
Strangler Patterns
Joseph W. Yoder, The Refactory, Inc.—USA
Paulo Merson, Brazilian Federal Court of Accounts (TCU)—Brasilia, Brazil

Martin Fowler coined the term “Strangler Application” as a metaphor to describe a way of
doing an evolutionary rewrite of a system, keeping it working while you evolve it. The main idea
is to gradually create a new system around the edges of the old, letting it grow slowly over
several years until the old system is strangled. The microservices architecture style has become
very popular, and has been used to apply the strangler application to monolithic service-based
systems. This paper describes different strategies (patterns) for applying the strangler
application while evolving a monolith to use the microservices architecture style. The main ideas
are: Wrap the monolith and protect services and system from change, Start Small and gradually
evolve the system (baby steps), Pave the Road making microservices easier to create;
Macroservice first then split to Microservice, Add new functionality as microservices, Extract
Module / Component to Microservice, and Replace functionality with Microservice. As the
system evolve it is common to Proxy Monolith Components and Add Façade to the microservices

Categories and Subject Descriptors
• Software and its engineering ~ Agile software development • Social and professional topics

General Terms
Architecture, Sustainable Delivery, Patterns, Microservices, Monolith, Strangler, DevOps

Additional Keywords and Phrases
Software Development, Continuous Integration, Evolutionary Architecture, Pattern Sequences, Pattern Scenarios

ACM Reference Format:
Yoder, J.W., Merson, P. “Strangler Patterns”. HILLSIDE Proc. of 27th Pattern Lang. of Prog. (October), 25 pages.

Author’s email address: joe@refactory.com, pmerson@acm.org

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary
version of this paper was presented in a writers’ workshop at the 27th Conference on Pattern Languages of Programs (PLoP). PLoP’20,
October 12–16, 2020, (held virtually because of pandemic). Copyright 2020 is held by the author(s). HILLSIDE 978-1-941652-16-9.



Introduction
Over time even a great design can be compromised by successive architectural revisions,
especially as technical debt grows. In 1998 the claim was made that the architecture that actually
predominates in practice is the Big Ball of Mud [1]. Big Ball of Mud (BBoM) architectures are
still seen today. They are the culmination of many design decisions that gradually result in a
system that can be difficult to change and maintain. However, BBoMs usually do not result from
well-intentioned design ideas gone wrong. Nor are they simply an accretion of expedient
implementation hacks. Rather, they can be a mix of doing what it takes to meet business
requirements along with obliviousness to technical debt growth and no time given to address
these needs.

Since 2014 the “Microservices” architectural style has been increasingly adopted by many
organizations to better address business needs. Microservices encapsulate different parts of the
application as independently deployable units that contain their own application logic, data,
structure, and more. After the new term “microservices” appeared, previous systems or
architectures developed were labeled as “monoliths.” Unfortunately the term monolith gained a
bad connotation inasmuch these systems are viewed as legacy systems or BBoMs. Developing a
system using the monolith architecture style is not necessarily a bad design decision as outlined
by Richardson [2].

Many companies are successfully adopting the microservices architectural style and reaping
benefits such as shorter development times and increased flexibility for experimenting with new
ideas and technologies. However, most organizations have existing systems that were developed
before microservices and still provide value. As organizations evolve, a monolithic system can
become harder to maintain and hinder the ability to keep up with new business needs. The poor
flexibility of monoliths has driven many organizations to apply the microservices architecture
style which leads to the question: ‘What to do with the existing monolith?’

Martin Fowler coined the term “Strangler Application” as a metaphor in 2004 to describe a way
of rewriting an important system. The “Strangler Application” is based on an analogy to a vine1

that strangles a tree that it’s wrapped around. The main idea is to gradually evolve the system by
replacing / rewriting existing components or by adding functionality as new components, all or
mostly outside the old system until the old system has been “strangled,” that is replaced. Fowler
renamed this to “Strangler Fig Application.” The strangler application idea is independent of
services because you can evolve the system around the old without adding or evolving services.

This paper describes different strategies (patterns) to use when applying the strangler application
idea while evolving a monolith. Although this paper addresses database challenges when
applying these patterns, we deferred writing additional patterns on “evolving or decomposing the
database” while migrating your monolith. For a description of patterns that cover database
decomposition and the tradeoffs around data synchronization, transactional consistency, and
referential integrity, we refer the reader to Sam Newman’s book [3]. The paper provides an
overview of the patterns including some scenarios and sequences of use. This is followed by the
patterns. We use a modified Alexander style for the patterns which includes the context of the
pattern before the first bold problem statement [4]. This problem statement is followed by
discussion of the forces and then the solution discussion along with related patterns and resulting
context.

1 “One of the natural wonders of <the rain forests of the Queensland coast of Australia> are the huge strangler figs.
They seed in the upper branches of a fig tree and gradually work their way down the tree until they root in the soil.
Over many years they grow into fantastic and beautiful shapes, meanwhile strangling and killing the tree that was
their host.” https://martinfowler.com/bliki/StranglerFigApplication.html

Strangler Patterns–2



Pattern Language Overview
Typically a monolithic application is packaged as a single deployment file that runs on an
application server. The monolith consists of many components that may contain business logic
from various subdomains. These monolith components can include services, modules, libraries,
or any type of implementation. They also have dependencies among themselves that typically
increase over the years. Monolith components that are visible on the network may use protocols,
message formats, and API design standards that are not fully compatible with network calls
being used in new client applications. For example, the monolith may provide EJB services, and
new applications in Python are not able to directly call these services. The general scenario is
illustrated in Figure 1. The generic connector symbol (→) in the diagram may represent a HTTP
request to REST service, a platform-specific invocation mechanism, or an in-process call to
modules in the same deployment unit. In a real project scenario, different types of connectors
may be used in the design. Note that in this diagram the components appear to be mostly
decoupled but in reality, there is usually a lot of coupling in the monolith architecture. The red
“X” illustrates that new code is written to avoid directly accessing the monolith.

Figure 1—monolith general scenario

One of the first decisions to make is whether to completely rewrite the monolith or apply
Strangler. Sometimes rewriting the monolith is the right approach. Sometimes the monolith
needs to be reconceptualized and implemented from scratch (possibly using microservices).
However, it is usually the case that the cost and duration of a complete rewrite make it infeasible.
If the monolith has become hard to maintain, is hindering new projects, and rewriting it is not a
viable path, then it is time to apply Strangler and gradually migrate the monolith. Once you have
decided to do an evolutionary application of the Strangler, there are many possible variations.
Figure 2 is a pattern map of various “strangling” approaches and the relationships between the
patterns. Monolith Application and Complete Rewrite to Microservices noted in italics are not
considered part of the patterns presented in this paper.

Strangler Patterns–3



Figure 2—Strangler Pattern Map

Once the decision has been made to apply the Strangler, it is usually a good idea to decide
whether you need to protect the system from change by Wrapping the Monolith. Wrapping the2

Monolith is commonly achieved by creating a proxy or façade for existing external systems. If
the team is facing their first microservice project, you need to make sure you have the
infrastructure and the environment (both technical and organizational) to make it easier to
implement microservices (Pave the Road). Once you have done this it is time to start writing
your first microservice. Starting Small—by having a team implement some new
functionality—is a good way to learn about microservices principles. Once one or a few
microservices have been successfully created, the team might redirect any new development
efforts to use Microservices First. Sometimes you are not sure how big the microservice should
be so you might start with a bigger service then refactor it to smaller services as you learn the
domain and more about microservice design (Macro then Micro).

As more teams start to implement using microservices, the strangling dynamics will repeatedly
look into monolith components that are causing pain in order to turn them into microservices.
When the target components are tightly coupled within the monolith, you can decide to Replace
as Microservices by freezing the functionality in the monolith and completely re-implementing
the functionality with microservices. Other times, it is feasible to refactor and move components
out of the monolith, implementing them as microservices. In this situation, the microservice may
expose a different contract or use a different type of connector and message format. A design
solution is needed to address the discrepancy between old client components, inside or outside
the monolith, and the new microservice. The two alternatives are Extract Component and Add
Façade and Proxy Monolith Components to Microservices.

2 This has not yet been written as a pattern but could be. It is one of the first decisions that should be made. Wrap the
Monolith can be considered an implicit pattern.

Strangler Patterns–4



Strangling Scenarios
The strangling process involves preparation, writing your first microservices, and extracting
functionality to microservices. As you start (preparation), an early decision is whether you
should Wrap the Monolith to facilitate existing clients to use the microservices that will replace
parts of the monolith. By clients we mean any existing code, components, or systems that are
accessing the monolith. Some of this client code could be from a third party which you cannot
change; this wrapping can be seen as an API gateway [2] for accessing the new system the old
way—as well as accessing the old system the old way during the transition. Paving the Road by
providing infrastructure, templates, and training can make it easier to implement microservices
and help with beginning the transition to the new architecture.

Starting Small and taking baby steps is generally a good way to begin, especially because this
helps build the infrastructure for microservices and provides the opportunity to learn about
microservice best practices. This is generally done by having a team add selected new
functionality by applying the Microservices First strategy, thereby learning about the
microservice architectural style. Once you get started, there are various scenarios that can be
taken during strangling. The following outlines a few scenarios. They are not an exhaustive list
of scenarios, rather they are some common examples that illustrate going through the sequence
of steps mentioned above.

Add New Feature Scenario: When you need to add new functionality, implement it as a
microservice wherever possible. This directive is called the Microservices First strategy and it
can be done in many ways. For example, you could implement a small piece of functionality as a
microservice, calling it from the monolith or external clients. Another strategy would be to
Extract Component and Add Façade. This extraction is especially beneficial for new
functionality that extends or replaces old functionality in the monolith that became hard to
change and evolve. As you learn the domain, you might start implementing a larger
microservice. Once you have successfully implemented and released it, and as you learn more,
you then refactor it into smaller microservices. This is called Macro then Micro.

Pull out Painful Pieces Scenario: You have different components from the monolith you want
to extract to microservices. For example, there might be painful areas within the monolith that
are causing issues when adding new functionality or changing existing functionality. The desire
is to make it easier to make changes or add new functionality without breaking the system.
Extract Components and Add Façade from the monolith enables the team to make changes to the
system or add new functionality related to these modules while minimizing potential issues with
the monolith. Sometimes the code is tightly coupled in the monolith. One way to approach this
problem is to freeze the functionality within the monolith and completely rewrite it using
microservices. This is known as the Replace as Microservice strategy. While doing this you
might need to Proxy Monolith Components to Microservices. Usually you cannot tease out or
rewrite small pieces from the monolith, so you might start with a larger component or service
and then refactor it later (Macro then Micro).

Can’t Use That Protocol Scenario: The organization has already Paved the Road and has been
successfully using microservices for new software solutions for a few years. There is a legacy
monolithic application that uses an old communication protocol no longer supported in new
solutions. Part of the functionality in this monolith is now required by new microservices. We
employ the Replace as Microservice pattern and rewrite that functionality as a microservice.
When the rewrite is complete, we make the new microservice known to other teams. A team that
has a software solution that uses the functionality in the monolith decides to use the new version
in the microservice. This team and the one that created the microservice work together to

Strangler Patterns–5



implement a façade that can do the translation per Extract Components and Add Façade. Other
teams that use that functionality in the monolith gradually follow suit. If the original
functionality is part of a larger component or service, then you can refactor it into smaller pieces
later (Macro then Micro).

Strangling Sequences
This section outlines sequences of steps for the following stages of the strangling process:
Preparation, Writing your first Microservices, and Extracting Functionality to Microservices.
These are typical sequences the authors have seen that can be applied when strangling a
monolith, but many other sequences are possible and may be advisable in different
organizational and technological contexts.

Sequence of Steps for Preparation:
● Decide whether to Wrap the Monolith

(if so apply standard wrapper patterns)
● Start applying the Strangler Application

○ Start Small
○ Pave the Road
○ Microservices First

● Fine tune as needed

Sequence of Steps for Writing your First Microservices:
● Start Small (1–2 teams) which may do any of the following

○ Pave the Road (building up infrastructure if needed)
○ Microservices First (write new code as microservices)

● As you write your Microservices, consider any of the following
○ Macro then Micro as you learn microservices and the domain
○ Where possible, Extract Component and AddFaçade

● Proxy Monolith Components to Microservices if needed
● Repeat (as many times as needed)

Sequence of Steps for Extracting Functionality to Microservices:
● Decide to rewrite or extract

○ If you can extract, then Extract Component and Add Façade
○ For larger components, extract Macro then Micro
○ If you have to rewrite, then Replace as Microservice

● Proxy Monolith Components to Microservices as needed
● Repeat (as many times as needed)

Strangler Patterns–6



Strangler
aka Strangle the Monolith, Evolve System with Microservices

https://pixabay.com/users/debrajean-153318/

You have a monolith that has been providing value to your organization for some time. The
software requirements are changing more rapidly than your organization can accommodate;
adapting the software, adding features, and managing existing features in the monolith are
difficult due to: (i) significant coupling between components in the monolith, or (ii) significant
synchronization complexity in the deployment process among the teams working on the
monolith. Sometimes the need for rapid changes to the software comes with a need for the
organization to evolve and grow.

The decision has been made to evolve to using the microservice architecture style.

How can we start evolving the overall architecture to better meet the needs of the
organization, specifically an evolution to microservices?

❖ ❖ ❖

A legacy monolith is used by several client applications; the monolith and those applications are
still providing value to the organization.

There is a lot of code and tight coupling within the monolith that make rewriting it expensive.
Adding functionality to the monolith is becoming harder and sometimes creates bugs.

There is a desire and sometimes potential benefit to use new protocols and technologies.
However, client applications make use of the monolith by calling services that use old protocols
and technologies (e.g., SOAP, EJB) or by adding module dependencies to the monolith and3

directly calling the logic inside it.

New applications being developed use different technologies, programming languages,
frameworks, and API design standards from those used for the monolith, thus limiting reuse of
the monolith by these new applications.

Deployment becomes difficult—it requires testing the whole system because the changes might
have affected other functionality. You also have to redeploy the whole system with downtime
that is increasing with the size of the deployment unit.

3 We use the term module dependency to denote the directive that makes module A visible (and callable) to module
B, both modules running on the same VM. An example would be a compile dependency to a JAR library file in the
gradle build file of a Java application. Another example would be a Python package (library) listed in a
requirements.txt file of a Python application.

Strangler Patterns–7



❖ ❖ ❖

Therefore, gradually create microservices that are independent of the monolith, growing
them in number over time until the monolith is replaced (strangled) by the new
microservices.

You have a useful legacy system that is a monolith. There is the need to develop new
applications that use different programming languages, different frameworks, or simply newer
incompatible versions of languages or frameworks. Consequently, these new applications cannot
directly call components in the monolith. Perhaps the software needs to evolve or grow rapidly,
but it is getting harder to evolve the current system. The following situations can complicate the
process of transforming a monolith to microservices:

● A monolith uses old versions of libraries and frameworks. Developers want to upgrade to
the latest versions, but the upgrades are not fully backward compatible and require
updating a lot of code in the monolith. These upgrades have been postponed time and
again over the years, and now the discrepancy between the old version and the latest
makes the upgrades costly and risky.

● The monolith was written in a programming language that is no longer the best choice for
the current context at the organization.

Extracting logic out of the monolith into microservices may create a situation where the same
logic needs to be accessed by both old and new client components. Existing clients need to
access the logic the old way, and new clients will access the logic the new way, using current
protocols and API standards. A general approach is to create a proxy or façade for old external
systems or client components (see Figure 3). This façade sits between the client components and
the logic that exists in the monolith which is being moved to microservices.

Figure 3—Strangling Evolution

Initially, this façade doesn’t do anything but pass all traffic, unmodified, between old client
components and the legacy application (monolith). This approach is a way to Wrap the Monolith
to protect old clients from change. As microservices replace monolith components, this façade
transcodes protocols from old clients into the protocols, technologies, and contracts used by the
new system being created. Note this could be a two-way façade as there could be communication
coming back from the monolith to the old client components.

Strangler Patterns–8



Eventually the legacy monolith becomes strangled and can be removed. This evolution is
notionally represented in Figure 3. Note that even when the strangling is complete, there could
be some old client components that might not be updated thus still needing the façade.

* * *

Many people don’t consider Strangler because they believe it will cost more—specifically
because you have the old and new systems to maintain. However, trying to refactor or
completely rewrite the monolith can be costly and time consuming. An important reason to
consider Strangler over a cut-over rewrite is reduced risk. Another is cost amortization, because
many organizations cannot afford an overall rewrite of the monolith in a single undertaking. The
main idea is to incrementally migrate functionality from the monolith to the new strangler
application, focusing on high-value items or tasks first.

One goal of strangling is to make it an evolutionary process. It is a good idea to Start Small and
Pave the Road. Also it is desirable to make it so that changes do not break existing functionality
and to limit making changes to any client code that needs access to the new microservices (Wrap
the monolith). There are different variations that can assist with this goal. One way is to Extract
Components and Add Façade. This pattern enables any client calling code to continue to access
the desired functionality. Other times you could rewrite parts of the monolith (Replace as
Microservice) and Proxy Monolith Components to Microservices, thus any old monolith code
will continue to work.

Applying Strangler enables the system to continue to provide value as the system evolves.
Having many frequent releases helps you monitor its progress while adding new functionality,
thus making sure the monolith system continues to function properly. As features are migrated to
microservices, parts of the monolith become strangled and these parts can be retired.

Even with the above mentioned benefits there are also trade-offs when applying the Strangler.
The main challenge is related to data. A monolithic application typically uses a centralized
database, whereas microservices typically follow the Database per Service pattern [2]. The
simplest alternative is for an extracted microservice to directly access the monolith database, but
that alternative creates undesirable coupling and, if applied, should be temporary. There are
different alternatives for “extending the strangling” to the database using database refactoring
[5]. A common alternative requires replicating the data across a dedicated microservice data
store and the monolith data store. This option increases the design complexity, requires the
implementation and constant overseeing of a data synchronization mechanism, and may cause
the monolith and/or the microservice to access stale data due to the eventual consistency setup.
Another challenge of the Strangler is the extra effort to maintain and govern two types of
software architectural styles—the monolith and the microservice—that typically use different
implementation technologies, runtime environments, infrastructure elements, and deployment
procedures. This technology diversity may significantly increase the total cost of ownership
(TCO) for the organization. Finally, because the strangling process is usually a gradual evolution,
it can take quite a bit of time to take advantage of the new architecture.

An idealistic goal is to completely strangle the monolith (the monolith is gone). Although you
might be able to completely strangle the monolith, there are cases where the benefit of doing so
will not be worth the effort. Sometimes, part of the monolith can provide value and feeds the new
microservices architecture, but is not worth completely rewriting. For example, some core pieces
of the monolith are providing value and not changing. You have wrapped these pieces so that
they are easy to use. Perhaps a core piece of code is entangled and quite difficult to rewrite or
extract; it could make sense to leave this code as-is. This is especially true if you have addressed
the essential problems in the monolith and don’t need to go any further.

Strangler Patterns–9



Start Small
aka Gradually Evolve the System, Baby Steps

https://www.shutterstock.com/g/Prayandhope

You have a monolith that has been providing value to your organization. The software is growing
and changing quickly, and evolving the monolith is getting harder. The decision has been made
to use the microservice architectural style.

How can we start evolving to microservices?

❖ ❖ ❖

The organization wants to minimize or amortize cost to evolve to the new microservice
architectural style and would like to do this fully as soon as possible.

The organization is not ready for a major move to microservices in terms of infrastructure and
operational practices. The operations team worries about the prospect of microservices creeping
everywhere.

Teams and people want to start right away and successfully implement microservices.

Only a few of the developers have the technical skills and the drive to create microservices.
Thus, we look to these developers to overcome the hurdles in creating the first microservices,
and show the way to the others.

❖ ❖ ❖

Therefore, take baby steps when starting. Start small, either by writing some new
functionality with a microservice or take out a small piece putting it into its own service.

The main thing here is to start small. This can be done either by implementing something simple
or by pulling a few existing items out of the monolith. This is a good way to warm up if you have
some simple and fairly decoupled capability. Figure 4 illustrates that these initial steps toward
microservices can involve moving a simple component out of the monolith (X in the figure,
which is recreated as microservice X'), as well as creating new logic as microservices (Z in the
figure). The diagram shows that a new microservice (Z) may need to make service calls to the
monolith, which is still a one-stop shop for most functionality. Figure 4 shows a fairly decoupled
component (X) being removed from the monolith and reimplemented as a microservice (X').
Extract Component and Add Façade and Proxy Monolith Components to Microservices provide
solutions if you need to adapt existing clients to call X'. The scenario where component X is
being called by other components within the monolith is addressed either by adapting those calls
to call X' or by the design solution described in Proxy Monolith Components to Microservices.

Strangler Patterns–10



Figure 4—Start Small example

Note that evolving to microservices requires a minimum level of operational readiness. It
requires having a DevOps deployment environment, with a continuous delivery pipeline to
independently build, test, and deploy executable services, and the ability to secure, debug, and
monitor a microservice architecture. Operational readiness maturity is required whether we are
building greenfield services or decomposing an existing system. These early baby steps can help
teams understand microservice architecture better, including getting the needed infrastructure in
place. This evolution to operational readiness impacts the organization which will need to evolve
and adapt practices.

* * *

This pattern is closely related to Pave the Road, which can add organizational and technology
elements that encourage and enable the successful initial steps prescribed by Start Small. Adding
these elements doesn’t happen at once. More likely, the organization will run a pilot microservice
project that will drive the adoption of tools, technologies, and practices. This pattern is similar to
Baby Steps in Fearless Change [6].

The Start Small pattern sometimes uses the Macro then Micro approach where you extract some
components from the system into services and if needed Proxy Monolith Components to
Microservices. It might be a small simple step to extract something larger from the monolith and
as you learn. You then later further refactor them into smaller microservices. Once you have been
successful Starting Small, the organization can begin to use the Microservices First strategy,
avoiding adding anything to the monolith.

The main advantage to Starting Small is that the organization does not incur the high cost and
risk of a widespread change in technology. Initial microservice projects face several challenges
and technical roadblocks. By Starting Small, future microservice projects won’t have to pay the
same price because you are able to apply principles that you learn from these beginning projects.
Also by Starting Small, you can potentially get some benefits sooner from microservices (new
technologies, small changes, etc). On the downside, microservice adoption will take longer and
you have to maintain and govern the old monolithic systems as well as the microservice
solutions for a long time. The diverse technology increases the total cost of ownership (TCO).
Finally it takes longer to get the full benefits of the new architecture because there is this slower
evolutionary process, specifically because you are taking baby steps rather than “commit and
move forward” with most of your teams.

Strangler Patterns–11



Pave The Road
aka Make Microservices Development Easier

https://www.shutterstock.com/g/coramax

The decision has been made to evolve an existing monolith to use the microservices architecture
style. This has organizational consequences.

How can we encourage teams and make it easier to write microservices?

❖ ❖ ❖

Some developers are excited about creating microservices and hence experimenting with
microservice-related frameworks and technologies that are new to them.

The organization has little or no experience building cloud-native or microservice-based
applications.

The monolith is deployed through a ceremonial process that requires the coordination of different
development teams and operators. This process hinders organizational agility.

The practices, policies and technologies for establishing a DevOps environment are not in place.
Developers are not familiar with containerization, continuous delivery, log consolidation, and
other recommended practices for microservice solutions.

❖ ❖ ❖

Therefore, make it easier to develop microservices by providing templates, training,
policies, and infrastructure elements that set the fundamental environment for creating
microservices.

There are many ways to Pave the Road. The first thing is to get the infrastructure up and running.
To be successful with microservices it is important to have a good DevOps environment. This
includes an automated pipeline of building, good tests, deployment, and monitoring as part of the
process. Documenting this process and sharing the best practices with examples is another good
early practice to help Pave the Road.

Another thing beneficial for teams is to provide a way to generate or build the core of a new
microservice. Sometimes this is through code generation or using some descriptive data that can
be interpreted. Other times it is useful to have templates or examples. A combination of these
techniques can be used. Following are a list of several potential solutions that can be applied to
ease the tedious programming tasks for creating new microservices:

Strangler Patterns–12



● Define processes and set up tools that provide the infrastructure for automating the
pipeline for building, testing, and deploying the microservices.

● Create simple examples, templates, and/or scripts to show developers how to write the
microservice.

● Develop a tool that generates the core microservice from a higher-level specification or a
wizard tool such as a DSL for microservices. This requires a lot of effort and is done only
when an organization is growing a lot and is mature in microservices development.

● Design and document a reference architecture for microservices. This should include a
description of the various components and connectors, and any implementation details.

● Hire experienced people and provide training and/or mentoring.

There are many things to consider when deciding on an appropriate solution. Our advice is to do
the simplest thing possible that minimizes your maintenance effort and evolve as you learn. This
includes both the effort required to develop your microservice including building the pipeline
and deploying (DevOps).

Paving the road for microservice projects includes several technology elements related to the
microservice runtime environment, such as containerization, container orchestration, log
consolidation, monitoring, and distributed tracing. It also includes DevOps practices, some of
which require infrastructure and tool automation; for example: continuous delivery [7],
Externalized configuration [2], and infrastructure as code [8]. Many organizations hire
microservice experts to avoid risks and expedite the learning of the new environment. With or
without an expert in the ranks, the organization will typically launch a pilot microservice project.
The team for this project should have ace developers that are also good at transferring
knowledge. They shall pave the road while building the pilot project and documenting what is
needed for other teams to follow their steps. The documentation can take the form of README
files, instructions on a wiki, architecture decision records [9], a template for microservice
projects, a reference architecture, and more.

Another important consideration is to rethink the way applications deal with persisted data, as
they move from a more centralized database approach to the typical data decentralization used in
microservice architectures. For example, there might be the need to use the Saga pattern [2] in
place of the original single-connection transaction in the monolith.

* * *

This pattern goes hand in hand with Start Small. An initial small microservice project might be
the pilot project that will shed light on the various new technologies and tools that get to be
adopted for microservice development. This pattern is similar to Paving the Wagon Trail [10]
from the perspective of creating templates, scripts, or DSLs. However this pattern also talks
about other things that help, such as building the infrastructure, documentation, training, and
hiring good people.

One of the main benefits of Paving the Road is that it creates an Easier Path [6] for developing
microservices. New teams or people can roll out their first microservices quicker, by learning
from the examples, documents, and templates created by the pioneer teams that Paved the Road.
On the other hand it requires a lot of time and effort for building the software, process, template,
docs, etc. Some of these can be difficult such as DSLs. Also there are maintenance issues
associated with these items. The initial microservice projects that will Pave the Road will take
longer and require a high upfront investment that will only pay off later.

Strangler Patterns–13



Microservices First Strategy
aka All new functionality as Microservices

The decision has been made to evolve to using the microservice architectural style. The
organization has Started Small and Paved the Road toward using microservices.

How can we encourage people and teams across the organization to start evolving to
microservices?

❖ ❖ ❖

During the long-running process of strangling a monolith, it’s natural that developers and
especially managers feel inclined to add pieces of functionality to the monolith. Doing so is
typically faster and less expensive than providing the same functionality as a microservice. If
there are no design standards or policies set forth to require new functionality to be created as
microservices, the monolith may see occasional growth despite the strangling effort.

Many developers work on the monolith. Some of them may not fully engage in microservice
development, perhaps because they didn’t get acquainted with the new technologies and tools.
These developers are more prone to keep adding code to the monolith, including services that
should be created as microservices.

Some in the organization—possibly new to the organization—feel the urge to create
microservices. They see potential technical and business benefits.

The shiny new object effect: microservices is the shiny new technology and some developers
want to experiment with it.

There are certain requirements or needs that could benefit from new technologies that are hard to
implement within the monolith.

❖ ❖ ❖

Therefore, whenever adding any new functionality, whenever possible add it as a
microservice. This directive includes making it easier to add the functionality as a
microservice and to also make it harder to add the functionality in the monolith.

The main objective is to avoid or contain the growth of the monolith. Sometimes this is done by
communicating and encouraging teams to add new functionality using microservices. Some team
members or developers are excited to do this and the system can start to see some of the benefits.

Strangler Patterns–14



Teams can also be encouraged by creating templates or examples (Paving the Road) making it
easier to add the functionality with microservices.

On the other hand it is usually the case that many teams and developers are more comfortable
with changing the monolith and will be tempted to take the more expeditious way to add the new
feature by relying on what they have always done in the past. In these cases organizations might
want to take the approach of adding “speed bumps” such as using a governance committee. This
committee permits new code to be added using microservices, but if you want to change the
monolith, you need to convince the committee why the change should be done this way. Figure 5
illustrates this situation.

Figure 5—Microservices First Strategy

* * *

When applying the Microservices First Strategy, you often Start Small and apply Macro then
Micro. While implementing a new requirement with a new microservice, you can sometimes see
where to Extract Components and Add Façade; other times you will Replace as Microservice
some functionality. While adding new microservices, you will Proxy Monolith Components to
Microservices as needed.

An advantage of Microservices First is that the organization can expedite the migration to
microservices thus reaping the benefits of microservices throughout the organization sooner.
There is an additional advantage of not making things worse in the monolith. However it is
possible that it could take longer to implement new features as you cannot quickly add the
feature in the monolith such as using copy/paste techniques. Also, there is a cost for providing
the training, tools, people and support for microservices. Finally there is time and effort for
setting up a governance committee which also can slow down any development that needs to be
done in the monolith.

Strangler Patterns–15



Macro then Micro
aka Divide and Conquer

The decision has been made to evolve to using the microservice architectural style. Parts of the
monolith include larger pieces that can be componentized and possibly extracted.

How can we pull pieces out of the monolith and migrate them to be implemented with
microservices?

❖ ❖ ❖

The monolith is a large deployment unit that encompasses functionality pertaining to different
subdomains. Some changes to the system require changes across subsystems, sometimes creating
bugs or other issues. Teams don’t have a full understanding of the domains and subdomains.The
monolith has certain larger components where analysis has shown that pieces can be broken out.

There is a desire to pull out pieces that are causing pain and start using new protocols, languages,
and more—specifically by implementing pieces using microservices.

There are different development teams that work on different parts of the monolith. These teams
would like to change the system without affecting large parts of the monolith or without having
to release the monolith.

Static-code analysis and other architecture conformance mechanisms were not used during most
of the monolith evolution. Developers had freedom to take shortcuts and add dependencies
across components within the monolith when implementing new features or fixing bugs. As a
result, the monolith is significantly tangled. Component interdependencies make it difficult to
isolate fine-grained, cohesive components.

There are some larger components that contain a lot of smaller pieces of functionality that can be
pulled out into their own component(s) or service(s).

❖ ❖ ❖

Therefore, pull out pieces that you can extract even if they might be a larger “macro”
service. After extracting, refactor to break the larger service down to smaller
microservices.

This approach can also be followed when creating a microservice, especially if you are still
learning the domain. For example, you might create a larger service and then see where you can
split it into smaller pieces. Domain modeling techniques such as domain-driven design (DDD)
can help see the boundaries to better separate into functional pieces with better boundaries.

Strangler Patterns–16



This strategy is more challenging when trying to extract pieces out of a monolith. A monolith
usually has larger pieces or components that are tightly coupled and harder to extract as smaller
pieces without a lot of refactoring. In these cases pulling out a larger piece can make the effort to
refactor easier. An example can be seen in Figure 6. In this example the “Buy Service” is first
extracted out of the monolith. This service is a first step toward microservices, but it can be a
larger service especially if it has some couplings which make it difficult to extract into smaller
pieces. Once this intermediary solution is stable, we can more easily separate the “Buy Service”
into two separate functions such as “Shopping Cart” and “Checkout” services seen in the
example. Once the service is extracted out, new clients can begin to access and use the
functionality of the new microservices.

Figure 6—Macro then Micro Evolution

* * *

Sometimes you can apply the Macro then Micro strategy by Extracting Component and Add
Façade, then break it down into smaller services. If the functionality is tightly coupled in the
monolith, you may need to completely rewrite the functionality (Replace as Microservice).
Whenever the monolith needs to access new services, you can Proxy Monolith Components to
Microservices.

An advantage to Macro then Micro is that teams can take advantage of microservices sooner
while they learn how to evolve the domain to more manageable pieces. Sometimes you don’t
know where to partition the domain, and this pattern allows you to extract functional pieces
(albeit larger than desired) then break them down later (divide and conquer). These larger
functional pieces are usually modeled around bounded context pieces of the domain. Note in
Figure 6, “Buy Service” is well defined as a subdomain part of e-commerce and thus could
evolve to smaller pieces within that bounded context. Domain Driven Design (DDD) [11] has
become a popular technique for modeling the domain and finding the right size services as the
system evolves.

Strangler Patterns–17



Replace as Microservice
aka Extract to Service, Replace as a Service

The decision has been made to evolve to using the microservice architectural style. Parts of the
system have been written using microservices. Other parts of the system that are changing a lot
are still in the monolith and causing some challenges.

How can we extract important tightly coupled monolith components to microservices with
minimal impact?

❖ ❖ ❖

New features typically require several pieces of the monolith to change in a coordinated fashion.
You would like to extract parts of the monolith that are changing a lot to use the microservice
architectural style. However, the monolith is tightly coupled with many dependencies between
internal components.

You would like for teams working with the monolith to evolve and take advantage of new
technologies. However, the team that is responsible for the monolith might not be willing to add
features or evolve the monolith in any way. The team might have budget or time constraints, or
maybe the monolith is a legacy system that uses deprecated technology and they simply decided
not to evolve it.

The organization has moved to use continuous delivery for the deployment of its software
solutions to improve agility and shorten the build-test-deploy cycle. However, the monolith has
grown large and it is getting hard to change it without affecting large parts of the system. Also,
its deployment requires the coordination of several development and DevOps teams, making it
infeasible for continuous delivery

❖ ❖ ❖

Therefore, reimplement critical components or functionality from the monolith as
microservices. While doing this, lock down this part of the functionality in the monolith.

Some core pieces of functionality are tightly coupled within the monolith, and hence are almost
impossible to extract from the monolith. The functionality in these core pieces is nonetheless
needed outside the monolith, and it would be useful to make them available as microservices.
This scenario warrants the option to rewrite a component that provides core functionality as a
microservice—an example of such component is X in Figure 7. The new version is microservice
X', and it becomes the primary locus for that functionality. The original component X in the
monolith is locked down (frozen) from evolution. New client components should call
microservice X' instead of X. As microservice X' evolves, a client component of X inside the

Strangler Patterns–18



monolith may need to access functionality that is in the microservice. In this case, there are two
main alternatives. One is to rewrite the client component to call X', as shown in Figure 7 for
component Y. The other is to have component X proxying calls to new features in X', as
described in Proxy Components to Microservices. This alternative could be in use for Z and W in
Figure 7.

The following outlines the steps for the Replace as Microservice approach.

● Code-freeze the functionality in the monolith.
● Create a new microservice implementing the functionality that you want to replace.
● Canary Release [7, 12] the new microservice while carefully testing.
● Gradually make old client components call the new microservice instead of the old

component in the monolith.
● Eventually remove the extracted functionality if feasible.

Figure 7—Replace as Microservice Evolution

* * *

Sometimes the part of the system you want to extract is tightly coupled and hard to extract. In
these cases, you lock down (freeze) code changes to this functionality in the monolith. If any
components need access to the new features in X', then they can either directly call X' or you can
Proxy Monolith Components to the Microservice from X to X'. If Y is a larger component, you
can apply the Macro then Micro approach.

If on the other hand, you can refactor part of the system into components or modules, removing
some dependencies, then you can use the two patterns discussed next, Extract Component and
Add Façade and Proxy Monolith Components to Microservices.

Replacing functionality with microservice provides flexibility and the benefits of being able to
use new technologies, frameworks, and platforms. Also, teams can experiment with new ideas
with less risk of breaking the monolith. On the other hand, the organization loses the benefit of
adding features in the monolith for that frozen piece of code. Also it can be complex for pieces in
the monolith to take advantage of the new features implemented in microservices. Finally, there
could be data-syncing issues between the data store in monolith and data stored in the new
microservices; specifically in the data used in the frozen code.

Strangler Patterns–19



Extract Component and Add Façade
aka Extract Service and Add Façade

You have Started Small, Paved the Road, and began using microservices as part of your
implementation. You have a monolith that has been providing value to your organization, but has
become hard to change. There is some functionality you want available as a microservice New
client applications need to use functionality in the monolith but require a different contract.

How can we make monolith functionality available as microservices without affecting
existing client applications that access the monolith?

❖ ❖ ❖

Components from a monolith are being transformed into microservices as part of a long-term
strangling process. These microservices use new component technologies, message protocols,
and data formats that are different from what components in the monolith use. However,
adapting the monolith to use the new technologies and message formats used in microservices
can be expensive and difficult to implement.

There are existing client applications that use components in the monolith that are being
extracted as microservices. However, due to technical or organizational constraints, updating and
redeploying these old client applications to call the new microservice instead of the monolith
components may not be feasible.

The organization may have an API gateway or a similar application integration element available
in their runtime infrastructure. However, this element is not currently being used to centralize
calls to the monolith.

Teams developing in the monolith would like to take advantage of features provided by the new
microservices being developed. However, due to technical constraints, it can be difficult for
components in the monolith to make calls to the new microservices.

❖ ❖ ❖

Therefore, extract functionality out of the monolith into microservices, add a façade to
route calls and transform messages as needed.

Components are gradually extracted from the monolith and redesigned as microservices.
Sometimes this is straightforward as there are components or services within the monolith that
are not tightly coupled and can be extracted and wrapped as a microservice. If this is not the
case, you might need to Replace as Microservice. Existing client applications or components that
use services moved out of the monolith can be handled as follows:

Strangler Patterns–20



● They can be rewritten to call the microservices. This option takes time to be rewritten and
may not be achievable before these components become microservices.

● They can remain unchanged and have their calls go through a routing interceptor—the
façade component. The façade component performs the protocol bridging and message
transformations for the existing client components to interact with the new microservices.

Figure 8 illustrates the application of this pattern to component X. The component is extracted
and becomes microservice X'. An API Gateway or similar application integration product is a
good candidate for the implementation of the façade element. Another option is to use the
Backend for Frontend (BFF) pattern [2] to implement the façade logic. This approach is similar
to the Wiping Your Feet at the Door pattern [10] and can be considered a type of an
anti-corruption layer [11]. Note that façades are related to adapters, decorators, mediators, and
proxies [13].

In addition to protocol bridging and message transformations, the façade component, which acts
as a reverse proxy, can perform several operations, such as security controls, dynamic message
routing, traffic monitoring, circuit breaker, and even caching. Figure 8 also shows that a new
client application may also call microservice X' directly, if the extra features of the façade just
mentioned are not required for this interaction.

Figure 8—Extract Component and Add Façade

Note that in this example, X is decoupled from the rest of the monolith. Usually some detangling
is needed to extract the component. If components inside the monolith were clients to X, then
you can either adapt those clients to have them calling the new microservice X' through the
intercepting façade, or if possible adapt them to directly call X'. Alternatively you could Proxy
Monolith Components to Microservices, making X be a proxy to X'.

* * *

Whether you are Starting Small or not, you can Extract Component and Add Façade whenever
desired functionality in the monolith can benefit from being moved to a microservice. Sometimes
while doing this you may need to apply Macro then Micro. Some components can be extracted to
microservices even if you need to rewrite some functionality (Replace as Microservice). Either
way, for any functionality in the monolith that needs access to the extracted behavior, you can
Proxy Monolith Components to Microservices.

The façade component has the benefit of enabling existing clients to seamlessly interact with the
newly created microservice. However, there are trade-offs to consider. The façade is an
intermediary that introduces a performance overhead. If not properly designed and monitored, it
may become a performance bottleneck and a single point of failure. Besides, its implementation
may use platform-specific technology that generates coupling to a given framework or platform.

Strangler Patterns–21



Proxy Monolith Components to Microservices
aka Proxy Monolith Service to Microservice

You have a monolith that has been providing value to your organization and parts of the system
are becoming harder to change.

How can logic that was once in the monolith and is now implemented as microservices be
accessible to existing and new client components?

❖ ❖ ❖

During the long-running process of strangling a monolith, components in the monolith are
gradually replaced with microservices. The microservices may use protocols and message
formats that are different from what is used in the monolith. However, evolving the monolith to
use the same standardized message formats used in microservices can be expensive.

There are old client applications that use a component in the monolith that is being extracted as a
microservice. You would like these clients to take advantage of features provided by the new
microservices. However, due to technical or organizational constraints, updating and redeploying
these old client applications to call the new microservice instead of the monolith component may
be challenging.

You would like to have the monolith take advantage of the new features provided in the
microservices. It is technically feasible for components in the monolith to make calls to the new
microservices. However, the cost and risk of updating a large number of components in the
monolith to call the new microservices is high.

❖ ❖ ❖

Therefore, as you move functionality out of the monolith components into micro services,
keep the old components in the monolith solely as proxies to redirect calls to the new
microserves.

In this variation of Strangler, old client components remain unchanged. Monolith components
that were rewritten as microservices no longer process the calls. These components still expose
the same contract, but all they do now is to route calls to the new, microservice-based
implementation. Therefore, instead of adding a façade interceptor component, in this variation
we have the monolith components acting as proxies to the new microservices—in a sense, the
monolith is being converted into a façade. Because new microservices may have different
contracts, monolith components acting as proxies may need to perform the message
transformation and protocol bridging.

Strangler Patterns–22



Figure 9 illustrates the application of the pattern to components X and Y. The components are
extracted and become microservices X' and Y'. The diagram illustrates the fact that extracted
services can be synchronous or asynchronous. For example: service Y' can be a synchronous
REST service, and service X' can be a consumer of a message queue (e.g., a Kafka topic) and
hence be activated by asynchronous messages or events. In this example Y is proxying directly
to Y’, while X is proxying by sending a message to a queue that X’ subscribes to.

Figure 9—Proxy Monolith Components to Microservices

* * *

Whether you rewrite pieces in the monolith (Replace as Microservice) or Extract Components
and Add Façade, if components in the monolith need access to the new microservices, it is
common to Proxy Monolith Components to Microservices. There are possible failure scenarios
inherent in distributed systems that must be dealt with when applying this pattern. These failures
could compromise meeting the reliability and performance requirements of the system.

Unlike Extract Components and Add Façade, this pattern does not require creating, configuring,
and monitoring a façade component to allow existing clients to seamlessly communicate with
new microservices. Therefore, this pattern is in general easier to implement and govern than the
previous one. However, similar to the solution with the façade, the performance overhead exists
of an extra network hop.

This pattern requires rebuilding and redeploying the monolithic application whenever a
component gets extracted as a microservice, which was not the case with the façade solution.
The main benefit of this pattern over the façade solution is related to handling calls from within
the monolith. Figure 9 shows that components X and Y are called by an existing outside client
application and also by other components inside the monolith. These clients in the monolith are
unaffected by the solution because they still see the same contract exposed by X and Y, even
though the actual business logic got deferred to X' and Y'. We don’t have that benefit with
Extract Components and Add Façade. In that pattern, internal clients would need to be adapted
to calling the new microservices, as the façade typically would not be intercepting the in-VM
calls within the monolith.

This pattern is a variation of the traditional Proxy pattern [13] for distributed systems. In this
case, the proxying components are also known as remote proxies or ambassadors.

Strangler Patterns–23



Summary

Sometimes a monolithic architecture is the right approach. Moving to microservices brings
several technical and organizational challenges. If an existing monolithic solution works fine and
allows the organization to timely address new requirements, there’s no pressing reason to change
it. However, if the monolith is getting harder to change and adapt to new requirements, a
decision needs to be made whether to refactor the monolith to make it easier to change, to
completely rewrite the monolith applying microservices, or apply the Strangler patterns. If the
decision is to do an evolutionary application of the Strangler, there are many possible variations
that you can consider which have been presented in this paper.

When starting, sometimes it is best to protect the system from change by Wrapping the Monolith.
For organizations and teams that are new to microservices, it is important to make sure that the
infrastructure and the environment (both technical and organizational) are available to make it
easier to implement microservices (Pave the Road). When beginning, it is good to Start Small by
having a team implement some new functionality using microservices. To encourage more
people and teams to develop new features through microservices, organizations often apply the
Microservices First strategy. As functionality is pulled out of the monolith, it is sometimes easier
to first pull out a larger service then refactor it to smaller services as you learn the domain
(Macro then Micro). When the functionality is tightly coupled within the monolith, you can
decide to Replace as Microservices. Other times, you can Extract Component and Add Façade.
While doing the above if the monolith needs access to the new services, it is common to Proxy
Monolith Components to Microservices.

Acknowledgements

We’d like to thank our shepherd Richard P. Gabriel for his valuable insights, comments, and
feedback during the PLoP 2020 shepherding process. Richard spent many hours helping us with
our paper both before and after the PLoP conference. He also encouraged us to experiment with
sequences and scenarios to better outline and describe the patterns for our paper.

We believe that sequences and scenarios hold promise for not only learning and remembering the
individual patterns and the relationships between them, but even more importantly, for
understanding when and how to use them together. We hope that authors of pattern languages
will consider how they can increase the usefulness of their patterns by grouping them into
sequences and scenarios.

We’d also like to thank our 2020 PLoP Writers Workshop Group: Rebecca Wirfs-Brock, Kyle
Brown, Michael Keeling, Richard Gabriel, Hironori, Washizaki, Khurram Harron, Antonio
Gerent, Thiago Faria, John Bywater, Denys Poltorak, David Kane, Jason Frye, Dominique
Causse, Luiz Lula Rodrigues, and Yann-Gaël Guéhéneuc for their valuable comments and
suggestions.

Finally, we’d like to acknowledge Hinako Ando and Mariana Gerent for their assistance with
some of the illustrations with these patterns. There is a plan to continue work with Hinako Ando
from the Iba lab at Keio-SFC to experiment more with a consistent set of drawings for all of
these patterns. If we are happy with the results of this experiment a new version of this paper will
be updated in an online version.

Strangler Patterns–24



References

[1] Foote B., Yoder J., “Big Ball of Mud,” 4th Patterns of Programming Language Conference
(PLoP 1997), Monticello, Illinois, USA 1997. Pattern Languages of Programs Design 4,
Harrison N., Foote B., and Rohnert H., eds. Addison-Wesley, 2000.

[2] Richardson, C. Microservices Patterns: With Examples in Java, Manning, 2018.
[3] Newman S., Monolith to Microservices: Evolutionary Patterns to Transform Your Monolith,

O'Reilly, 2020.
[4] Alexander, C., Ishikawa, S., Silverstein. M. A Pattern Language. Oxford University Press, 1977.
[5] Ambler, S. & Sadalage, P. Refactoring Databases: Evolutionary Database Design.

Addison-Wesley Professional, 2016.
[6] Manns, M. L., Rising, L, More Fearless Change: Strategies for Making Your Ideas Happen.

Pearson, 2015
[7] Humble, J. & Farley, D. Continuous Delivery: Reliable Software Releases through Build, Test,

and Deployment Automation, Addison-Wesley, 2010.
[8] Morris, K. Infrastructure as Code, O’Reilly Media, 2016
[9] Nygard, M. “Documenting Architecture Decisions.” 2011 blog post located at:

https://cognitect.com/blog/2011/11/15/documenting-architecture-decisions.
[10] Wirfs-Brock R. and Yoder J., “Patterns for Sustaining Architecture,” 19th Patterns Language

of Programs Conference (PLoP 2012), Tucson, Arizona, USA, 2012.
[11] Evans, E., Domain-Driven Design: Tackling Complexity in the Heart of Software,

Addison-Wesley, 2003.
[12] Yoder, J.W., Aguiar, A., Merson, P., Washizaki, H., “Deployment Patterns for Confidence,”

8th Asian Conference on Pattern Language of Programs (AsianPLoP), Tokyo, Japan, 2019.
[13] Gamma, E., Helm R., Johnson R., and Vlissides, J., Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1995.

Strangler Patterns–25


