	feeding	times.	
And	if	our	elephant	expert	would	bother	to	observe	elephants	in	the	wild—in	their	

Takeaways	
	
The	standard	description	format	of	patterns	helps	us	to	ask	the	right	questions	
about	a	good	design.	However,	there	might	be	other	ways	to	describe	the	
phenomenon.		
	
Describing	the	forces	and	consequences	helps	us	to	understand	how	and	why	a	
pattern	works.	This	is	different	from	observing	superficial	features.	Cause	and	
effect	are	given.	Such	claims	are	subject	to	empirical	evidence	of	falsification.	
	
Only	considering	the	superficial	properties	of	a	pattern	is	a	dangerous	path	
because	developers	do	not	understand	the	consequences	of	their	design	
decisions.	
	
The	information	provided	in	a	pattern	description	needs	to	fit	prior	knowledge	
and	preferences	of	the	target	audience.	
	



Elephants,	Patterns,	and	Heuristics:	Page	 17	

most	relevant	context—she	would	make	quite	different	statements	about	food	
habits.		
	
Misinterpreting	the	scope	of	a	context	is	common	mistake.	We	observe	a	pattern	
within	one	specific	environment:	one	company,	one	programming	language,	or	one	
developer	team,	and	assume	that	the	qualities	of	the	pattern	are	true	for	many	other	
contexts.	However,	without	observing	the	pattern	in	these	other	contexts,	we	cannot	
make	conclusive	statements	about	these	other	contexts!	And	most	certainly	our	
personal	design	heuristics	and	adaptations	of	patterns	for	our	specific	design	
contexts	mostly	likely	are	not	universal.	
	
There	is	a	difference	between	a	single	writer	reporting	her	patterns	and	the	
outcomes	of	a	group	discussion.	Likewise	the	range	of	domains	and	contexts	in	
which	a	pattern	has	been	observed	is	critical	to	its	general	applicability	[KP].	For	
example,	if	a	pattern	has	been	observed	multiple	times	in	Java	programs,	does	this	
necessarily	imply	that	it	will	work	for	C++	C++	code	as	well?	Without	having	
observed	or	tested	it,	one	cannot	really	(empirically)	tell.	

5.2	Stories	about	elephants	
Stories	deliberately	remove	information	but	try	to	bring	order	into	a	chaotic	word.	
There	are	many	ways	to	tell	the	story	about	elephants.	And	there	are	many	ways	to	
describe	a	pattern	that	we	have	experienced	in	the	world.	Our	common	description	
format,	usually	a	variation	of	context-problem-forces-solution-consequences,	is	one	
way	to	describe	elephants.	It	is	a	good	way,	indeed.	It	asks	all	the	right	questions.		
	
Many	 people	 invoke	 the	 metaphor	 of	 a	 story	 or	 a	 play	 [Ris]	 and	 point	 out	 that	
patterns	are	not	just	about	facts	but	should	tell	a	story	[Appl].	The	context	sets	up	
the	stage.	As	in	a	play,	the	forces	are	creating	a	tension	and	the	solution	is	resolving	
the	conflict—a	happy	ending.		
	
However,	is	this	sequence	always	the	appropriate	order?	There	are	many	ways	to	
tell	a	story,	and	some	stories	start	with	end.	If	we	were	about	to	describe	an	
elephant,	would	we	naturally	start	with	all	his	evolutionary	history	and	reason	
about	why	this	species	fits	into	the	very	environment	elephants	live	in?	Or,	would	
we	start	with	a	picture	first	and	then	go	into	details?	Most	accounts	about	elephants	
use	the	later	approach.	First	show	the	object,	and	then	explain	the	phenomenon.		
	
If	we	consider	the	literature	genre	of	patterns	as	storytelling,	then	we	should	allow	
and	encourage	different	forms	of	telling	this	story:	A	short	story;	a	whole	book;	a	
series	of	stories;	or	even	telling	the	story	with	motion	pictures	or	cartoons.	
	
Stories	are	such	a	powerful	tool	because	they	are	capable	of	transporting	the	
wholeness	of	a	solution.	We	experience	wholeness	if	we	follow	a	story	in	a	novel.	
The	plot	unfolds	chapter-by-chapter,	paragraph-by-paragraph,	sentence-by-
sentence,	and	word-by-word.	The	parts	make	the	story	and	the	story	gives	meaning	
to	each	of	the	parts.	A	simple	sentence	such	as	“The	door	was	locked”	has	its	own	



Elephants,	Patterns,	and	Heuristics:	Page	 18	

meaning;	however,	in	the	context	of	a	larger	story	its	meaning	can	shift.	A	locked	
door	has	a	deeper	meaning	in	a	crime	story	where	a	victim	tries	to	escape.	The	same	
sentence	can	have	a	different	meaning	in	a	love	story:	“She	wanted	to	tell	him	her	
feelings	and	caught	up	with	the	train	at	the	local	station.	The	door	was	locked.”	The	
context	not	only	changes	the	meaning	of	the	sentence;	the	single	sentence	that	
reveals	an	important	fact	or	event	can	also	change	the	meaning	of	the	whole	story.	
The	story	directs	the	development	of	the	events,	scenes	and	characters;	at	the	same	
time	the	story	is	made	up	exactly	out	of	these	interrelated	parts.	

5.3	The	story	of	the	blind	men	and	the	elephant	
The	story	of	the	blind	men	and	the	elephant	is	a	very	old	parable	that	discusses	the	
limits	of	perception	and	the	meaning	of	context.	It	can	be	found	in	Buddhist,	Hindu,	
and	Jain	texts	(see	Wikipedia).	The	parable	goes	like	this	(from	Wikipedia):	

	
A	group	of	blind	men	heard	that	a	strange	animal,	called	an	elephant,	had	
been	brought	to	the	town,	but	none	of	them	were	aware	of	its	shape	and	
form.	Out	of	curiosity,	they	said:	"We	must	inspect	and	know	it	by	touch,	of	
which	we	are	capable".	So,	they	sought	it	out,	and	when	they	found	it	they	
groped	about	it.	In	the	case	of	the	first	person,	whose	hand	landed	on	the	
trunk,	said	"This	being	is	like	a	thick	snake".	For	another	one	whose	hand	
reached	its	ear,	it	seemed	like	a	kind	of	fan.	As	for	another	person,	whose	
hand	was	upon	its	leg,	said,	the	elephant	is	a	pillar	like	a	tree-trunk.	The	blind	
man	who	placed	his	hand	upon	its	side	said	the	elephant,	"is	a	wall".	Another	
who	felt	its	tail,	described	it	as	a	rope.	The	last	felt	its	tusk,	stating	the	
elephant	is	that	which	is	hard,	smooth	and	like	a	spear.	

	

	
By	Illustrator	unknown	-	From	Martha	Adelaide	Holton	&	Charles	Madison	Curry,	Holton-Curry	readers,	Rand	
McNally	&	Co.	(Chicago),	p.	108.,	Public	Domain,	https://commons.wikimedia.org/w/index.php?curid=4581243	



Elephants,	Patterns,	and	Heuristics:	Page	 19	

	
What	does	this	parable	mean	for	pattern	writers?	We	need	to	be	aware	that	we	may	
experience	parts	of	a	pattern	but	are	still	missing	important	aspects.	We	need	to	be	
careful	to	not	call	ourselves	experts	too	soon.	It	also	shows	that	we	can	report	and	
describe	the	very	same	things	in	quite	different	ways	when	we	focus	on	different	
parts	of	the	whole.	

5.4	Learning	more	about	elephants	
Elephants	have	been	the	same	for	a	long	time.	Even	though	their	environment	has	
changed,	elephants	have	not	changed,	as	evolution	is	slow.	It	is	true	that	elephants	
behave	differently	in	the	context	of	civilization.	However,	this	has	been	in	their	
nature	for	much	longer	time.	If	there	had	been	zoos	and	circuses	10,000	years	ago,	
then	elephants	would	have	reacted	in	the	same	sad	way	as	they	do	today.	It	is	not	
elephants	that	have	changed;	it	is	their	environment.	
	
However,	we	continue	to	learn	new	things	about	elephants.	We	get	a	better	
understanding	of	elephants	each	day	we	continue	to	research	them.	New	scientific	
tools	(such	as	tracking	of	traces,	scales,	x-rays	etc.)	can	provide	new	answers	and	
information.	However,	all	this	information	was	already	in	the	formation	of	elephants	
since	the	species	emerged.	It	is	only	now	that	we	unlock	this	information.	
	
In	the	same	way	we	can	learn	more	and	more	about	a	pattern	even	if	the	pattern	
does	not	change.	Hence,	we	should	continue	to	do	research	on	existing	and	
established	patterns.	Do	they	work	in	all	contexts?	What	other	consequences	are	
there?	What	other	heuristics	are	there	for	solving	a	similar	problem	that	haven’t	
been	written	down	as	patterns?	
	
Unlike	elephants,	however,	patterns	in	the	software	industry	are	less	stable.	New	
technologies	can	make	some	patterns	obsolete.	When	memory	and	CPU	time	was	
scarce,	patterns	were	needed	to	optimize	data	size	and	performance.	Today,	in	most	
contexts,	it	is	more	important	to	optimize	for	flexibility	and	robustness.	Hence,	some	
patterns	need	to	be	replaced	or	updated.	



Elephants,	Patterns,	and	Heuristics:	Page	 20	

	

6.	Some	conclusions	and	implications	
Elephants	may	evolve	slowly,	but	they	react	differently	in	different	contexts.	So,	too,	
do	patterns	and	other	design	heuristics.	In	addition	to	finding	better	ways	to	
organize	patterns	and	presenting	relevant	depictions	of	their	use,	we	need	to	find	
better	ways	to	explain	how	to	adjust	patterns	into	specific	contexts,	how	to	sort	
through	them,	and	add	or	find	the	information	we	need	when	we	are	able	and	
willing	to	absorb	it.	No	pattern	depiction	is	ever	complete,	nor	should	it	be	our	goal	
to	make	complete	descriptions.	
	
We	 have	 argued	 that	 pattern	 descriptions	 try	 to	 capture	 forms	 that	 exist	 in	 the	
world.	 Whether	 a	 pattern	 description	 adequately	 captures	 a	 structure	 that	 can	
actually	be	found	in	the	world	is	an	outstanding	question.	Moreover,	if	the	authors	
are	 not	 experienced	 in	 their	 domain	 they	might	 capture	 the	 wrong	 patterns.	 But	
even	if	we	have	adequate	patterns	in	our	head,	the	explicate	description	will	always	
be	incomplete,	misleading,	or	even	contain	the	wrong	elements.	
	
Therefore,	we	need	ways	to	ensure	that	the	pattern	descriptions	actually	represent	
meaningful	 patterns	 of	 the	 world.	 A	 written	 pattern	 should	 be	 the	 result	 of	
thoughtful	pattern	mining,	a	process	that	extracts	“nuggets	of	wisdom.”	We	can	say	
“wisdom”	because	 the	 insights	 in	 those	patterns	are	grounded	 in	many	reviews	of	
actual	designs.		Pulling	out	this	knowledge	is	like	mining	for	nuggets	(Rising,	1998);	
the	core	of	 the	pattern	 is	pointed	out;	 the	noise	of	actual	 instances	 is	 taken	away.	
This	mining	process	is	a	process	of	cognition—as	is	any	theory	building.	A	pattern	
author	often	reconsiders	the	artefacts	and	examples	her	pattern	is	based	on.	Writing	
down	the	pattern,	is	also	an	active	process	whereby	the	writer	tries	to	assemble	the	
universal	 structure	 of	 the	 pattern.	 Pattern	 descriptions	 are	 proposals	 of	 specific	

Takeaways	
	
The	patterns	are	out	there,	yes.	But	we	need	to	understand	that	we	only	know	
parts	of	the	whole	story.	Our	ways	of	observing	and	analyzing	good	designs	are	
limited.	Never	assume	that	you	know	everything	about	a	pattern.	There	is	
always	more	to	it.	
	
The	best	we	can	do	is	to	tell	a	story	about	the	patterns.	Such	a	story	unfolds	the	
inner	relations	of	the	wholeness	of	a	good	design.	However,	stories	are	never	
complete.	Each	stories	has	holes.	Sometimes	we	are	cutting	out	facts	for	
convenience	or	to	make	the	parts	fit.		
	
A	story	can	be	re-told	in	many	different	ways,	with	many	variations,	different	
levels	of	details,	and	commentary.	A	story	can	also	develop.	Parts	can	change.	
New	facts	emerge.	Elements	that	become	obvious	over	time	can	be	left	out.	



Elephants,	Patterns,	and	Heuristics:	Page	 21	

views	on	the	world,	and	on	solutions	to	agreed-upon	design	problems	in	particular.	
However,	their	validity	needs	to	be	tested,	as	does	any	theory.		
	
Arnheim	argues	that	the	kind	of	concept	created	by	contextually	viewing	objects	is	
better	 suited	 for	 reasoning	 about	 those	 objects	 in	 different	 situations	 and	 under	
different	 conditions.	 Our	 current	written	 forms	 for	 software	 patterns	 fall	 short	 in	
this	 regard—pattern	 depictions	 typically	 describe	 just	 enough	 context	 and	 forces,	
before	providing	a	stylized,	exemplary	solution.	For	the	most	part,	pattern	solutions	
present	a	contextually	 isolated	view.	While	 this	 facilitates	definition,	 classification,	
and	 learning,	 it	 does	not	build	 in	 the	mind	of	 the	 reader	 a	deep	understanding	of	
that	pattern	 in	a	 realistic	 setting.	And,	even	more	challenging,	 in	order	 to	 skilfully	
apply	 a	 pattern,	 a	 designer	 needs	 to	 be	 able	 to	 adapt	 a	 pattern	 to	 her	 specific	
context.		
	
Rather	 than	drowning	pattern	 readers	 in	even	more	 text,	 verbal	descriptions,	 and	
caveats,	we	propose	that	a	better	way	to	establish	richer,	more	productive	views	of	
patterns	 would	 be	 to	 present	 curated	 views	 depicting	 multiple	 instances	 of	
particularly	useful	patterns	in	situ.		Additionally,	designers	should	be	encouraged	to	
create	and	potentially	share	notes	on	the	heuristics	they’ve	used	to	adapt	patterns	
to	their	specific	contexts.	How	to	best	accomplish	this	(and	which	patterns	warrant	
such	curation)	is	a	topic	for	future	research.	
	
To	get	 the	 “right”	 views	on	patterns	 is	problematic.	Perhaps	 this	 shouldn’t	be	our	
goal.	Instead,	we	might	seek	augmented	ways	to	depict	software	patterns	that	allow	
for	 productive	 thinking	 and	 their	 creative	 application.	 There	 are	 many	 ways	 of	
seeing	 the	 world	 and	 organizing	 its	 structure;	 and	 there	 is	 always	 doubt	 as	 to	
whether	we	have	 seen	enough	of	 the	world	 to	 identify	 sufficiently	 stable	patterns	
(let	alone	good	examples	of	 them).	Patterns	 that	have	been	 identified	 in	a	pattern	
mining	process	are	fallible	in	principle	and	can	be	falsified	empirically.	If	a	pattern	
consistently	 fails,	 it	 needs	 to	 be	 rejected—perhaps	 the	pattern	description,	 or	 the	
pattern	 in	 its	 entirety.	 However,	 patterns,	 like	 all	 design	 heuristics,	 are	 fallible.	
Successful	 pattern	 applications,	 on	 the	 other	 hand,	 are	 corroboration	 of	 the	
adequateness	of	the	insight	provided	in	a	pattern	description.	
	
However,	pattern	descriptions,	or	any	other	account	about	design	heuristics,	are	not	
simply	 about	 finding	 the	 “truth”	 about	 good	 design.	 They	 are	 also	 design	 tools	 to	
generate	new	good	application.	Thus,	they	go	beyond	ordinary	theories.	The	quality	
of	writing	on	patterns	and	the	ways	patterns	are	depicted	matters	as	much	as	does	
the	adequateness	of	the	identified	pattern.	
	
	 	



Elephants,	Patterns,	and	Heuristics:	Page	 22	

References	
[Alex79]	Alexander,	C.	(1979).	The	Timeless	Way	of	Building.	New	York:	Oxford	University	Press.		
[AISJFA77]	Alexander,	C.,	 Ishikawa,	S.,	 Silverstein,	M.,	 Jacobson,	M.,	Fiksdahl-King,	 I.,	&	Angel,	 S.	 (1977).	A	pattern	 language.	
New	York,	USA:	Oxford	University	Press.	
[Appl]	Appelton,	B.	(2000).	Patterns	and	Software:	Essential	Concepts	and	Terminology.		
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html.	(1.7.2009)	
[Arn]	Arnheim,	R.	Visual	Thinking,		
[Baey]	Von	Baeyer,	H.	C.	Information:	The	new	language	of	science.	2004.	London:	Phoenix.		
[BHS]	Buschmann,	F.,	Henney,	K.,	&	Schmidt,	D.C.	Pattern-oriented	software	architecture.	Volume	5:	On	patterns	and	Pattern	
Languages.	2007.	West	Sussex:	John	Wiley	&	Sons.	
[Good]	Goodman,	N.		Language	of	art:	An	approach	to	a	theory	of	symbols.	Indianapolis,	Ind:	Hackett	Publishing	Co.	1976	
[Koen]	Koen,	 B.V.	Discussion	of	 the	method:	Conducting	 the	Engineer’s	approach	 to	problem	solving,	Oxford	University	 Press,	
2003.	
[Koh12]	 Kohls,	 C.	 The	 Path	 to	 Patterns	 -	 Introducing	 the	 path	metaphor.	 EuroPLoP	 2012.	 –	 17th	 European	 Conference	 on	
Pattern	Languages	of	Programs.	2012.	New	York:	ACM.		
[Koh14]	The	theories	of	design	patterns	and	their	practical	implications	exemplified	for	e-learning	patterns.	2014	
https://opus4.kobv.de/opus4-ku-eichstaett/files/158/kohls_patterns13032014.pdf	
[KP]	 Kohls,	 C.,	 &	 Panke,	 S.	 Is	 that	 true?	 Thoughts	 on	 the	 epistemology	 of	 patterns.	 Proceedings	 of	 the	 16th	 Conference	 on	
Pattern	Languages	of	Programs.	2009.	New	York:	ACM.		
[Evan]	Evans,	E.	Domain-Driven	Design:	Tackling	Complexity	in	the	Heart	of	Software,	Addison-Wesley,	2003.	
[Ris]	Rising,	L.	(1998).	The	Pattern	Handbook.	Cambridge:	Cambridge	University	Press		
[Wirf17]	Wirfs-Brock,	R.,	“Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?”,	PLoP	2017,	Proceedings	
of	the	23rd	Conference	on	Pattern	Languages	of	Programs.	
[Wirf18]	 Wirfs-Brock,	 R.	 “Traces,	 Tracks,	 and	 Trails:	 An	 Exploration	 of	 How	We	 Approach	 Software	 Design”,	 PLoP	 2018,	
Proceedings	of	the	24th	Conference	on	Pattern	languages	of	Programs.	
[Whit]	Whitehead,	A.	Process	and	Reality.	
	
	
	
	
	
	
	
	
	
	


