The Secret Partner Pattern

Revision 3bby Bill Trudell, July 21, 2002

Submitted to the Pattern Languages of Programs 2001& 2002

2001 Shepherd: Neil Harrison 2001PC Member: Kyle Brown

Thumbnail

This paper describes the Searet Partner Pattern. A Searet Partner is “a partner whose membershipin a
partnership is kept seaet from the public’®. This pattern models the dose, yet seaetive association
between a Partner and a Seaet Partner. Clients or Customers can only interad with the original Partner
and they have no knowledge of the Seaet Partner. While the Partner and Searet Partner have avery close
relationship, the Seaet Partner also has information that truly remains a seaet, even from the Partner.

Problem

In the red world, thereis a need for close relationships with some amount of discretion. For example, the
relationship between two co-workers can be dose, but divulging salary information is not always prudent.
Consider the cae where 2 team members, a senior and junior developer, have shared responsibilitieson a
projed. By chance, the senior member leans that the junior developer has a higher salary. Unableto ded
with the injustice, the relationship erodes, productivity suffers and team moraleis adversely affeded.
Divulging or acddentally discovering sensitive information can be dangerous and should be mitigated if
possble. Software solutions model and parall el red world situations; therefore the problem can be
expressed in the foll owing question, “How can two software antities have avery close association while
allowing one of them to kegp some information seaet from the other party?” This problemis lved by the
Seaet Partner Pattern.

Forces

There ae several challenges this pattern and its lution must address The m-worker example will be
taken a bit further. Suppaose the senior developer serves asthe point of contad for aprojed. He or she will
mentor the junior developer, alowing that person to lean some new skill sin a safe environment where
risks can be managed and visibility is minimal. The senior member interfaces with the customer, attends
medings, and helps resolve requirements.

Oneforceto be resolved is the desire of the senior member to shield the junior developer from the
customer, company paliti cs, etc. The junior devel oper also wants to stay anonymousin order to focus on
leaning the new technology and implementing the sol ution without the worry of being unduly scrutinized.

Another forceis the necessity for the senior and junior developer to communicate eficiently and
effectively. Sinceonly the senior developer is attending the austomer meetings, he or she knows the
projed vision and motivations behind the requirements. Even though the requirements are documented,
they dtill must be explained and understood by the junior developer.

Finally, the junior developer has ome ideathe senior member is disgruntled about his current salary. If the
junior member shares his higher salary with the more experienced senior developer, he might lose the
chanceto lean a new skill, or affed the delivery schedule due to hard fedings. Therefore, the salary
information is best kept seaet in order to maintain the relationship.

"Merriam-Webster On-line Dictionary, http:/www.webster.com/

Copyright © 2001and 2002, Bill Trudell. Permission is granted to copy for the PLoP 2001 and 2002
conferences. All other rights reserved.

SeaetPartnerPattern_v3b.doc Page 1 of 9 Creaed by Bill Trudell

For ces (continued):

The chall enges presented are similar to those in the C++ programming language with resped to the
constraints of friendship and classaccessibility. Friendship islimited to spedfic functions or the whole
class thereisno middle ground. Theforcesare till the same even if Javais used to program the solution.
However, the constraints are different because Java does not explicitly suppart friendship and it has
different accessibili ty rules. Feaureslike padage and interfaces could be used to resolve the forces
described. This paper will solve the problem with C++; a Java solution is beyond the scope of this paper
but would neverthelessbe interesting and passbly easier.

If friendship isonly granted for certain functions, the nature of the friendship is restricted by public,
proteded and private accssbility. For close asciations, this can be too constraining, requiring more
over-head when accesdng private data, etc. One objed would incur the overhead of an artificia protocol
with the cooperating objed and this sems unnecessary. Using friend functions may also require more
maintenance & the dasses mature. Every time afunction is added, the issue of friendship must be
addressed to ensure that just the right amount of information and control has been granted.

The other extreme is granting friendship to awhole dass Inthis senario, the grantor has no privacy. The
friend class has unrestricted access to the grantor becaise the acceshility levels of public, proteded and
private ae not enforced on friend classes. This eemstoo liberal for some situations. The classes can have
no seaets from ead other and encapsulation is broken.

SeaetPartnerPattern_v3b.doc Page 2 of 9 Creaed by Bill Trudell

Solution

The dedaration of an inner classis the key to limiting the scope of friendship between two C++ classes and
will solve the problem of keeping some data truly seaet. The Seaet Partner Pattern balances intimacy and
discretion by all owing one dassto expose dl of it's methods and only some of it's datato a wllaborator or
delegate.

The Webster definition of a Seaet Partner is “a partner whose membership in a partnership is kept seaet
from the public”2. This pattern models the dose, yet searetive assciation between a Partner and a Searet
Partner. Clients or Customers can only interad with the Partner and they have no knowledge of the Seaet
Partner. While the Partner and Seaet Partner have avery close relationship, the Seaet Partner also has

information that truly remains a seaet, even from the Partner.

The Partner isimplemented as a concrete base dass The Seaet Partner derives from the Partner. The
Seaet Partner also dedares an Inner class and contains an Inner classinstance & iownin Figure 1. The
example used to explain the solution is diff erent than the one used to explain the problem. Here, a venture
capitalist in therole of a Seaet Partner is funding a cmpany run by the Partner. This example wnveysthe
pattern’s intent but is not a solution that would be programmed in the red world.

| Figure 1 —Seaet Partner Pattern ClassDiagram |

Parther
- m_fStartingCapital. float
+ ~Partner() Aninstance of a Partner will have g
+ Partner(} pointer to another Fartner instance (a
+ RaiseMoney(float) : float SecretPartner).
+ StanBusiness{float)
A Special Re
fuests
Type of Fundin
Fartner g
SecretPartner
SecretPartner()
~SecretPartner()
RaiseMoneyifloat) : float
SecretPartner()
StartBusiness{float)
The SecretPartner has the Partner as a
Inner friend. The SecretPartner:inner class
o fSwissAccourt float has the SecretP_ar‘meras a_friend. The
. m fcastToParmer float B ﬁﬁgeggjgrggerwul have an instance of an

2 Merriam-Webster On-line Dictionary, http://www.webster.com/

SeaetPartnerPattern_v3b.doc Page 3 of 9 Creaed by Bill Trudell

Solution (continued):

The header files for the Partner and Seaet Partner classes are shown in Listings 1 and 2respedively. Note
that the Partner classheader makes no mention of a Seaet Partner instance However, it does have a
private pointer to another Partner, clients can only speaulate asto its purpose. A typicd software
development kit would only include the Partner.h file and the compil ed library with the gpropriately
exported functions (not addressed in the example). The kit would not include the SeaetPartner.h sinceit’s
not necessary. Therefore, Application developers would not have immediate acessor knowledge of the
SeaetPartner class

Listing 1 —Partner Classheader (Partner.h)

/I Declarations for the Partner Class, Partner.h
#ifndef INCLUDED_PARTNER_H
#define INCLUDED_PARTNER_H

/I Users or Application Developers only interact
/I with the Partner. (Apart from this comment,
/I there is no mention of a SecretPartner, just a
/I vague reference to another partner.)

class Partner

public:
Partner();
virtual ~Partner();
virtual void StartBusiness(float ventureCapital);
virtual float RaiseMoney(float amountNeeded);
protected:
// none
private:
float m_fStartingCapital;
Partner* m_pRef; // pointer to another partner

3
#endif // INCLUDED_PARTNER_H

SeaetPartnerPattern_v3b.doc Page 4 of 9 Creaed by Bill Trudell

Solution (continued):

The SeaetPartner classdedares an Inner class with private accesibility. The Inner classis now hidden

from the Partner classeven though the Partner is friends with the Seaet Partner. However, the Inner class
isaso hidden fromthe SeaetPartner; therefore the Inner classneeds to make the SeaetPartner its' friend.
The Inner classdedaresits data & private. Now, the SeaetPartner can accessits SwissBank acount and
keep it hidden from the Partner!

{

3
#endif // INCLUDED_SECRETPARTNER_H

Listing 2 —Seaet Partner header (SeaetPartner.h)

/I Declarations for the SecretPartner Classes
#ifndef INCLUDED_SECRETPARTNER_H
#define INCLUDED_SECRETPARTNER_H

#include "Partner.h"
/I The SecretPartner is a special kind of Partner

/I (it's hidden from the public and it has secret bank accounts)
class SecretPartner : public Partner

public:
/I Declare Base Class Partner as a friend of the
/I SecretPartner so it can call the protected
/I constructor, or any other future methods, which
[l are hidden from users.
friend class Partner;
protected:
SecretPartner();
virtual float RaiseMoney(float amountRequested);
virtual ~SecretPartner();
virtual void StartBusiness(float ventureCapital);
private:
/I No copying or assigning allowed for now
SecretPartner(const SecretPartner&);
const SecretPartner& operator=(const SecretPartner&);

/I Declare an Inner class in which the Secret Partner's
/I personal Data is hidden, even from the Partner who is
/I a friend and expecially from Users.

1

/I The Inner Class must extend friendship to the outer,
/I so the outer has full access to the Inner.

class Inner

friend class SecretPartner;
private:
float m_fCashToPartner;
float m_fSwissAccount;

3

/I Allocation of storage for the Inner
Inner mylnner;

SeaetPartnerPattern_v3b.doc Page 5 of 9

Created by Bill Trudell

Solution (continued):

The dassdefinitions for the Partner and SeaetPartner are shown in Listings3 and 4. Sincethe
SeaetPartner derives from the Partner and an instance of a Partner all ocates a SeaetPartner, the
construction processis messy. The Partner constructor initializes m_pRef to zero. Sincethe SeaetPartner
will also execute this constructor, an instance of the SeaetPartner will have a zeo for m_pRef. Thisis
important later for safe destruction. The Partner instantiates a new SeaetPartner in its StartBusiness
function, setting the m_pRef variable. If the Partner had attempted to creae the SeaetPartner inits
constructor, araceof executing the derived and base anstructors would have occurred. (Thisisagood
reason not to cdl virtual functionsin abase dassconstructor, and a goodreason not to perform heg
alocdionin a onstructor.)

The destruction processis equally messy. When the Partner destructor is cdled for a Partner instance, the
m_pRef will be non-zero. A delete is done on the painter, which cals the destructor of the SeaetPartner
instance Sincethe SeaetPartner derived from the Partner and the destructors were dedared virtual, the
Partner destructor iscdled. Thistime, the m_pRef is zero and the function returns, all owing the
SeaetPartners destructor to complete and finally all owing the Partner instanceto be destructed. Foll ow
thisin the debugger and you'll agreethat it istedious.

Having said all that, implementing the SeaetPartner as a singleton might simplify this confusion. The
Partner would only cdl the _instance method, the SeaetPartner would be responsible for the dl ocation and
de-alocation of itself. However, it imposes an unnecessary restriction on the multiplicity between it and
the Partner. It's atrade-off and the choice was made to minimizethe restrictions on multiplicity.

Listing 3 —Partner ClassDefiniti ons (Partner.cpp)

/I Definitions for the Partner Class
#include "Partner.h"

#include "SecretPartner.h"
#include <iostream>

using namespace std;

Partner::Partner()
m_pRef =0;
m_fStartingCapital = O;

}

void Partner::StartBusiness(float ventureCapital)
m_fStartingCapital = ventureCapital;

m_pRef = new SecretPartner;
m_pRef->StartBusiness(ventureCapital);

}

float Partner::RaiseMoney(float amountNeeded)

return (m_pRef->RaiseMoney(amountNeeded));

}

Partner::~Partner()

delete m_pRef;

}
// End of Partner.cpp

SeaetPartnerPattern_v3b.doc Page 6 of 9 Creaed by Bill Trudell

Solution (continued):

The Partner is unable to accessthe SeaetPartners SwissAccount data. It doesn’t even know it’ s there
redly. Had the SeaetPartner not wrapped that datain the inner class the Partner would have been able to
exeaute the statement (static_cast< SecretPartner*>(m_pRef))->m_fSwissAccount; to get that information.
If the Partner executes the statement (static_cast< SecretPartner*>(m_pRef))->mylnner.m_fSwissAccount ,
the compil er generates an error indicating that Partner cannot access a private member dedared in the dass
‘SeqetPartner::Inner’, misson acaompli shed!

There' s not much to be said about the SeaetPartner implementation. The syntax for accessng the Inner
classinstancedatais graightforward.

Listing 4 —SeaetPartner ClassDefinitions (SeaetPartner.cpp)

/I Definitions for the SecretPartner Classes
#include "SecretPartner.h"

SecretPartner::SecretPartner() : Partner()

{

}

void SecretPartner::StartBusiness(float cashToPartner)

{
mylnner.m_fCashToPartner = cashToPartner;
mylnner.m_fCashToPartner = cashToPartner;
/I Secret Partner has 100 times the cash given to the
/I partner and it's stored in a Swiss account.
mylnner.m_fSwissAccount = 100.0F*cashToPartner;

}

float SecretPartner::RaiseMoney(float amountRequested)
float amountGiven = 0.0F;

/I Don't give it all away, make sure to keep 10 Million,

/I it's not easy to live on less.

if ((amountRequested <= mylnner.m_fSwissAccount) &&
(mylnner.m_fSwissAccount >= 10000000.0F))

{
/I ' You'll never get what you asked for from
/I a Venture Capitalist
amountGiven = amountRequested * 0.9F;
mylnner.m_fSwissAccount -= amountGiven;
}

return amountGiven;

}

SecretPartner::~SecretPartner()

/I Nothing to do
}

/I End of SecretPartner.cpp

SeaetPartnerPattern_v3b.doc Page 7 of 9 Creaed by Bill Trudell

Solution (continued):

A sample program for using this pattern is shown in Listing 5.

Listing 5 —Sample Program (Main.cpp)

/I Main Program to Demonstrate the Secret Partner Pattern
#include "Partner.h"
#include <iostream>

using namespace std;

int main(int argc, char* argv[])
/I A Partner is given 1 Million Dollars of Venture Capital
/I to start a New Company
float startingCapital = 1000000.0F;
Partner myPartner;
myPartner.StartBusiness(startingCapital);
cout << "Starting cash is " << startingCapital << endl;
/I At some point later, the company get's tight
/I for cash and needs another million dollars.
/I However, the public does not know about the Secret
I/ Partner or where the money is going to come from. The
/I employees can only hope and trust the Partner.

float amtRequested = 1000000.0F;
float amtReceived = 0.0F;

cout << "We need more money!" << endl;

amtReceived = myPartner.RaiseMoney(amtRequested);
if (amtReceived < amtRequested)

{

cout << "We're a little short, cut resources." << endl;
}
return O;

}
/I end of Main.cpp

Discussion

The solution presented addressed all stated challenges. The Partner, in its private sedion contained a
pointer to another Partner, which was redly the SeaetPartner. Sincethe pointer is private, clients are not
abletointerad with it. Therefore, the Seaet Partner is truly anonymous from the “public”. The Seaet
Partner granted the Partner classfull friendship so there ae no limitations on acessngthe Seaet Partners
methods, most of which are proteded, another safe-guard against acddental use by clients. The use of
friendship is desirable for such a dose association between 2 classs. Lastly, the Seaet Partner was able to
keep its SwissBank acmunt hidden, even from the Partner.

The implementation adually has very few adverse side affects. Oneissueisthe inheritance and
aggregation of the Partner and SeaetPartner that makes objed construction and deconstruction difficult.
An alternative implementation using the singleton was suggested. Another nuisanceisthe extra syntax
required by the Seaet Partner to accessits Inner classinstance data, which seems worth it in exchange for
the safeguarding of confidential information.

SeaetPartnerPattern_v3b.doc Page 8 of 9 Creaed by Bill Trudell

Contraindications

The Seaet Partner Pattern should not be used when friendship is not required; it would be better to use the
public, proteded and private acceshility levelsto restrict acaess

Related Patterns

There ae several existing patterns related to the Searet Partner. It resembles the facale® pattern becaise
clientsinterad with the Partner. Inthe example used for the solution, the Partner aded as the managing
partner, yet the Seaet Partner behaved like aVenture Capitali st who funded the company. It is similar to
the envelope-letter idiom* where the Partner is the envelope and the Searet Partner isthe letter inside. It is
also similar to the adapter since dientsinterad with the Partner, but the SeaetPartner does the red work.

Example | nstances

In programming C++, streaming classs typically require friendship in order to fully implement the various
operatorslike << and >>. Nevertheless, the dassgranting friendship may still want to guard certain
attributes and behavior; after al it only needs to share its streaming nature. Another example might be the
modeling of atreenode where the dient interads with anode in the role of the Partner, but the red
implementation and node detail s are cntained in the SeaetPartner.

Inred life, there ae many similar examples. A puppet government, being sponsored and direded by a
foreign super power might be an example.

References

The Author would like to reagnize Ray Heah for suggesting the ideaof limiting friendship and his
encouragement for pursuing the ideas for this paper. Spedal thanks are extended to Neil Harrison for
shepherding and helping to refine this paper. Finally, the Author would like to thank his wife Suzanne for
her encouragement to pursue writing and sharing these ideas with the software community.

Authors Badground:
The author has 20 yeas of diverse software development experience with a Bachelor of Science degree
in Eledricd Engineaing. He has ent the last 10 yeas programming in C and C++ and is currently
developing middieware for Capital One, alealing credit card isauer and financial services provider.
He has had papers published in Embedded Systems Programming’, the Journal of Objed Oriented
Programming®, Dr. Dobbs Jburnal” and C++ Users Journal®.

3 “Design Patterns’, by Erich Gamma, et a., Addison-Wesley, 1995

“ Coplien, J.0. “Advanced C++ Programming Styles and Idioms.” Reading, MA. Addison-Wesley, 1992
pp. 316-323

In addition, Cope recast the idioms as patternsin the foll owing reference:

Coplien, J. O. “C++ Idioms Patterns.” In Harrison, Neil B., Brian Foote, and Hans Rohnert, eds., Pattern
Languages of Program Design, VVolume 4. Reading MA. Addison-Wesley, 200Q pp. 167-198

®> Embedded Systems Programming, Keys to Writing Efficient Embedded Code, October 1997,CMP Media
Inc. and A Better Way To Process Messages, May 200L,CMP Media Inc.

® JOOP, The Access Proxy Pattern, January 2001, 101 Communications

" Dr. Dobbs Journal, Redirection Through Function Pointers, Decenber 2001, CMP Media Inc.

8 C++ Users Journal, The Application Watchman, July 2002 CMP Media Inc.

SeaetPartnerPattern_v3b.doc Page 9 of 9 Creaed by Bill Trudell

