
Last modified 08/02/98 rhc

Streamed Lines: Branching Patterns for Parallel Software Development

Brad Appleton bradapp@enteract.com Motorola Cellular Infrastructure Group

Stephen P. Berczuk berczuk@acm.org Biztravel.com

Ralph Cabrera cabrerar@agcs.com AG Communication Systems

Robert Orenstein rlo@perforce.com Perforce Software

Copyright © 1998 by Brad Appleton, Stephen Berczuk, Ralph Cabrera, and Robert Orenstein.
Permission is granted to copy for the PLoP '98 conference.

Abstract: Most software version control systems provide mechanisms for branching into multiple lines of
development and merging source code from one development line into another. However, the techniques,
policies and guidelines for using these mechanisms are often misapplied or not fully understood. This is
unfortunate, since the use or misuse of branching and merging can make or break a parallel software
development project. Streamed Lines is a pattern language for organizing related lines of development into
appropriately diverging and converging streams of source code changes.

Keywords: Branching, Parallel Development, Patterns, Software Configuration Management, Version
Control

08/02/98 Streamed Lines: Branching for Parallel Development 2 - 71

Introduction to SCM Patterns
The approach an organization takes to Software Configuration Management (SCM) can significantly affect the
quality and timeliness with which a software product is developed. By SCM, we essentially mean the process of
identifying, organizing, controlling, and tracking both the decomposition and re-composition of software system
structure, functionality, evolution, and teamwork. In short, SCM is the "glue" between software components,
features, changes, and team members. This paper presents some of the patterns from a pattern language for SCM
that we began developing at ChiliPLoP ’98.

Motivation for an SCM Pattern Language
There are many approaches to SCM, and the structures, policies, and processes work best when applied in the
appropriate context. Context is determined by organizational and architectural decisions, as well as previously
existing SCM policies. Our goal is to place SCM structures in the context of these other existing structures, making
it easier to decide how to structure an SCM process which will be effective for your context.

These SCM structures may be described as "patterns": named nuggets of insight conveying battle-proven solutions
to recurring problems, each of which balances a set of competing concerns (see [Appleton97]). SCM Patterns fit into
a framework of Organizational Patterns, which can be grouped as follows:

Organizational Patterns:
Patterns which define how the organization is structured. This
includes patterns that describe the size of the team, management
style, etc. (see [Beedle97] and [OrgPats]).

Architectural Patterns:
Patterns which define how the software is structured at a high level.
Some examples of these sorts of patterns have been published in
prior PLoP Proceedings ([Berczuk95] and [Berczuk96]) and in
books such as [POSA].

Process Defining (forming) Patterns:
These SCM Patterns describe structures, such as the project
directory hierarchy, which are set up near the beginning of a
project.

Maintaining (preserving) Patterns:
These are SCM patterns that affect the day to day workings of the
organization.

These categories of patterns are shown in the figure at right.

The line between the Forming and Maintaining patterns may be blurry, but we feel the distinction is conceptually
important to understand the architecture of the development process pattern language. Because of the strong
relationship between the patterns in each category (how you set up the directory tree affects the process you follow
for checking files in and out) we shouldn't spend too much time looking at where a pattern fits, but rather focus on
which patterns it follows from.

The patterns we are documenting, including the ones we present here, should be applied with an understanding of
the context in which the problem exists. The figure below shows the patterns we are working on, with their
relationships in the language are in bold face. This paper provides an in depth discussion of some branching patterns
for parallel development (their names are in bold face in the figure below). Some of the other kinds of patterns have
been published previously ([Berczuk97]). Others are in "patlet" form now.

08/02/98 Streamed Lines: Branching for Parallel Development 3 - 71

08/02/98 Streamed Lines: Branching for Parallel Development 4 - 71

Parallel Development
Any software project of certain team and system sizes will inevitably require at least some efforts to be conducted in
parallel. Large projects require many roles to be filled: developers, architects, build managers, quality assurance
personnel, and other participants all make contributions. Multiple releases must be maintained, and many platforms
may be supported. It is often claimed that parallel development will boost team productivity and coordination, but
these are not the only reasons for developing in parallel. As [Perry98] points out, parallel development is inevitable
in projects with more than one developer. The question is not "should we conduct a parallel development effort", but
"how should a parallel development effort best be conducted?"

[Perry98] suggests that many of the basic parallel development problems that arise can be traced back to the
essential problems of: system evolution, scale, multiple dimensionality, and knowledge distribution:

• Evolution compounds the problem of parallel development because we not only have parallel
development within each release, but among releases as well.

• Scale compounds the problem by increasing the degree of parallel development and hence increasing
both the interactions and interdependencies among developers.

• Multiple dimensions of system organization compound the problems by preventing tidy separations of
development into independent work units.

• Distribution of knowledge compounds the problem by decreasing the degree of awareness in that
dimension of knowledge that is distributed.

Thus, a fundamental and important problem in building and evolving complex large-scale software systems is how
to manage the phenomena of parallel changes. How do we support the people doing these parallel changes by
organizational structures, by project management, by process, and by technology?

Streamed Lines: Branching for Effective Parallel Development
If parallel development is a fact of life for any large software project, then how can developers making changes to
the system in parallel be supported by project management, organizational structures, and technology? Streamed
Lines is a pattern language that attempts to provide at least a partial answer to this question by presenting branching
and merging patterns for decomposing a project's workflow into separate lines of development, and then later
recomposing the development lines back into the main workstream. The patterns describe recurring solutions for
deciding how and when development paths should diverge (branch) and converge (merge). Streamed Lines does not
describe a complete solution to all the problems encountered during parallel development; in fact, these patterns are
merely a branching sublanguage of a larger SCM pattern language currently in development.

Effective Parallel Development
What do we even mean by "effective parallel development"? [Atria95] defines effective parallel development as:

... the ability for a software team to undertake multiple, related development activities -- designing, coding,
building, merging, releasing, porting, testing, bug-fixing, documenting, etc. -- at the same time, often for
multiple releases that use a common software base, with accuracy and control.

Note that this definition extends to include teams that span multiple locations, an increasingly common
situation for many organizations. It encompasses all elements of a software system and all phases of the
development lifecycle. Inherent within the definition is the concept of integration, in which parallel
development activities and projects merge back into the common software base. Also, the definition of
effective parallel development includes process control -- the policies and "rules of the road" that help
assure a controlled, accurate development environment.

So how can we achieve effective parallel development? While it is by no means a complete solution, one way that
helps is the effective use of branching.

08/02/98 Streamed Lines: Branching for Parallel Development 5 - 71

Introduction to Branching
The following is a brief introduction to the concepts of file checkin/checkout, and to branching and merging. If you
are already familiar with these concepts you may safely skip this section.

The checkin/checkout model
Most version control tools in widespread use employ the checkout-edit-checkin model to manage the evolution of
version-controlled files in a repository or codebase. Developer's checkout a file from the codebase into their
workspace where they perform and then test their modifications. When they are finished, they checkin their
modified source file revisions back into the codebase. No files may be modified unless they are first checked-out.

Serial development using exclusive checkouts
In a strictly sequential development model, when a developer checks-out a file, the file is write-locked: No one may
checkout the file if another developer has it checked-out. Instead, they must wait for the file to be checked-in (which
releases or removes the write-lock). This is considered a pessimistic concurrency scheme which forces all work to
take place on a single line of development.

Concurrent development using branches
Branching is a common mechanism used by many version control (VC) tools to support concurrent software
development. In its most basic form, branching allows development to take place along more than one path for a
particular file or directory. If one developer wants to checkout a file that another developer has already checked-out,
she merely creates a branch and then checks-out the file on the new branch. This is an optimistic concurrency
scheme that creates a parallel line of development for the file.

Branching can be likened to a Unix fork that creates a new thread of execution with copy-on-write semantics.
When a branch is created, the contents of the revision serving as the branchpoint are the same as the contents of the

08/02/98 Streamed Lines: Branching for Parallel Development 6 - 71

initial revision on the newly created branch. When the revision on the new branch is modified and checked-in, the
two lines of development will have different contents and will evolve separately, in isolation from one another.

Synchronizing concurrent development lines using merges
Merging is the means by which one development line synchronizes its contents with another development line.
When merging from a child branch back to a parent branch, the contents of the latest version on the child branch are
reconciled against the contents of the latest version on the parent branch (usually using a 2-way or 3-way file
differencing or comparison tool). The contents of the two files are merged together into a new revision which must
correctly resolve any conflicting changes made along each development line since the branchpoint was created (or
since the last time the two development lines were synchronized).

Dimensions of Branching
So far we have discussed checkout/checkin (and branching) of files and directories. Files and directories are physical
configuration elements for software. Most VC tools that support branching let you checkout/checkin files, and
perhaps directories. Some VC tools are integrated with programming environments and let you checkout/checkin
programming language elements like classes and methods (or modules and functions). The discussion that follows
assumes that files and directories are the minimal configuration elements, but the ideas and strategies presented here
are applicable to VC tools that allow branching of methods and classes.

Most VC tools supporting branches do so at the granularity of a lone file or element. The revisions and branches for
each file form a version tree that depicts the evolution of a single file. But branching is most conceptually powerful
when viewed from a project-wide or system-wide level, where the resultant version tree reflects the evolution of an
entire project or system. There are essentially five different forms of branching, each of which may be represented
using the file-based branching of most VC tools:

Physical:
Branching of the system's physical configuration - branches are created for files, components, and subsystems

Functional:
Branching of the system's functional configuration - branches are created for features, logical changes (bug-
fixes and enhancements), and other significant units of deliverable functionality (e.g., patches, releases, and
products)

Environmental:
Branching of the system's operating environment - branches are created for various aspects of the build and run-
time platforms (e.g. compilers, windowing systems, libraries, hardware, operating systems, etc.) and/or for the
entire platform

Organizational:
Branching of the team's work efforts - branches are created for activities/tasks, subprojects, roles, and groups

Procedural:
Branching of the team's work behaviors - branches are created to support various policies, processes, and states

Specific instances of each type of branching will be discussed in many of the patterns that follow. It should be

08/02/98 Streamed Lines: Branching for Parallel Development 7 - 71

mentioned that there is frequent overlap between the above types of branching. For example, a branch created for a
particular bug-fix may be regarded as both a bug-fix branch, and as an activity-branch. In this case, the sets of
changes that constitute the fix are performed as a single task. But a branch created for an integration effort won't
always correspond to a single fix or feature. It is quite common, however, for a branch to correspond to more than
type of branching. The important thing to remember is which type is perceived as the primary intent of the branch.

Branching Terms and Notation

Branches, Change-Tasks, and Codelines
In general, when a branch corresponds to a line of development containing (or intended for) multiple sets of logical
changes, we refer to the branch as a codeline. Often, a branch is used only for a single logical change (also called a
change-task). If a branch is used for a single change-task and is then immediately merged back to its parent, we call
it an activity-branch, or simply a branch or subbranch. In theory, the terms "branch" and "codeline" may be used as
synonyms. When describing branching patterns, however, we try to be consistent in using the term "codeline" to
refer to a persistent workstream, and using the term "branch" to mean a subbranch of a codeline or a single activity-
branch.

Versions, Change-Packages, and Baselevels
A version may refer to a revision of a single file, or to a set of files revision that make up the entire project (or one of
its components/subsystems). A change-package is a configuration of the revisions that were modified or created as
part of a change-task. A baselevel is a configuration of the project that is self-consistent enough to serve as a stable
base for subsequent development efforts. A baseline is a baselevel that is suitable for an formal internal or external
release.

Merging, Propagating, and Syncing
Merging is the process of integrating the revisions in a change-package into a the contents of a codeline. Sometimes,
a change in one codeline needs to be incorporated into another codeline. For example, a bug-fix in a maintenance
codeline may also needed in the corresponding development codeline for the next major release. We refer to this as
change propagation, or simply propagation. When the entire contents of a codeline are merged into another
codeline, or into a developer’s workspace, we call this syncing with the codeline, or just syncing.

Version Tree Diagrams
Since revision names like "1.4.1.2 ", used by VC tools like RCS (and many others) aren't particularly mnemonic,
we use more symbolic branch names consisting of letters and numbers (and some other characters). We also use the
'/ ' character to indicate the beginning of a branch name, so that versions can be uniquely determined with an
identifier such as "/main/rel1-maint/fix232/4 ". Hence a fully specified version name resembles a
directory path in Unix or DOS. A few VC tools (most notably ClearCase and Perforce) use the same or similar
conventions for version naming.

When drawing codelines, branches, change-tasks, and their relationships, we use a tree structure with branch-names
inside boxes and version-names inside circles (a "box" or "circle" with no name inside is considered "anonymous").
Branches and codelines are indicated with solid lines, whereas merges and propagations are indicated with dashed
lines. These version-tree diagrams are reminiscent of interaction sequence diagrams in the UML; but we draw the
timeline from left to right instead of from top to bottom (to conserve space). Branch names always appear at the
beginning of the timeline for the branch, and are preceded by a '/ '. When a "box" appears in the middle of a timeline
for a branch, it corresponds to a change-task that was made "on-line" (directly on the codeline, instead of on its own
branch), and there is no leading slash in front of the name for such a change-task.

08/02/98 Streamed Lines: Branching for Parallel Development 8 - 71

Forces of Branching and Parallel Development

Safety
Safety is the property that nothing bad ever happens to your project. Safety concerns for parallel development
include:

• Codeline Consistency: You want to keep the codeline in a consistent state. That means it has all the changes
it is supposed to have (no partial changes), and that they have been successfully integrated so they don't
conflict with one another.

• Codeline Reliability: Other developers rely upon the current state of the codeline to build and function
correctly. If it doesn't, work may be held-up and efforts may be wasted.

• Codeline Integrity and Stability: At any given point in time, you want the codeline to be both consistent,
and reliable. Over any given period of time, you want to codeline to be both reliably consistent, and
consistently reliable. Otherwise changes which work correctly in isolation might fail when combined
together. A single unanticipated change could destabilize the entire project.

• Lost Changes: Parallel development without controlled interaction between concurrent changes can result
in lost or corrupted changes, and wasted effort and rework.

• Reappearing Bugs: Strategies need to be employed to ensure that defects in a prior version don't reappear in
a later version of the product (especially when multiple versions are being developed concurrently)

Liveness
Liveness is the property that progress on the project ever takes place. Liveness concerns for parallel development
include:

• Increased Work Efficiency/Productivity: Increasing concurrency in a development project can permit more
work to happen at once, resulting in decreased time-to-market.

• Increased Coordination Efforts: Increasing the amount of concurrency increases the need for, and amount
of, synchronization efforts (merging and integration). Merging and integration are often non-trivial
activities that can be both time consuming and error prone. If taken too far or not planned intelligently, the
synchronization overhead required by locking and merging can outweigh any productivity gains due to
parallelizing development.

• Contention and Work Stoppages: Excessive locking and "work queuing" may cause very long "busy waits"
where people are forced to suspend some of their activities until a locked file becomes available. This could
result in dormancy or even deadlock of parallel activities.

Reusability
Reusability is the property that baselevels and changes can be readily used and incorporated in derived
configurations while still functioning correctly. Reusability concerns for parallel development include:

08/02/98 Streamed Lines: Branching for Parallel Development 9 - 71

• Reproducibility: If you can't reproduce the contents of a change or a baselevel, then you can't easily reuse it
in developer's workspaces or in derived configurations.

• Traceability: If you can't readily find and identify the contents of a change or a baselevel, then you can't
easily reuse it.

• Separability: If you can't readily disentangle desired changes from unwanted changes or baselevels, then
you can't easily reuse those changes.

Teamwork

Communication, effort, and interaction need to be effectively organized and executed for a parallel development
effort to succeed. Important issues are:

• Roles and Responsibility: If everyone is responsible for a thing, then often no one is. Features, changes,
components, and milestones need responsible owners who understand their purpose and are held
accountable for the success of their outcomes.

• Coordination: Team members need to stay reasonably abreast of what other team members are doing and
why. But parallel efforts need to be insulated from one another and coordinated together so that changes
can be successfully isolated and integrated. At the same time, you need to be careful that you don't go to far
and isolate team members their own efforts, nor from each other.

• Complexity: The inherent complexity of changes and tasks needs to be managed. Complex tasks and
changes need to be broken down into more manageable chunks and assigned to appropriate owners.
Dependencies between tasks and between changes need to be minimized to reduce the risks associated with
safety, liveness, and reusability mentioned above.

SCM Tool Support

Support mechanisms provided, or lacking in your SCM tools for change control/tracking and version control have a
huge impact upon the success or failure of parallel development efforts. Some of these are as follows:

• Branching Support: Not all VC tools provide a conceptually easy way of employing branches and using
them to group functional changes. Many VC tools (such as RCS [Tichy85] and SCCS [Rochkind75])
indicate branches using a hierarchical version numbering scheme such as 1.2.3.4 , where each
subsequent component identifies a branch of its predecessor. Other VC tools (such as ClearCase
[Leblang94], and Perforce [Seiwald96]) provide more symbolic hierarchical names, like
/main/rel_1.1/fix_file_menu , which more easily lend themselves to comprehension by humans.
CVS (see [CVS]) allows mnemonic labels called "sticky tags" to be used for branch names, but branch
names are not hierarchically composed into branch paths.

• Change-Packages: Some SCM tools directly support the notion of logical changes (sometimes called
change-tasks or change-packages): They are able to treat modifications to multiple files for the same
coherent purpose as a single, logical change. This can be extremely useful for managing the functional
configuration of a software product, and for identifying, tracking, and integrating modifications for a
particular fix or feature.

• Customization: Some SCM tools are more configurable than others. As nice as a tool might be, it can't
possibly provide everything you could want at the invocation of a single command, macro, or mouse-click.
Some tools provide customization and extension primitives using a programming and/or GUI interface.

• Extensibility: Some tools provide "triggers": user-definable "hooks" or "plug-ins" that execute at a specific
time during an SCM tool event or operation. Triggers can help provide a seamless integration between your
tools and processes. If your tool doesn't support triggers or user-defined extensions for a desired function or
feature, you may have to resort to implementing "wrappers": home grown scripts or commands that serve
as a front-end to certain tool features, or which compose those features together in a useful manner.

08/02/98 Streamed Lines: Branching for Parallel Development 10 - 71

Streamed Lines: Participants

The patterns in Streamed Lines are divided into categories of policy, creation, and structuring. These categories
loosely correspond to the [GoF] pattern categories: behavioral, creational, and structural (respectively). In addition,
many of the patterns refer to some basic types of branches and codelines. We define all of these categories below:

Basic Branch/Line Elements
Some basic varieties of branches and codelines that serve as lower-level building blocks for various patterns;
these are not necessarily patterns per se, but they nevertheless participate in one or more patterns in the
language

Branching Policy Patterns
Patterns describing behavioral policies to establish or preserve the conceptual or physical characteristics of a
codeline

Branch Creation Patterns
Patterns describing when to create a new kind of branch or codeline

Branch Structuring Patterns
Patterns describing the collaborations between two or more related branches in a branching structure

The participants in Streamed Lines are distributed among these four categories as follows:

Basic Branch/Line Elements Branching Policy Patterns

• E1. Activity Branch

• E2. Functional Branch

• E3. Component Branch

• E4. Project Branch

• E5. Development Line

• E6. Maintenance Line

• E7. Integration Line

• E8. Release Line

• P1. Codeline Policy

• P2. Codeline Ownership

• P3. Relaxed-Access Line

• P4. Restricted-Access Line

• P5. Merge Early and Often

• P6. MYOC (Merge Your Own Code)

• P7. Early Branching

• P8. Deferred Branching

Branch Creation Patterns Branch Structuring Patterns

• C1. Policy Branch

• C2. Branch per Task

• C3. Codeline per Release

• C4. Subproject Line

• C5. Virtual Codeline

• C6. Remote Line

• C7. Component Line

• C8. Platform Line

• S1. Mainline

• S2. Parallel Maintenance/Development

• S3. Overlapping Releases

• S4. Docking Line

• S5. Staged Integration Lines

• S6. Change Propagation Queues

• S7. Third Party Codeline

• S8. Inside/Outside Lines

Extremely brief overviews for each basic element, pattern, and pattern variant are provided below.
 The full pattern descriptions appear in Appendix A.

08/02/98 Streamed Lines: Branching for Parallel Development 11 - 71

Basic Branch/Line Elements

E1. Activity Branch
A branch used to represent a logically atomic, discrete unit of effort. The effort might be for effecting a fix or
feature, or for building and releasing. If the emphasis is on the functional changes themselves rather than on the
effort involved, we would call it a Functional Branch (see below). Related patterns are Branch per Task, Merge
Early and Often, MYOC (Merge Your Own Code), Docking Line, and Change Propagation Queues.

E2. Functional Branch
A branch used to represent discrete unit of logical functionality. If it is for a feature or an enhancement, we call
it a Feature Branch (E2.1); if it is for a bug-fix, we call it a Fix Branch or a Bugfix Branch (E2.2). Since
functional units often map to work-units, functional branch and activity branch are the same thing in most cases,
but not always. A build, or a system integration might be a logical unit of work, but typically not of
functionality.

E3. Component Branch
A branch or codeline that is primarily intended for work on a specific component of the system. It might be a
lone module, component, subsystem, or an entire product within a multi-product project. The patterns
Component Line and Staged Integration Lines make use of component branches.

E4. Project Branch
A branch or codeline that represents a separate line of development for a particular (sub)project consisting of
more than one task or activity. It is essentially an activity-branch for a task consisting of multiple discrete
activities (or subtasks). Related patterns are Codeline per Release, and Subproject Line.

E5. Development Line
A codeline upon which development (changes) takes place and which may or may not include maintenance
efforts. In the broad sense, it includes maintenance; in the narrow sense, it is only for "new" development.
Related patterns are Mainline, Parallel Maintenance/Development, and Remote Line.

E6. Maintenance Line
A codeline intended primarily for maintenance efforts (bug-fixes and minor enhancements), and possibly for
release-engineering efforts as well. Related patterns are Parallel Maintenance/Development, and Deferred
Branching.

E7. Integration Line
A codeline that is primarily for the purpose of integration (merges) from other codelines and branches. If no
other type of work takes place on the integration line, we call it a Receiving Line (E7.1), because all it does is
receive changes from other codelines. If, in addition to receiving changes from other codelines, it also
propagates those integrated changes to other codelines, then we call it a Shipping/Receiving Line (E7.2). Related
patterns are Mainline, Docking Line, Staged Integration Lines, Merge Early and Often, MYOC (Merge Your
Own Code), and Change Propagation Queues.

E8. Release Line
A codeline that represents a logical grouping of delivered functionality (a patch or a release). If it is known to
be for a patch (as opposed to a release) we may call it a Patch Line (E8.1). If the codeline corresponds to all
releases and patches for the same major release (e.g. all releases with the same major release number, as in
"1.x.y "), then we may call it a Major Release Line (E8.2), but we will typically just use the blanket term
"release-line" to refer to both types. Often, a release-line maps directly to a project-branch, but not always (this
is similar to the relationship between functional-branches and activity-branches). Related patterns are Parallel
Maintenance/Development, Overlapping Releases, Codeline per Release, and Early Branching.

08/02/98 Streamed Lines: Branching for Parallel Development 12 - 71

Branching Policy Patterns
P1. Codeline Policy

Define a policy for each codeline which specifies if/when and how changes may be checked-out, checked-in,
and merged, and propagated.

P2. Codeline Ownership

Assign an responsible owner for each codeline to settle policy disputes and ensure the integrity and consistency
of the codeline.

P2.1 Codeline Dictatorship

No one may perform any checkins, checkouts, or branches off a codeline without approval from the
codeline-owner; or else no one at a remote site may do anything to a codeline at the master-site, without
approval from the master-site.

P3. Relaxed-Access Line

Permit any developer who might have a need to perform checkouts, checkins, or branches for a codeline.

P3.1 Guarded Merge Access

Let developers checkin to the codeline as they see fit, contingent upon an automated check ensuring there
will be no merge conflicts upon checkin.

P4. Restricted-Access Line

Apply a "lock" to a branch or codeline, or otherwise limit the set of users that may make changes to it to a small
set of trusted developers.

P4.1 Codeline Freeze/Retirement

Lock (freeze) a codeline against all further development while it is being prepared for a release. Then,
either decommission the codeline (leaving it locked), or else unlock the codeline after release efforts have
completed to resume development.

P4.2 Export Lock

Briefly lock a codeline against all other checkins while a particular developer is merging a change into the
codeline.

P4.3 Private Branch

Lock a codeline or branch against use by all but the codeline owner.

P4.4 Role-based Line Access

Rather than restricting a codeline to certain users, restrict it to certain development roles.

P5. Merge Early and Often

Merge changes from a branch to its codeline as soon as the changes on the branch are completed and tested.

P5.1 Propagate Early and Often

Propagate merged changes to target codelines as soon as the original change has been successfully integrated
into its original codeline.

P5.2 Multi-Merge Early and Often

Rather than merging a single change-task at a time, merge a handful of change-tasks at once and do it at regular
intervals.

P6. MYOC (Merge Your Own Code)

Developers are responsible for merging their own code into the codeline.

P6.1 PYOC (Propagate Your Own Code)

Developers are responsible for propagating their own code into other codelines.

P7. Early Branching

Spawn a new release or development codeline as soon as work for the new release or subproject begins.

P8. Deferred Branching

Wait to spawn a new release or development codeline until it starts to conflict with parallel work for its
successor.

08/02/98 Streamed Lines: Branching for Parallel Development 13 - 71

Branch Creation Patterns
C1. Policy Branch

Create a new branch when some users of an existing codeline need to work according to a different policy from
the rest of the codeline's developers.

C2. Branch per Task

Perform each change-task on its own activity-branch.

C2.1 Branch per Major Task

Create an activity-branch only for sufficiently long or complex/risky activities. Perform minor tasks
directly on the codeline.

C2.2 Branch per Change-Request

Perform each change-task resulting from a formal change-request on its own activity-branch.

C2.3 Personal Activity Branch

Create an activity branch for use by one and only one developer.

C3. Codeline per Codeline

Use a separate codeline for each major and minor release (and patches).

C3.1 Codeline per Major Release

Use a separate codeline for each major release.

C4. Subproject Line

Rather than having change-tasks depend on activity branches that haven’t been merged into the codeline, create
a subproject codeline for the related set of dependent tasks.

C4.1 Personal Codeline

Create a new codeline for related changes that will be performed by a single developer.

C4.2 Experimental Codeline

Create a new codeline for experimental development/prototyping, which might not get merged back into
anything.

C4.3 Multi-Project Lines

Multiple project-lines or product-lines are used and releases are configured by selecting the appropriate
stable baselevel of each project/product-line and integrating the result.

C5. Virtual Codeline

Simulate a codeline using a floating label, and just-in-time element branching.

C6. Remote Development Line

Create a new codeline specifically for development and integration to be performed at a remote-site.

C7. Component Line

Create a new codeline reserved exclusively for development and maintenance of a
component-owner's source code.
C7.1 Multi-Product Lines

Same as Multi-Project Lines configured by selecting the appropriate stable baselevel of each
project/product-line and integrating the result.

C8. Platform Line

A permanent development codeline for an operational variant of the system that must build/run on a different
platform.

08/02/98 Streamed Lines: Branching for Parallel Development 14 - 71

Branch Structuring Patterns

S1. Mainline
Have all other codelines eventually join back into a single primary codeline.

S1.1 Stable Receiving Line
Reserve the primary codeline exclusively for integration of stable bases from other codelines.

S1.2 LAG Line
Reserve a primary codeline for the latest and greatest development efforts.

S2. Parallel Maintenance/Development Lines
When line maintenance and development must occur simultaneously, split maintenance of into a separate
codeline that regularly merges back into the development line.

S2.1 Parallel Releasing/Development Lines
Instead of freezing the codeline during release engineering activities, a separate line is created for release
integration and engineering while allowing other development to continue taking place on the development
line.

S3. Overlapping Releases
When developing for multiple releases at the same time, split the earlier release into a separate codeline that
regularly merges back into the other release development line.

S4. Docking Line
Instead of merging changes directly into the codeline, merge them to a separate "docking" line where they are
integrated and tested and then merged back to the codeline.

S5. Staged Integration Lines
Cascading branches are used to represent a hierarchy of promotion levels that correspond to points of
integration and/or transfer of responsibility in the development lifecycle.

S6. Change Propagation Queues
Define change migration relationships between codelines (e.g. fixes from release 1.1 need to migrate to release
2.0) and ensure that changes originating from the same codeline are propagated in the same order in which they
were originally completed and merged.

S6.1 Auto-Propagation and Queuing
When possible, propagations are performed automatically, otherwise they are queued-up for manual
propagation.

S7. Third Party Codeline
When version controlling local changes to third party code, user separate codeline to represent the vendor's
development and your own local development and merge updates from the vendor-line into the local-line.

S8. Inside/Outside Lines
Internal users of a centralized repository perform changes and integration on a restricted-access line reserved for
internal-use only. Geographically dispersed users perform development on a separate external-line that is
periodically synchronized with the internal-line.

08/02/98 Streamed Lines: Branching for Parallel Development 15 - 71

Streamed Lines: Using the Patterns
We have presented a series of patterns for managing branching in parallel development projects. Certain subsets of
these patterns represent conflicting styles and may not mesh well together for the same project; the patterns selected
for a particular project are dependent on the needs of the organization and the project itself. In this section, we
provide some guidelines on which patterns to select for your project. Which patterns you use will largely depend
upon selected tradeoffs between safety and productivity (or "liveness"). More conservative strategies tend to tradeoff
productivity for safety, while more optimistic strategies may do the opposite.

Generally speaking, using more branches for greater isolation reduces safety risks, but at the expense of more
merging and integration effort. Using fewer reduces merging and integration efforts, but at the expense of less
isolation and less safety. Merging sooner rather than later fleshes out risks early on while there is more time to
address them, but requires continual efforts to regularly monitor and address such risks.

Select an Appropriate Branching Style
The first decision to make is whether to adopt the strategy of Early Branching or Deferred Branching. These are the
two different "branching styles" underlying the majority of the branching patterns in Streamed Lines. Early
Branching is better suited to larger or more formal efforts that require a high degree of fine-grained isolation and
control; you assume less safety risks but pay the price of additional merging and propagation. Deferred Branching is
good for projects that can afford to risk losing a bit of safety in order to gain more productivity; less branching and
integration means less overhead, but also less isolation and verification.

The branching style that you decide is best suited for your environment will dictate a complementary set of patterns
and pattern variants:

Early Branching Style Deferred Branching Style

• C2.2 Branch per Change-Request

• C3.0 Codeline per Release

• C2.0 Branch per Task

• S1.2 LAG Development Line

• C3.1 Codeline per Major Release

• C2.1 Branch per Major Task

Regardless of the branching style selected, Codeline Policy and Codeline Ownership should used be for every
branch and codeline created.

Patterns like Parallel Maintenance/Development and Overlapping Releases are typically the first branching
structures many shops encounter. They can be applied using either branching-style. It depends primarily upon when
you branch (early or late) and upon which effort goes on the branch and which stays on the parent codeline.

Early branching tends to keep the release or major release as the invariant for each codeline. So instead of splitting
development and maintenance across codelines, it keeps the same release on the same codeline, regardless of
whether or not it is development effort or maintenance effort for the given release.

For deferred branching, the releasing/maintenance effort will always be the one that branches off, allowing the latest
and greatest development to continue on the same line as before. This way of thinking may be peculiar to those
accustomed to an early branching style that uses separate codelines for each release; they may have difficulty
understanding why it is coherent. With deferred branching, it's not the release that remains invariant on the branch,
it's that the recency of the effort on the branch: the latest development efforts, or else the latest maintenance efforts.

Select Appropriate Merging Styles
Higher safety risk and less effort imply a relaxed policy toward codelines, and fewer integration lines; less risk
implies stricter codeline policies, more codelines, and more integration effort. Although the choice of merging style
often follows from the chosen branching style, a higher risk branching style does not necessarily imply a higher risk
merging style. In fact, you may wish to offset low risk in one with high risk in the other. If you take more risks when
splitting things apart, you may want to take less risk when putting things back together.

Remember that every time you add another line of integration, you are in effect, adding another level of indirection:
you gain more isolation and nicer conceptual organization but you spend more time merging. It should be noted that

08/02/98 Streamed Lines: Branching for Parallel Development 16 - 71

a Virtual Codeline is somewhat merge-evasive and may be used to simulate just about any kind of codeline. The
merging patterns that are more suited to each branching style are as follows:

Relaxed Merging Style Restricted Merging Style

• P3.0 Relaxed-Access Line

• P6.0 MYOC (Merge Your Own Code)

• P6.1 PYOC (Propagate Your Own Code)

• S1.2 LAG Development Line

• C4.0 Subproject Line

• S4.0 Docking Line

• P4.0 Restricted-Access Line

• P5.2 Multi-Merge Early and Often

• S6.0 Change-Propagation Queues

• S1.1 Stable Receiving-Line

• S5.0 Staged Integration Line

• S8.0 Inside/Outside Lines

In either case, frequent incremental integration is always a good idea (using Merge Early and Often or one of its
variants) but the merging frequency and ownerships will differ between the two styles. The relaxed style favors
liveness and assumes higher risk by having people merge and propagate their own changes across codelines. The
more restricted style favors safety and has more codelines, each with more restricted access, and with codeline-
owners performing most of the merges.

Unlike the branching styles, the merging styles may be mixed and matched to achieve a gradual progression from
high-activity codelines with relaxed policies to lower-activity codelines with restricted policies. This can be
accomplished with patterns such as Docking Line, Subproject Line, Component Line and Remote Line. But with a
more relaxed style, each of these kinds of codelines will typically merge back to the development line while a more
restricted style is more likely to use it as one in a set of Staged Integration Lines.

Start Simple
By choosing upon appropriate branching and merging styles, you have effectively decided upon risk management
strategies for organizing and integrating work activities. Now you are ready to create some specific codelines. It is
exceedingly rare for a single project to use all of the branching patterns presented here. The majority of projects will
typically use the following "core set" of branching patterns (or one of their variants):

• Mainline
• Codeline Policy
• Codeline Ownership
• Merge Early and Often
• Parallel Maintenance/Development Lines
• Overlapping Release Lines

Take Baby Steps
Many projects will require little more than the above patterns, along with one of MYOC, Docking Line, or Staged
Integration Lines. Other projects will have more sophisticated needs. They may start out with the above, and be
okay for awhile; But they will eventually need to progress to the next tier of branching patterns, or their variants
(often in the following order):

• Codeline per (Major) Release
• Branch per (Major) Task
• Policy Branch
• Subproject Line

Once again, one or more of the following merging patterns will be used with the above: MYOC, Docking Line, or
Staged Integration Lines.

Evolving Integration Needs
Often, the project will take on more risk during early development and then gradually tolerate less and less risk as it
grows in team-size, or moves more and more into maintenance mode. In addition to requiring more of the second-
tier branching patterns above, merging styles may need to become less forgiving and more cautiously controlled:

• Relaxed-Lines may need to become Restricted-Lines

08/02/98 Streamed Lines: Branching for Parallel Development 17 - 71

• The use of MYOC may need to change into Docking Lines

• Component Lines may need to be added for stable subsystems and modules

• Docking Lines and Component Lines may need to progress to a set of full-blown Staged Integration Lines.

• For projects where the number of merges or propagations can become unwieldy, Multi-Merging and Multi-
Propagating may become necessary

• If you have a lot of change-propagations and want to stick with MYOC and PYOC, then you may need to
use Change Propagation Queues

Special Project Needs
The following patterns are usually for "special needs" only:

• Remote Line
• Third Party Line
• Inside/Outside Lines
• Platform Line

You may need them very rarely or only for certain kinds of projects and project teams. But when the project does
require them, they often have a very profound impact on the overall shape of the project-wide version tree, and on
the overall organization of parallel development efforts. These patterns (along with Change Propagation Queues)
should be used sparingly, and only as the need arises. This is especially true of platform-lines since it is often better
to handle multi-platform issues with separate files and/or directories than with separate branches.

Revisit, Refactor, and Realign
As the project evolves, there will always be the need to periodically revisit, refactor, and realign the
branching/merging structures adopted and their corresponding policies. You will also want look at the overall
picture of the project-wide version tree and check to see if the tree looks too wide, too unwieldy, or too disjointed.
Prudent use of codeline propagation and retirement into the Mainline will help guard against the tree becoming too
wide. The patterns Subproject Line, and Policy Branch can help to correct a version tree that has become too
complex and unwieldy. MYOC and Docking Lines can help remedy development that has become too isolated or
disjoint.

Streamed Lines: General Advice and Recurring Motifs
The branching patterns in Streamed Lines don't cover every possible contingency. Situations will arise where the
correct pattern or variant to use is not at all obvious, or may not even exist. However, even in these cases some of
the recurring themes, which underlie many of the branching patterns presented here, may still be broadly applicable
for your particular problem. These are as follows.

Use Meaningful Branch Names
Just like variable names in a program, each branch should have a meaningful name that communicates its purpose or
its policy. If your VC tool doesn't directly support named branches, then floating labels (sometimes called sticky
labels) can used to the same effect. See the pattern Virtual Codeline.

Prefer Branching over Freezing
Don't suspend all activities on a particular codeline when many of those activities could continue unobstructed on a
separate branch, without impacting the efforts on the original codeline. See Parallel Releasing/Development for an
example.

Integrate Early and Often
Frequent, incremental integration is one of the signposts of success, and its absence is often a characteristic of
failure. Current project management tends to avoid strict waterfall models and embrace the spiral-like models of
iterative/incremental development and evolutionary delivery. Incremental integration strategies like Merge Early
and Often and its variants, are a form of risk management that tries to flush out risk earlier in the lifecycle when
there is more time to respond to it. The regularity of the rhythm between integrations is seen by [Booch],
[McCarthy], and [McConnell] as a leading indicator of project health (like a "pulse" or a "heartbeat").

08/02/98 Streamed Lines: Branching for Parallel Development 18 - 71

Branch on Incompatibilities
Often, the best way to resolve opposing forces from competing concerns is create a new branch for the competition.
Such incompatibilities may result from the following: access policies, dueling ownerships, integration frequency,
activity-load, activity-type, and platform. Examples of this include Policy Branch, Inside/Outside Lines, Component
Line, Parallel Maintenance/Development, and Platform Line.

Add Another Level of Integration
Sometimes branching on incompatibility isn't enough. Divergence will often require frequent convergence, or
continuous mediation. In this case, it is often necessary to add another level of indirection, by adding another line of
integration between the two opposing forces or competing codelines. Examples are Subproject Line, Docking Line,
Remote Development Line, Staged Integration Lines, and Mainline.

KISS (Keep It Simple Stupid!)
Avoid branching hierarchies that are extremely wide or dense! (Think of "branch and bound.") Try for minimal
reconciliation by creating new branches only when the added benefit is worth the added synchronization overhead.
Use additional branches to provide greater isolation between tasks and changes; and use integration-lines to add
additional verification and validation of merged changes.

But don't use branches to solve all your problems! Many problems are best addressed by different means. For
example, numerous multi-platform issues are better solved by using extra files and directories rather than platform-
branches. Don't use branches as a "hammer" to make every problem look like a nail, and don't "sow" a new branch
unless you can reap the benefits.

Preserve Integrity and Consistency
Preserve the conceptual integrity of the branch! When delegating volatile aspects of high-impact variation to
separate branches, keep each aspect logically consistent within its own branch: keep codeline usage consistent with
its policy, and keep codeline policy consistent with its purpose. Occasional "fine-tuning" and remedial actions are to
be expected, but avoid changes that violate the spirit of the codeline's intent.

Preserve the physical integrity of the branch! Don't merge incomplete or inconsistent changes into the codeline; and
don't leave codelines in inconsistent states. When the configuration of a codeline is inconsistent or incorrect it can
adversely impact all users of the codeline. Try to keep codelines reliably consistent, and consistently reliable.

Choose optimistic or pessimistic branching policies and stick with them! For a given project, strike a sensible
balance of trade-offs between safety (isolation, access control, code integrity, and risk mitigation) and liveness
(productivity, integration overhead, working "on-line") and then apply them in a consistent manner. The balance
may need to be dynamically adjusted over time; but at any given time, the policies should be consistent with one
another.

Isolate Change
You may recall that one of the recurring themes in the [GoF] Design Patterns book is: "Encapsulate the thing that
varies." Branching doesn't achieve encapsulation of information so much as it achieves isolation of changes. So a
recurring theme in most of these branching patterns is “Isolate the thing that varies!” Each branch and codeline
isolates one or more of the following dimensions over a given time-period:

• Physical Structure - organization and distribution of:
• System knowledge
• Components and subsystems
• Configuration elements (files and directories)

• Functional Evolution - organization and distribution of:
• Change and change-flow
• Delivery (releases and patches)
• Functionality (requirements, features, fixes, and enhancements)

• Teamwork - organization and distribution of:
• Interaction and communication (coordination and collaboration)
• Policy and procedure (cooperation and control)

08/02/98 Streamed Lines: Branching for Parallel Development 19 - 71

• Workflow and activity-flow
• Roles and responsibilities

• Environment and infrastructure (platform and resource variations)
• Reproducibility and traceability (identification and tracking)

Isolate Work, not People
Perhaps most importantly, the branching policies and patterns described here do not remove the need for
communication between project team members. These patterns should facilitate communication, not eliminate it!
The goal of these patterns is to help isolate work, not people. People working together on a project need to remain
socially connected and coordinated with one another, and maintain an awareness of the impact of their efforts
downstream and throughout the entire lifecycle. Jeopardize this and you jeopardize team synergy, and ultimately,
team success.

If you isolate people from their work, systemic disconnection may result: developers lose touch with the effects of
their own efforts on the overall project. If you segregate people from each other according to their work tasks, social
isolation may occur: people lose touch with one another and with the overall project team. The purpose of
parallelization is not to isolate people from people, or people from their work, but to isolate work from other work.
Conway's Law (see [Cope95]) applies just as much to the architecture of the project's version tree as it does to the
architecture of the system. Use this wisdom to your advantage (and ignore it at your peril).

Streamed Lines: Resulting Context

Similarities with Concurrent/Parallel Programming
[McKenney95] writes of the forces for and against parallelizing a software program, breaking them down into:
Speedup, Contention, Overhead, Economics, Complexity, and a few others. Most of these forces are equally
applicable to the case of concurrent/parallel software development. In fact, designing parallel development strategies
for concurrent software development bears more than a striking resemblance to parallel programming strategies for
concurrent object systems. The former deals with multiple collaborating objects running in multiple threads of
execution across multiple address spaces in a parallel software program; the latter deals with multiple collaborating
individuals working in multiple threads of development across multiple workspaces in a parallel software
development project.

As [Lea96] describes, some of the most basic tradeoffs to be made when designing concurrent object systems are
those of safety ("The property that nothing bad ever happens") and liveness ("The property that anything ever
happens at all"). These tradeoffs are essentially the same for software development:

From either direction, the goal is to assure liveness across the broadest possible set of contexts without
sacrificing safety.

The need to apply such strategies across the broadest possible set of contexts ties into their reusability across the
project, and between projects. Hence all the same issues and concerns mentioned by [Lea96] regarding safety,
liveness, and reusability also arise during parallel development.

Isolation and Risk Mitigation
Branching is an optimistic concurrency control strategy for parallel development. It tries to mitigate the risk
associated with such optimism by separating concurrent/parallel efforts into isolated paths of development.
Branching off into separate workstreams is fairly easy to do with minimal interference, and gets rid of the need for
development tasks to "block" waiting for checkout-locks to be released. Rejoining the two paths after they've been
separated is done via integration (merging). The inherent risk in resynchronization is mitigated by allowing it to
happen in a well-insulated context at a more convenient time.

In effect, every codeline and branch represents a form of risk management by isolating how functionality,
environment, knowledge, teamwork, responsibility, and reliability, are distributed and disseminated across time and
space.

08/02/98 Streamed Lines: Branching for Parallel Development 20 - 71

Managing Complexity with Hierarchy
Branching and merging hierarchically decompose and recompose parallel development into more manageable
chunks! By isolating things along various dimensions in a hierarchical fashion, we are attempting to manage
dynamically evolving complexity and dependencies. First we decompose the parallel development problem into
codelines and branches and subbranches, then we recompose the subparts back into the larger whole by
progressively merging subbranches back to branches, branches back to codelines, and codelines back into the
mainstream.

Integration Overhead
Regardless of whether changes are reconciled and synchronized immediately, or deferred to a more convenient time
and place, there is always a risk of compromising the integrity of the codeline after a merge. That is the price for this
kind of optimism. The usual laws of thermodynamics (regarding entropy and enthalpy) apply here as well: it is
usually harder to put things back together than it was to take them apart. For every branch created, there is almost
always an opposing merge to be reckoned with!

Integrity and Reproducibility
By separating development into isolated development paths and change-tasks, branching eases the burden of tracing
changes (both physical and functional) and their dependencies. This makes configurations, features and faults easier
to verify and reproduce. Although each merge carries with it some additional risk to codeline safety, intelligent use
of branching and merging really can help to preserve the conceptual integrity of the codeline, as well as its physical
integrity (ensuring configurations are correct and consistent).

Communication, Coordination, and Productivity
If your VC tool supports symbolic branch names (rather than numeric ones) then mnemonic branch names can serve
as an effective form of communication that describes the intent of the branch and the work that takes place upon it.
If you aren't using such a VC tool you may need to find a way to work around this, either using a technical solution
(like Virtual Codeline) or a social convention among the project team.

Branching also helps communication and collaboration be effectively organized, synchronized, and parallelized. If
used properly so that it isolates work instead of people, branching promotes effective teamwork and really can
reduce time-to-release. If you make the effort to apply intelligent, risk-aware strategies for the selection of branching
and merging styles, and periodically take a step back to review and revise the project-wide version tree, you should
be able to reap the benefits of parallel development (shorter cycle-time) and keep the amount of synchronization
overhead (and risk) to a manageable level.

Parallelization with Concurrency Constructs
Despite the fact that many VC tools consider branching to be one of their nicer and more advanced features,
branching is in fact a somewhat low-level construct used for concurrency control. It is not ideally suited for
parallelization of work and workflow at coarser-grained levels beyond a single file or directory. Using branching for
this purpose results in a non-trivial amount of trivial merging where revision contents need to be propagated from
branch to branch with little or no difference between them. Good merging tools can minimize the pain and overhead
associated with this, but if the overhead can still be noticeable.

The problem is that the majority of readily available VC tools don't provide the user with anything better. It would
be far more suitable if one's VC or SCM tool provided predefined constructs which directly map to the conceptual
notions of: change-sets, activities, and activity-streams, without being dependent upon branches. Then we could use
the SCM tool to directly model parallel effort and workflow and let the tool itself worry about how to handle the
low-level concurrency control (branching) with the help of some user-supplied policy preferences. There are a select
few tools which actually do provide this capability (ClearGuide is one of them) but they are presently in the
minority. So unless you are using such a tool, branching tends to be the next best mechanism for supporting
parallelism.

Branching Topology Comprises Workflow
The result of using all these branching patterns is a version branch tree structure that, for the most part, represents
the intended structure of activity workflow for the project. One might regard this as a simple byproduct of Conway's
Law, namely that "Architecture follows Organization" (see [Cope95]). In the case of branching for parallel software

08/02/98 Streamed Lines: Branching for Parallel Development 21 - 71

development, we might rename this as a corollary to Conway's Law and call it "Branching Topology Comprises
Workflow."

Architectural Alignment
Software development involves a great many architectural structures (or "views"). Most of us are familiar with the
logical design view of software that most commercial modeling tools support. But there are other structural views
for other aspects of the project or product that encompass issues such as: platforms, domains, development
processes, interfaces, resources, configuration, reflection, extension, generation, analysis, usage, and even social
dynamics. Both [Kruchten95] and [Davis97] describe "4+1 Model Views" of software architecture with five
architectural views; [Kriha97] proposes no less than ten different architectural structures for software which can be
difficult to visualize, yet dangerous to ignore.

The larger a project and its development team, the more complex each view or structure will be (to say nothing of
the dependencies and relationships between structures). Part of successful project management and product
architecture lies in keeping these different structures in reasonably close alignment with one another. This minimizes
the complexity of the overall architecture and makes the structures themselves easier to manage. Greater structural
similarity between views means greater conceptual integrity and coherence between views and in the overall project
and product.

The branching tree of a project represents the structure of its evolution in terms of change-flows. The flow of work
activities is also an important project structure. Streamed Lines attempts to coordinate these two sets of structures so
that activity and workflow conveniently map to change-flows (using branches as the grouping mechanism). This
helps makes the project's development and evolution easier to conceptualize and manage. In this manner, Streamed
Lines assists in bringing some of the architectural structures of a software project into alignment.

08/02/98 Streamed Lines: Branching for Parallel Development 22 - 71

Appendix A - Streamed Lines: The Patterns
• Branching Policy Patterns

• Branch Creation Patterns

• Branch Structuring Patterns

Branching Policy Patterns
• P1. Codeline Policy

• P2. Codeline Ownership

• P3. Relaxed-Access Line

• P4. Restricted-Access Line

• P5. Merge Early and Often

• P6. MYOC (Merge Your Own Code)

• P7. Early Branching

• P8. Deferred Branching

P1. Codeline Policy

Pattern Codeline Policy

Aliases Policy per Codeline

Context You are developing software within a system that utilizes multiple codelines.

Problem How do the developers know which codeline to save their code in, and when to save it?

Forces • Each codeline has a different purpose; one codeline might be intended for fixing bugs
in a particular release; another codeline might be used for porting existing code.

• A codeline's name is usually indicative of its purpose;

• A codeline's name usually doesn't express all the finer points of codeline usage;

• If code is written to the wrong codeline, the bad changes must be backed out, causing
productivity to suffer.

Solution In addition to using naming conventions and meaningful branch/codeline names,
formulate a coherent purpose for each codeline. Describe the purpose in a clear and
concise policy. The policy should be brief, and should spell out the "rules of the road" for
the codeline, including:

• The kind of work encapsulated by the codeline, such as development, maintenance, a
specific release, function, or subsystem;

• How and when elements should be checked-in, checked-out, branched and merged;

• Access restrictions for various individuals, roles, and groups;

• Import/export relationships: the names of those codelines it expects to receive
changes from, and those codelines it needs to propagate changes to;

• The duration of work or conditions for retirement of the codeline;

• The expected activity-load and frequency of integration

Keep in mind that not all codeline policies will require all of the above information. Only
specify what is needed. Some VC tools allow you to associate a comment with each
branch and codeline name. This is an ideal place to store the description of a suitably
brief codeline policy. Developers can run a command using the codeline name instead of
digging elsewhere for documentation. Otherwise, store the codeline policy in a well-

08/02/98 Streamed Lines: Branching for Parallel Development 23 - 71

known, readily accessible place (and perhaps provide a simple command or macro that
will quickly display the policy for a given codeline name).

Resulting
Context

The codeline now has a coherently communicated purpose that is readily available to the
entire project team. This sets the stage for how the codeline can and should be used.
Codeline access issues are resolved by determining whether or not they violate the
intended purpose of the codeline.

Related
Patterns

Codeline Ownership and Policy Branch describe tactics for resolving policy conflicts.
The owner of the codeline policy document should be the current owner of the codeline.
Restricted-Access Line may be applicable if the codeline policy calls for tight permission
or control. Every branch creation and branch-structuring pattern will require a
corresponding codeline policy for each codeline.

P2. Codeline Ownership

Pattern Codeline Ownership

Aliases Branch Ownership

Context You are a developer working with at least one codeline in a set of Multiple codelines. A
Codeline Policy has been used to define policies for codeline checkin/checkout. Someone
wants to do something to a codeline that its policy doesn't seem to address, or else the
policy appears vague regarding this particular issue.

Problem Should the action affecting the codeline be performed or not? How can this be decided
while at the same time ensuring the integrity and consistency of the codeline?

Forces • "In theory, practice and theory are the same, but in practice, they're very different." No
single policy can spell out every situation that can arise: Codeline Policy covers
theory, but something else is needed to cover practice.

• If the Codeline Policy is unclear, the developer will need to have the policy clarified.

• A codeline policy can be violated, either accidentally or intentionally.

• The codeline needs to stay in a correct and consistent state to avoid adversely affecting
"in progress" development tasks.

Solution Assign one owner per codeline. It is the owner's responsibility to

• Clarify the codeline if it is found to be unclear;

• Decide whether to leave in or back-out files that have been checked into the codeline
in violation of policy;

• Make rulings on codeline postings in ambiguous or inapplicable situations;

• Assist in, or perform, the integration of changes to the codeline;

• Decide when the codeline should be frozen and unfrozen, and when it should be
completed and merged back to the Mainline.

Ownership does not necessarily imply exclusive access, but it does imply authoritative
access control. Perhaps only the codeline-owner may check in files (Restricted-Access
Line); or perhaps others can checkin files if they obtain approval for the codeline owner
before checkin, or notify the codeline-owner immediately after checkin. (Relaxed-Access
Line). The Codeline Policy should clearly define the ownership style for access-control

08/02/98 Streamed Lines: Branching for Parallel Development 24 - 71

style. In general, frequently accessed codelines with many developers will require a more
restrictive ownership policy than an infrequently accessed codeline. So will codelines that
encompass high-risk or high-complexity activities, or that demand high levels of reliability.
Smaller projects and teams for codelines encompassing less critical tasks can afford more
permissive codeline ownership and access control policies while still maintaining the
integrity and consistency of the codeline.

Variants

P2.1 Codeline Dictatorship

An extremely restrictive form of codeline ownership whereby checkouts and subbranches
of a branch are restricted, in addition to checkins. The dictator may be a single person, or
an entire site. A common example is a Remote Development Line: remote developers might
be prevented from creating new versions and branches that do not originate from the
remote branch. Thus, the local branch is reserved exclusively for the "master" development
site. This is essentially how ClearCase Multisite defines the notion of "branch mastership."

Resulting
Context

• A single individual is held accountable for the consistency and integrity of the
codeline. As a result, the codeline is more likely to be in a consistent and reliable state.

• Holding the owner of the codeline responsible for its state, decreases the likelihood of
the codeline policy being trampled on, or of the codeline being used for the wrong
purpose.

• The conceptual integrity of the codeline is maintained by having a single mind, the
codeline owner, serve as a single point of authority for resolving codeline issues.

Related
Patterns

A Codeline Policy should specify the usage rules that codeline-owner is expected to
ensure. Branch locking may be used to impose a Restricted-Access Line enforcing
mastership or ownership policies. Code Ownership ([Cope95]) will apply for codelines
serving as component branches or component lines; the code and codeline owners should
be the same. Similarly, Owner per Deliverable ([Cockburn97]) should be applied for
functional branches and subproject-lines;

P3. Relaxed-Access Line

Pattern Relaxed-Access Line

Context When determining the Codeline Policy for a codeline, you need to decide the access-
control policy of the codeline.

Problem How restrictive or exclusionary should the access control policy be for the codeline?

Forces • If there are many developers working on codeline, or some of them are inexperienced,
a tighter rein may be necessary.

• If there is a significant level of risk or complexity associated with the type of work
taking place on the codeline, checkins and merges may require close monitoring and/or
verification.

• It is important to ensure the codeline is always in a consistent state so as not to
adversely impact the people working on it.

• If the codeline corresponds to a certain promotion level (see Staged Integration Lines)
or lifecycle phase, then this may dictate what lengths are necessary to verify the
consistency of this particular codeline.

08/02/98 Streamed Lines: Branching for Parallel Development 25 - 71

Solution If the codeline is being used for development or maintenance (rather than exclusively for
integration) and if the group working on the codeline is relatively small, experienced, and
reliable, then give the developers relatively free reign to do what they already know how to
do: work together to develop software in a timely fashion. Use the bare minimum of checks
and controls but make sure the codeline-owner takes his job seriously and is always aware
of the state of the codeline and whether or not its integrity is about to be compromised by a
particularly risky/complex development task.

Variants

P3.1 Guarded Merge Access
One way of addressing possible merge/integration conflicts is to let developers checkin to
the codeline as they see fit, but to perform an automated check ensuring there will be no
merge conflicts upon checkin. Some VC tools provide triggers as a convenient way of
performing such checks. A pre-checkin or pre-submit trigger can invoke the VC tool's
automated merge tool in "what-if" mode and abort the operation unless the merge is trivial
or has no conflicts at all. If your VC tool doesn't have triggers then you would typically use
a "wrapper" instead, wrapping your own command or script around the checkin/submit
command (or else you could always have the codeline-owner perform the merge-query). If
your VC tool doesn't have such nice merge facilities, you would need to put that together
on your own, using history information stored in the repository to build and traverse the
version tree for a given file.

If the merge tools think the merge is trivial, then the checkin/submit proceeds. Otherwise,
the person who made the changes is required to re-sync their changes with the latest state
of the codeline (importing any recent codeline changes into their workspace) and resolve
the merge conflicts in their own workspace before attempting to check them in to the
codeline again.

Resulting
Context

The codeline has a more laissez-faire access policy that trades off safety for liveness. This
is more likely to be an acceptable risk for a small, experienced group of developers. While
"glitches" may have a higher impact on the codeline, their likelihood is decreased by the
more trustworthy nature of the group and the work they are performing. When glitches do
occur, the group working on the codeline is often intelligent enough to quickly contain and
correct the problem.

Related
Patterns

MYOC (Merge Your Own Code), Merge Early and Often

P4. Restricted-Access Line

Pattern Restricted-Access Line

Aliases Branch Locking

Context Same as for Relaxed-Access Line

Problem Same as for Relaxed-Access Line

Forces Same as for Relaxed-Access Line

Solution If the codeline will have a large number of developers (or a sufficient number of
inexperienced developers) and the work taking place on the codeline is very risky, or
consists primarily of integration, or corresponds to a promotion-level or lifecycle phase
that is not very close to the initial level, then restrict who is allowed to checkin code on the

08/02/98 Streamed Lines: Branching for Parallel Development 26 - 71

codeline to either just the codeline owner, or a to a small set of trusted, reliable developers.

Some VC tools support access control for branches so that they may be locked against
checkin or checkout. Sometimes the access control will allow you to specify everyone,
and/or a list of users or groups to include/exclude from the codeline access-list. If the VC
tool you are using has these features, they prove quite convenient for enforcing codeline
access-restrictions. If the VC tools don't support such features, the triggers or wrappers for
checkin/checkout will be required (and they will need to determine, or else query the user
for, the target codeline).

Variants

P4.1 Codeline Freeze/Retirement
It is common to suspend ("freeze") development to perform release integration and
engineering activities. Afterward the codeline or branch may be decommissioned, sent into
"retirement" by cutting it off and merging it back to a parent codeline or to the Mainline.
Or development on the codeline may be resumed ("thawed" or "melted") after the release
has been "cut." During the time it is frozen however, no one may make any changes to the
codeline that aren't deemed necessary for successful integration and release. The only
codeline activities permitted are those which sync and stabilize its contents.

When using branches, you may continue development on one codeline while conducting
release engineering on another (see Anti-Freeze Line). You may still want to freeze any
new changes (other than integration) on the codeline that is being prepared for release, but
remaining development activities can carry on in separate codelines.

P4.2 Export Lock (a.k.a. Integration Lock)
When developers use MYOC to export their changes to the codeline, there may be
contention between multiple developers trying to commit their changes for export during
the same time period. Just before a completed change is about to be merged back into the
codeline, the developer acquires an export lock. No one but the holder of the export lock
may checkin to the codeline during that time. Also, the developer may only checkin all
their changes at once, or none at all (logical changes to the codeline must be "atomic").

If the merge can be performed quickly and cleanly, and its correctness can be verified
shortly thereafter, then the developer keeps the export lock and does not have to reconcile
changes against a moving "target." If retaining the export lock during the merge would
adversely impact others, the developer relinquishes the export lock and reconciles with the
current state of the codeline (allowing others the opportunity to export their changes).
When the developer is once again ready to export, there may now be new codeline changes
to contend with, and the same decision of whether or not to keep or relinquish the
temporary export lock will be faced once again.

P4.3 Private Line (also Private Branch)
Sometimes a codeline or branch is primarily intended for a single person to perform a
single task or series of tasks. In these cases it is common the prevent all users other than
the codeline owner from checking-out (and in) files from the codeline. Sometimes even
branching off the private line is forbidden to all but the codeline owner.

Also, if a codeline is used as a Component Line, and if only the code-owner is allowed to
checkin the code she owns, it makes good sense to restrict all access on the component-line
to the code-owner (who also serves as the codeline owner, of course).

P4.4 Role-based Line Access (Role Branch)
Sometimes, instead of being restricted to one or more users, a branch is restricted to one or
more development roles. Any person may use the branch or codeline as long as they are
playing the correct role at that time. This is typically done using a special user-id or group-

08/02/98 Streamed Lines: Branching for Parallel Development 27 - 71

id for each development role requiring special access. For example, in order to gain merge
access to a codeline, it might be the case that a developer fulfilling an integration role must
first become user 'integratr ' or be a member of the 'integratr ' user-group.

Resulting
Context

Restricted-access provides an added level of safety and security for the codeline. If the
codeline is shared, then you lose some of the benefits of choosing file-branching over file-
locking (resulting in more waiting time), but the restriction is larger-grained and not
absolute; so you still keep many of the benefits of branching versus locking while ensuring
that efforts on the codeline remain as isolated and/or as consistent and stable as demanded
by the nature of the codeline.

Related
Patterns

Codeline Policy, Codeline Ownership, Remote Development Line, Inside/Outside Lines

P5. Merge Early and Often

Pattern Merge Early and Often

Aliases Codeline Update per Task

Context For a given codeline, maintenance and/or development activity is regularly occurring.
Some of the work may be happening directly on the codeline, while other tasks ultimately
intended for this codeline may be taking place on Task Branches or Subproject Lines.
Furthermore, the codeline may also require periodic synchronization with changes on
Remote Lines and changes often need to be propagated from a maintenance-line to a
release-line, or from a release-line to a codeline for a subsequent release.

Problem When should changes be merged into the codeline and how frequently should they be
merged?

Forces • You want to preserve a consistent, correct state of the codeline

• Frequent merging may upset the stability of the codeline, making it volatile, and hard
for developers to stay in sync

• If developers are employing dynamic configuration selection, then changes to the
codeline are immediately reflected in their workspace, and may upset their own work

• Sound risk management dictates identifying and addressing issues as early as possible,
and merging can certainly bring significant issues to light that might not otherwise be
noticed until a deadline looms near

• The more out-of-sync developers are with respect to the latest state of the codeline, the
more likely it is that their changes will have non-trivial conflicts that are time
consuming to reconcile when it comes time for their changes to be incorporated into
the codeline.

08/02/98 Streamed Lines: Branching for Parallel Development 28 - 71

Solution Integrate new changes into the codeline as soon as they are ready; Do not integrate portions
of a logical change before the entire change completed. But once the entire change has
been completed (much like a transaction) it should be immediately considered for
integration into the codeline and merged in as soon as conveniently possible.

Variants

P5.1 Propagate Early and Often (a.k.a Propagation per Task)
This is basically the same thing but it refers specifically to the case where changes already
integrated (or merged) into one codeline need to be propagated (merged) into another
codeline.

08/02/98 Streamed Lines: Branching for Parallel Development 29 - 71

P5.2 Multi-Merge Early and Often
If the codeline owner must be responsible for all merging (due to the nature of the codeline
requiring a high degree of reliability and consistency that only the line owner can take
responsibility for), then, for a high-volume (high activity-load) codeline, it may not always
be feasible to merge every change-task as soon as it is complete.

In this case, merge-tasks need to be queued or batched up into manageable chunks and then
regularly merged in. A suitable interval should be chosen based upon the number of tasks
and their average complexity. Daily might be best for high activity codelines, whereas as
weekly will be better for others. Start off trying for daily (or nightly) multi-merges (tested
via Daily or Nightly Builds). If that is too burdensome then try semi-weekly and then
weekly. If a shorter time period is needed than try twice a day (daily & nightly). It will take
a little while to find the correct rhythm, and it may fluctuate form time to time, but it does
need to be done as frequently and regularly as manageable and should be done at least
weekly.

This may be combined with change-propagation to yield "Multi-Propagating":

Resulting
Context

The codeline is incrementally updated at fairly regular intervals to reflect the current state
of progress for that codeline. Subsequent development on that codeline now takes place in
the context of the newly merged changes. While this may introduce some difficulty if a
change later needs to be backed out, it serves as a forcing function to help identify and
flesh out risks early in the development cycle when their is more time and opportunity to
address them intelligently.

Developers using dynamic configuration selection may see changes sooner than they

08/02/98 Streamed Lines: Branching for Parallel Development 30 - 71

would have liked. Although they would have to see them eventually before merging back
to the codeline, they may require some control over when they see such changes that would
impact their own work.

Related
Patterns

MYOC (Merge Your Own Code), Change Propagation Queues follow naturally from this
pattern. Branch per Task may be suitable for developers using dynamic configuration
selection. Floating Labels (see Virtual Codeline) may also be a good alternative.

P6. MYOC (Merge Your Own Code)

Pattern MYOC (Merge Your Own Code)

Aliases Get the right person to do the merge!

Context You are a developer working on code in either a branch off of the codeline or on the
codeline itself. After you have finished debugging and testing your changes, you wish to
follow Merge Early and Often and have your changes merged back into the codeline.

Problem Who should perform the merge, and who assumes the burden of ensuring it is integrated
correctly?

Forces • At the time of the merge, the contents of the codeline may be different from its
contents at the time the change began.

• The person performing the change-task (the "change-owner") may be different from
the code-owner for the changed files (see Code Ownership in [Cope95]). Both of these
people may be different from the codeline-owner.

• The change-owner or the code-owner usually knows the most about the code that was
changed. High-complexity and high-risk changes increase the importance of being
familiar with the changed code.

• If the codeline changed significantly while the developer was performing the change-
task, the change/code owner may be unfamiliar with the current state of the codeline.

• The codeline-owner usually knows the most about the codeline's present state.
Codelines that must be depended upon for high stability/reliability increase the
importance of being familiar with the current state of the codeline.

• Systemic disconnection: Developers who aren't responsible for merging their own code
back into the codeline can easily lose sight of the impact of their efforts further
"downstream."

• Social isolation: Developers who simply take their change and "throw it over the wall"
can lose sight of the needs of other team members on the other side of the "integration
wall."

• You don't want the codeline falling into an inconsistent state, which adversely affects
its users, as a result of the merge.

Solution If either the change-owner or the code-owner also happens to be the codeline owner, then
have the codeline-owner merge the code. Otherwise, unless reliability and process control
obligations are so strict as to forbid merging by anyone but the codeline-owner, always
strive to have the either the change-owner or the code-owner perform the merge.

On occasion, this will require cooperation and collaboration from all three parties,
especially the codeline-owner if the codeline-state is higher risk or has significantly
changed. Remember that a change to merge may conflict with a previous change in the

08/02/98 Streamed Lines: Branching for Parallel Development 31 - 71

codeline. Resolving this conflict may require additional assistance from the person who
performed or merged the conflicting changes.

Hopefully, it will be the case that the change-owner and the code-owner are one and the
same, or else that the code-owner and the codeline-owner are the same person (in which
case the codeline may be a Component Line). If all three of these owners are different
people, you may need another level of integration (see Staged Integration Lines).

Otherwise, if the codeline is necessarily restrictive or the degree of risk/complexity for
merging to the codeline is very high, the codeline owner may have to perform the merge.
In this case a better solution may be (again) adding another level of integration to create a
Docking Line.

Variants

P6.1 PYOC (Propagate Your Own Code)
If change-tasks are propagated on a task-by-task basis, then pretty much the same scenario
occurs when it is time for a change-task that has been integrated in one codeline to be
propagated to another codeline. So now we have two codeline owners, the owner of the
receiving codeline and the owner of the sending (or originating) codeline. Despite this
difference, the rule of thumb is still pretty much unchanged.

Resulting
Context

Developer's take responsibility for their code and changes throughout the codeline's life
span instead of playing "pass the buck" and becoming alienated from each other's efforts
and responsibilities. The codeline owner still needs to monitor/verify the codeline after
merges, but isn't overburdened with a high-volume of merges to perform.

Related
Patterns

Codeline Ownership, Code Ownership [Cope95], Merge Early and Often

This pattern requires a sufficiently Relaxed-Access Line. If that is not feasible then a
Docking Line, or Staged Integration Lines may be a good compromise that allows
developers to merge their own changes to another codeline which eventually cycles those
changes (under more protective jurisdiction) back into the development line.

P7. Early Branching

Pattern Early Branching

Aliases Branch Early and Often

Context During project planning and later in course of development efforts, you become aware of
various tasks and subproject that will best be performed in parallel with other development
efforts. These might be major features or fixes, major or minor releases, patches, or new
platforms (or even geographically distributed development).

Problem When should you create new branches or codelines for parallel tasks and subprojects that
are forthcoming in the near future?

Forces • For every new branch that is created, there is the risk that it will require a greater than
equal and opposite merge

• You want to avoid the project version-tree being too overwrought with concurrent
branches

• You would like to isolate any parallel tasks that may potentially conflict with one
another

08/02/98 Streamed Lines: Branching for Parallel Development 32 - 71

• You want each new codeline and branch created to have a coherent purpose that fulfills
a legitimate need

Solution Create new branches and codeline as soon as the corresponding parallel work efforts begin.
Even if they don't yet conflict with any current work on existing codelines, separate those
activities into logically separate branches which are later merged back into parent
codelines.

Resulting
Context

Each branch and codeline has a logically coherent purpose that is conceptually clear and
easily maps to tasks, subprojects, features and releases. Although these activities might
have easily occurred on the same codeline without any conflict, each branch helps to
isolate logically distinct efforts and to encapsulate a cohesive unit of functionality, effort,
or delivery.

Related
Patterns

Branch per Task, Codeline per Release

P8. Deferred Branching

Pattern Deferred Branching

Aliases Lazy Branching, Late Branching

Context Same as for Early Branching

Problem Same as for Early Branching

Forces Same as for Early Branching

Solution Instead of spawning off a new task branch, subproject line, or release line, as soon as effort
begins for the corresponding goal, wait to start the new branch until work for that release
actually starts to conflict with work that is already on the codeline. This doesn't mean that
you should wait to branch until one or more files have conflicting changes. What it means
is you should wait to branch until a logical change (feature, function, or bug-fix) that is
needed only for the new task, and not yet desired in the original codeline, is about to take
place.

For releases, perform development for the new latest-and-greatest release on the LAG
Development Line until it is no longer the latest release effort (then branch off into a major
release-line as in Codeline per Major Release). When work is first ready to begin for the
new release-line, instead of starting a new branch for the new effort, you start a new branch

08/02/98 Streamed Lines: Branching for Parallel Development 33 - 71

for the old effort (that was, up to now, taking place on the LAG-line).

Similarly, with features and fixes, if they would need to be merged back to the original
codeline by release-time anyway, and aren't of a significantly high risk/complexity or long
duration, then go ahead and perform them on the codeline (see Branch per Major Task).

Resulting
Context

Deferred Branching requires less integration/merging and propagation of changes from
codeline to codeline. It does so at the risk of less isolation, trading off "safety" for
"liveness".

The branches that are created may seem less "singular in purpose" than with Early
Branching. With Early Branching the type of work for each branch/codeline happened
only on that branch. With Deferred Branching the work happens first on the original
codeline, and than later gets branched-off to another codeline. This may seem inconsistent
or cause people conceptual difficulty in understanding and remembering what kind of work
should be occurring on the codeline. Sometimes this can be addressed by adopting a
slightly different perspective for the purpose of the codeline.

For example, instead of defining the purpose of the codeline to be for a specific release,
define it to be for the latest and greatest development effort of the project (LAG-Line) of
for the latest and greatest maintenance efforts for a previous release (Codeline per Major
Release). However, this conceptual reorientation this cannot always be accomplished in a
suitably coherent and consistent manner, and even when it can, some team members may
have significant difficult making the adjustment.

Related
Patterns

LAG Development Line, Branch per Major Task, Codeline per Major Release

08/02/98 Streamed Lines: Branching for Parallel Development 34 - 71

Branch Creation Patterns
• C1. Policy Branch

• C2. Branch per Task

• C3. Codeline per Release

• C4. Subproject Line

• C5. Virtual Codeline

• C6. Remote Line

• C7. Component Line

• C8. Platform Line

C1. Policy Branch

Pattern Policy Branch

Aliases Branch on Incompatible Policy

Context A number of developers are working with the same codeline. A CodelinePolicy is being
used with the codeline.

Problem Some of the users are dissatisfied with the current codeline policy, and have a need for it to
change.

Forces • Changing the CodelinePolicy to the policy requested by the dissatisfied users will
cause problems for the other users of the codeline.

• Adding new policy statements to the existing policy may make the codeline unusable
in any form.

Solution Branch the codeline to create a new one based off of it; leave the old CodelinePolicy with
the original codeline and attach a new CodelinePolicy to the new codeline.

Resulting
Context

• Developers on the original codeline, and on the new policy branch each have a policy
more suited to their needs.

• Additional integration needs to take place to keep one of the two codelines "in sync"
with the other via change-propagation.

Related
Patterns

Don't forget to use Codeline Ownership and Codeline Policy for the new policy branch.
Propagate Early and Often to keep the codelines "in sync" as needed.

C2. Branch per Task

Pattern Branch per Task

Aliases Activity Branching, Task Branching, Side Branching, Transient Branching

Context For a given codeline, the set of files affected by any change-task may overlap with that of
other changes to the codeline. At some point, all the features and fixes the codeline will
need to be integrated together in order to deliver the required combination of functionality.

08/02/98 Streamed Lines: Branching for Parallel Development 35 - 71

Problem How can multiple, potentially interfering or overlapping changes be made to a codeline
without compromising its consistency and integrity?

Forces • Parallel development without controlled interaction between concurrent changes can
result in lost or corrupted changes, wasted effort, and rework.

• Concurrent changes need to be integrated with care. Otherwise changes which work
correctly in isolation from one another could cause incorrect or inconsistent behavior
when combined together. A single unanticipated change could destabilize the entire
codeline and impact all of its users.

• Excessive locking may cause very long "busy waits", forcing developers to suspend
some of their activities until a locked file becomes available. At its worst, this can
cause deadlock between parallel activities.

Solution Fork off a separate branch for each activity that effects changes for a codeline. Once the
activity is complete and all of its file changes have been tested, checkin files on the activity
branch. Then, if MYOC is being used, merge the activity branch into the appropriate
codeline (as a single transaction). Otherwise notify the appropriate codeline owner that the
change is complete and ready to be merged (and provide the codeline-owner with any other
necessary information for finding, merging, and testing the change-task).

An activity-branch is a kind of degenerate a codeline, complete with an owner and a
policy. The branch owner is the owner for the particular task or activity. The policy of the
single-activity codeline is that it is completed (retired) and merged back to a parent
codeline once the first logical change to it has been completed.

Variants

C2.1 Branch per Major Task (a.k.a Major tasks off-line, Minor tasks on-line)
A common variant of Branch per Task is to use an activity branch only for major tasks.
Minor tasks are performed "on-line," without any branching off of the codeline. Such tasks
are believed to be "short and sweet" and can usually be completed and checked-in before
very many other tasks have had a chance to checkout and checkin any of the same files.

Ostensibly, major tasks are those that would be "long transactions": The state of the
codeline will have ample time to change between the time the tasks starts and finishes.
Often, a certain minimum threshold of estimated changed lines and/or files is used to
discern major tasks from minor tasks. This is an attempt to estimate the inherent
complexity of each task and the potential destabilizing effect it may have upon the
codeline. The underlying desire is to mitigate and isolate the risk associated with each
change, and its impact upon the codeline.

08/02/98 Streamed Lines: Branching for Parallel Development 36 - 71

C2.2 Branch per Change-Request (a.k.a. CR-Branch, Change-Set Branch, Change-Package
Branch)
Use a branch to isolate the changes for each change-request (CR). The branch encompasses
a single logical unit of functionality (a feature), or a single logical change in functionality
(a bug-fix or an enhancement). The same branch should be used for all files that
collectively participate in the lone feature or change.

C2.3 Personal Activity Branch (a.k.a. Single-User Task Branch)
A personal-activity branch is simply a special kind of activity branch where the owner of
the task is the sole performer (developer) of the task. It may be accompanied by a branch-
locking policy to ensure that the personal activity branch is also a private activity branch
(see Private Branch).

Resulting
Context

• The changes along activity branches are isolated from one another so their
corresponding modifications do not interfere even when their corresponding file sets
overlap.

• Making changes independently separable from each other lessens the burden, and the
risk, of integrating them with the myriad other changes in the codeline. Packaging
them up as branches makes them easier to identify, trace, and query as a group.

• CR branches and activity branches can be a convenient "packaging" mechanism for
grouping together multiple file revisions as a single, logically coherent change.
However, when versions from one branch are integrated to another branch, the newly
integrated versions lose the grouping provided by the original branch.

• Merging must be performed for changes that didn't even require concurrent
modification of the same files. Although the "copy-merge" will be trivial, numerous
copy-merges can add up to significant overhead for files that didn't really change. The
variant Branch per Major Task addresses this by reducing the number of trivial merges
at the expense of less isolation for supposedly minor changes.

Related
Patterns

Codeline Policy, Codeline Ownership, and MYOC were mentioned above. If activity
branches start to depend on other activity branches (in addition to depending on a baselevel
of the codeline), then a Subproject Line should probably be used.

This pattern has some interesting similarities with Thread per Request [Schmidt96].

08/02/98 Streamed Lines: Branching for Parallel Development 37 - 71

C3. Codeline per Release

Pattern Codeline per Release

Context During the course of development you will need to perform several software releases.
Work tasks are often organized around such delivery dates and their milestones. You
would like the branching structure used to readily accommodate the organization of work
tasks performed by developers working toward the common goal of a release (contrast this
with a project that may be more architecture-centric than delivery-centric).

Problem How should software releases, release engineering, and development for a particular
release be reflected in the branching tree of the project?

Forces • To be sure, labels will be used to tag stable configurations ready for release. But
baseline labels alone are insufficient to help structure workflow for a specific release.

• Major and minor release, as well as patches will often need to have their maintenance
and development tasks occur simultaneously, in parallel from one another.

• Merging causes integration overhead, but some amount of integration is essential for
verifying and validating that a configuration to be released is suitable for shipment to
customers.

Solution For each planned release (major, minor, and patches), use a separate codeline to organize
efforts focused on each individual release-effort.

There are essentially two ways of doing this: you can use Early Branching the release
lines, or Deferred Branching. With early branching, you will create a release-line as soon
as efforts toward that release begin to take place. With deferred branching, a new release-
line is created only when changes specific to that release begin to take place. Changes that
need to go into that release as well as in an existing release-line would take place in the
previous release-line that also needs the change.

For example, a bug-fix might be needed both for release 1.1 as well as release 2.0. With
early branching, that bug-fix would go into both the 1.1 and 2.0 release-lines (possibly
creating the 2.0-line if it didn't already exist. With deferred branching, if the 2.0-line didn't
exist yet, the bug-fix would go into the 1.1-line only and creation of the 2.0-line would be
deferred until efforts began for a fix or feature that was needed only for release 2.0 (or
later).

Variants

C3.1 Codeline per Major Release (a.k.a Major releases off-line, Minor releases on-line)

08/02/98 Streamed Lines: Branching for Parallel Development 38 - 71

In this variant, new release-lines are created only for major releases. So a release-line
might be created for release 1.0, and also be used for releases 1.1, 1.1.1, 1.2, etc. (all
releases of the form 1.x or 1.x.y).

This variant can also be implemented using either early branching, or deferred branching.
But since it already uses deferred branching to some extent (at least for releases with the
same major version number), it is more commonly implemented with early branching.

However, it may not always be feasible for each minor release and patch effort to happen
on the same codeline. Some efforts will need to continue while release engineering is
performed on a more stable branch (see Anti-Freeze Line). So there will frequently be
separate branches for minor-releases and patches, which merge back to the major release-
line when finished. But there won't necessarily be a separate branch for every such release.

Resulting
Context

• The branching structure more closely reflects the organization of work efforts for the
various releases of the software.

• Additional integration effort is required, especially for propagating changes needed by
multiple release lines from earlier releases to subsequent releases.

• If the propagation hierarchy grows to a depth of three or more, this can impose an
extremely noticeable amount of integration overhead. Deferred Branching and
Codeline per Major Release help to mitigate this risk, but not to eliminate it.

Related
Patterns

Early Branching, Deferred Branching, Overlapping Release-Lines, Parallel
Maintenance/Development Lines, Anti-Freeze Line

It is extremely useful (and often necessary) to use a Mainline when using this pattern, or its
variant. Otherwise the project branching tree can get too wide and unwieldy. Both
Codeline per Release and Codeline per Major Release may be used with either the Stable
Receiving-Line or LAG Line variants of mainline (as well as with both of them at the same
time).

C4. Subproject Line

Pattern Subproject Line

Aliases Sub-Codeline, Change-Line, Project Branch, Persistent Branch

Context You are using Branch per Task or Branch per Major Task, and you have a somewhat
large-grained change-task to perform. It is large enough to split into several smaller
change-subtasks, at least one of which is also deserving of its own separate branch. Some

08/02/98 Streamed Lines: Branching for Parallel Development 39 - 71

of the subtasks may need to be sequential, with certain subtasks dependent upon changes
made in their predecessor tasks. Or perhaps some of the subtasks will be performed in
parallel. In either case, you can't permit the individual subtasks to be integrated back into
the codeline until all of the subtasks are complete; otherwise the codeline may be in an
inconsistent state for other developers working on other codeline tasks in other
workspaces.

Problem How do you organize the subtasks of a large-grained task that needs to effect changes to
the codeline?

Forces • We want the composite task to enter the codeline as a single change transaction.

• The composite task really is large enough that it needs to be further subdivided into
discrete subtasks.

• Checking-in individual subtask-change back to the codeline may compromise the
integrity of the codeline if not all subtasks are finished yet

We could just have later tasks refer to the branches for their predecessor tasks. But this has
a few problems of its own:

• Our activity-branch now depends on other branches that aren't yet part of the codeline.
This can wreak havoc at integration time if the branches aren't integrated in exactly the
right order.

• Each subtask has to remember one more branch-dependency than its predecessor. This
can become cumbersome and error prone for three or more subtasks.

• If parallel development is taking place between the subtasks, it may be dangerously
easy for undesirable codependencies to arise between their various activity-branches.
This can make for an unwieldy integration of all the subtasks back into the original
codeline.

• It can make the branches in the version-tree take on a shape that doesn't really reflect
the hierarchical nature of the composite task. This can be very misleading to people.

Solution Create a branch for the composite task, and then create subbranches off the composite-task branch for
the subtasks (or just the major subtasks). When a subtask is completed, integrate the subtask branch
back into the composite-task branch. When all subtasks are completed and have been integrated into
the composite-task branch, then integrate the composite-task branch back into the codeline.

08/02/98 Streamed Lines: Branching for Parallel Development 40 - 71

If the composite-task is for a fix, then this is sometimes dubbed a Fix-Line (not because it is for fixes
in general, but because it contains logical changes toward implementing a single bug-fix). Similarly,
if the changes are for implementing a single feature, this is often called a Feature-Line.

So we branch off the codeline to create a Change-Line or Subproject-Line: a line that incrementally
receives changes for the particular fix or feature. The change-line should be treated like a codeline,
having its own Codeline Policy and Codeline Owner. When all change increments have been
completed and/or merged into the change-line, the change-line may then be merged into its parent
codeline.

Variants

C4.1 Personal Codeline (a.k.a. User-Branch)
A single-user-branch or personal codeline may be used when the subproject in question
consists entirely of related tasks that are carried out by the same developer. It may simply
be a bunch of maintenance tasks for the same release, or perhaps a more significant feature
or enhancement. The personal codeline may be accompanied by a branch-locking policy to
ensure that the personal codeline is a "private line" (see Private Codeline).

C4.2 Experimental Line (a.k.a. Prototype Line or Proto-Line)
A codeline for experimental development. It may be an experimental prototype that is
discarded (even upon success) or any other work that isn't yet planned for any known
release, and might be totally abandoned.

C4.3 Multi-Project Lines (a.k.a. Multi-Product Lines)
This is basically the same pattern used at a coarser granularity. Whole project-lines or
product-lines are used and releases are configured by selecting the appropriate stable
baselevel of each project/product-line and integrating them together. This is an extremely
advanced practice used by very mature software shops that have developed a sufficient
base of separable and reusable components or products in an integrated product family. In
essence, each standalone software asset is escalated to full-fledged product/project status
(even if they are not provided to customers on an individual basis).

The hard part is balancing the needs of the individual assets against the needs of the
integrated product. There will be much pressure to splinter off project lines for specific
deliverable products. Organization's that successfully use multi-project lines are able to
manage and resist short-term needs to splinter the project-lines for each project and reap
the long-term benefit. This is no small organizational feat.

Resulting The composite-task-branch is a mini-codeline or change-line of sorts. It falls short of being
a release-line: it still spans multiple change-tasks during its lifetime, but it is shorter-lived

08/02/98 Streamed Lines: Branching for Parallel Development 41 - 71

Context and doesn't encompass all the functionality of a release. This is why we refer to it as a
subproject-line.

Once again, we have "added another level of integration" to solve our problem. In this
case, we just recursively expanded our usual strategy of activity-branches on a codeline to
another level of scale, in between the level of a single-activity branch, and release-line or
what we might otherwise normally think of as a codeline. We created a subcodeline to fill
in the gap between the codeline and the activity-branch. The subcodeline is simply a
microcosm of its parent codeline.

This lets us employ frequent incremental integration (Merge Early and Often) on the
subcodeline without compromising the integrity of the parent codeline. The project version
tree still reflects the hierarchical nature of the composite task and we aren't forced to
introduce any weird dependencies or codependencies between the subtask-branches. We do
pay the extra costs associated with merging, but merging for sequential subtasks should be
trivial, and merging for parallel subtasks will be no more difficult than if we had never
created the subcodeline (and might even be less difficult).

Related
Patterns

Branch per Task (or Branch per Major Task), Merge Early and Often, Codeline Policy,
and Codeline Ownership are all used for the subproject-line. The subproject-line may itself
be viewed as a recursive form of Branch per Task or Branch per Major Task. It may also
be viewed as a kind of Policy Branch whereby the subproject-line was created due to the
need for a codeline policy that is incompatible with its parent codeline (perhaps with regard
to its stability/volatility, or its integration rhythm: the mean time between integrations).

C5. Virtual Codeline

Pattern Virtual Codeline

Aliases Floating Label Line, Just-In-Time (JIT) Branching, Branch on Demand

Context You wish to use branches and codelines but one or more of the following is true for your
particular situation:

1. Your VC tool does not support symbolically named branches, and you won't be
able to obtain one that does any time soon.

2. You would like to "optimize out" some of the extra merging associated with
branching (especially for files that don't have any concurrent changes to be
reconciled against the codeline)

Problem How can use mnemonic branch names if the VC tool you are stuck with doesn't support
them? And how might you eliminate some of the trivial yet frequent merging for files
whose contents don't change after they've been merged to the codeline?

Forces • Branches are good for hierarchically organizing workflow and change-flow into
isolated development paths.

• If your VC tool doesn't support the use of meaningful branch names, it can be very
difficult to conceptually keep track of which branches are used for what and of the
relationships between branches.

• When merging a file from a branch or codeline into another codeline, even if there are
no concurrent changes to be reckoned with, the contents of the version still needs to be
copied to the receiving codeline. This is called a "copy-merge".

• For large efforts, although “copy-merging” may be trivial to do, if it needs to be done

08/02/98 Streamed Lines: Branching for Parallel Development 42 - 71

for lots of files, there may be non-trivial overhead associated with it. Not only does it
require extra time, it may require redundant storage and unnecessary network usage
(depending on your VC tool).

• Selecting versions by branch-name can sometimes be less efficient then selecting them
by baseline-label. For large projects with lots of files, this can affect the performance
of builds, queries, and checkout/checkin operations.

Solution The majority of VC tools support the concept of a "label": a user specified tag attached to
one or more revisions. Even if your VC tool doesn't support named branches, there is a
good chance it supports labels. Labels are typically used to group together revisions that
form a stable configuration of the system or one of its components, or of all the revisions in
a logically coherent change-task.

So, implement a "virtual" codeline using a Floating Label! A floating label is a label whose
name remains the same but whose definition (the set of files and file versions associated
with the label) changes periodically. You will still need to use static labels as well (just as
you would with branches) to denote named stable baselevels of the codeline. But the
floating label will serve the same purpose as a named branch: a mnemonic selector for the
latest version of all files on the codeline. Here's how to do it:

1. All revisions that should initially participate in a "codeline" or branch are initially
tagged with a label having the desired branch name.

2. To make a change to a virtual codeline, first select an appropriate baselevel on the
"codeline" in your workspace. Or select the codeline label itself if using static
version selection (if you are using dynamic version selection, you might not want
your workspace to be automatically updated with new versions when the floating
label definition changes).

3. When a file needs to be checked out, if no one else has it checked-out, and it is the
latest revision on its branch, then just checkout the file without branching.
Otherwise, checkout the file onto a branch. This is called "Just-In-Time
Branching" or "JIT Branching." It may be easiest to write a script or macro that
does this automatically.

4. Checkin your completed file changes as you normally would. They won't become
part of the "virtual codeline" until they are explicitly tagged with the codeline-
label.

5. When the time comes to merge changes back to the virtual codeline, no copy-
merging is required. The revisions don't have to come to the codeline, the
codeline-label comes to the revisions. Only those files that have genuinely
concurrent changes will require merging.

6. After the merge is complete, create a new baselevel label if that is what you would
normally do. Then tag all the new revisions in the change with the codeline-label.
Files that had no concurrent modifications during the change are labeled as is
(since no “copy-merging” was necessary), files that required merging will have
the codeline-label applied to the newly merged result.

If it is confusing to determine which new revisions to label, you can just re-label the entire
"codeline" (but that could be very time consuming for a large project).

Resulting
Context

• Allows you to use mnemonic names for your "virtual" codelines and branches.

• Avoids the overhead of unnecessary “copy-merging”.

• Requires additional effort from codeline owner to explicitly redefine the floating
codeline-label, applying it to newly integrated revisions.

08/02/98 Streamed Lines: Branching for Parallel Development 43 - 71

• If a single change is large or complex, or if multiple changes are integrated at once, it
may be difficult to readily keep track of the new revisions that need to be labeled.
Labeling the entire workspace may be undesired or very time consuming for lots of
files.

• You can't use "native" (non-virtual) branches to group activities. You'll have to use
labels instead if you need that.

• Labels don't accommodate the nice hierarchical branch-path names that some VC tools
provide (e.g. ClearCase and Perforce). Furthermore, if your VC tool provides nice
visual displays of version trees, you forfeit that benefit as well.

• JIT branching employs file-based "native" branches as a low-level optimization
underneath a virtual branch label. For most intents and purposes, the branch label
"looks and feels" like a single line of development. But the resulting shape of the
native branch-tree may not be fit for human cognition.

• Assumes that your VC tool supports labels, and that it provides facilities to query what
the latest file revision on a branch is, and whether or not the file is currently checked-
out by others. This is quite common however (more so than named branching).

• If lots of file-based branches take place, many files may possess very wide version
trees (especially when files are commonly "checkpointed" before committing a
change). If left unchecked, this can begin to suffer from some of the performance
issues mentioned above; and full-revision names may actually begin to exceed the
maximum allowed command-line length for your platform.

• If the above situation occurs, periodic copy-merges back to a native ancestor branch
may be required. But these should be few and far between and can be conveniently
scheduled during "low usage" hours.

Related
Patterns

Codeline Ownership, Staged Integration Lines

C6. Remote Development Line

Pattern Remote Development Line

Aliases Site Development Line

Context You are collaborating with developers at a geographically remote site. The remote
developers might be contractors participating in a subcontract agreement with the master-
site. It might also be the case that the remote site is using a mirrored repository instead of
centralized repository access. Both the local site and the remote site and performing
change-tasks that will ultimately be part of the same codeline. But you want changes at
the remote site to be verified or validated by someone at the local site before they become
part of the master site's local codeline.

Problem How do you organize remote development tasks so that they don't unduly impact the
codeline used by the master-site, while still allowing the remote developers to work
without unnecessary delays?

Forces • If the remote site is participating in a subcontract agreement, verifying their changes
before integrating them into the codeline may actually be a contractual obligation.

• If mirrored repositories are used, care must be taken so that conflicting version trees
aren't created at each site. For example, if each site does a checkout that creates

08/02/98 Streamed Lines: Branching for Parallel Development 44 - 71

version 1.5 of a given file, it will be hard to correctly synchronize the repositories if
they each have incompatible ideas of what version 1.5 looks like and who made the
changes and when. Although work may still occur in parallel, the resulting changes to
the names and structure of the version tree at either site will need to be mutually
exclusive from the other.

• You don't want remote changes to compromise the efforts of the local site. Such
effort may take even more time than usual to "back out" because of the geographic
separation between the two sites (especially if they are in different time zones)

• You don't want the remote site to be "blocked" any more than necessary when their
changes are being verified (especially if you are paying a premium for their efforts,
even when they are waiting to hear back from you)

Solution If work on a particular codeline (e.g. a release) is split across multiple sites, then give
each remote site its own site-specific codeline while the "main" site uses the primary
codeline. The remote sites can continue working on their remote development lines while
the master site periodically chooses convenient times to verify remote changes and
integrate them back into the primary codeline. The remote sites then resync their remote
lines with the primary codeline at appropriate intervals. or they may simply choose to
always branch off the primary codeline onto their remote-line for each checkout.

An additional possibility would be to have the master-site also use a separate (non-
primary) development codeline, and to have all sites (master and remote) integrate to the
same primary codeline, under the supervision (or strict control) of the master site. In this
case, all sites keep their development lines in sync with the master integration line.

Resulting
Context

The extra level of integration adds some additional merge overhead, but additional
verification/control effort was already required, so some of that would have been
necessary anyway.

Since the remote site is a separate entity there is decreased communication between
developers at disparate sites. Integration and synchronization is in fact a form of
communication between branches and codelines and it too will need to reflect this
difference in communication patterns between people at the same site and people across
remote sites.

Using a site-release codeline allows the remote site to accumulate changes in the site
codeline, which may then "batch up" those changes and allow the master site to
incorporate them at their own pace (like a remote Docking Line).

08/02/98 Streamed Lines: Branching for Parallel Development 45 - 71

Often, there will be instances of Branch Dictatorship, between the remote sites. Where
the remote site is not permitted to create file versions on the primary site's codeline, but
must instead create them on the remote site's codeline. This Branch Mastership is little
more than a form of Codeline Policy specifically designed to enforce a strict notion of
Codeline Ownership for codelines at the primary site, and at each remote development
site.

Related
Patterns

Codeline Policy, Codeline Ownership, Docking Line, Restricted-Access Line, Branch
Dictatorship

C7. Component Line

Pattern Component Line

Aliases Module Line, Subsystem Line, Product Line

Context Code Ownership is being used to ensure accountability and responsibility for related
elements of a configuration component (files, modules, subsystems, etc.). After some time
however, it becomes clear that parallel development of the component is necessary. Several
fixes may need to happen at the same time, or may need to occur while other feature
changes are in progress. The code owner is simply incapable of making all these changes
by himself within the requisite time period.

Problem How do you maintain the benefits of code-ownership when you need to allow people other
than the code-owner to modify the owner's code?

Forces • If everybody is responsible for something, no one is responsible. You still want a
single owner to be accountable for the code.

• If they can't modify the owner's code, important features and fixes won't be completed
on time and may hold-up a patch or release.

• Having developers wait for official approval from the code-owner before checking-in
changes may still be an unacceptable or unnecessary time delay, especially for critical-
path tasks.

Solution Create a new codeline reserved exclusively for development and maintenance of the code-
owner's source code. Make the code-owner be the codeline-owner for the components
under development on this particular codeline. The code-owner sets the policy for the
codeline, deciding when and if changes by others may be made "on-line" or on a separate
change-activity branch. The rest of the project will use only stable baselevels of the
component-line for integration into releases, or else the code-owner will be responsible for
propagating changes from the component-lines into the overall product-line or main
development line.

08/02/98 Streamed Lines: Branching for Parallel Development 46 - 71

Variants

C7.1 Multi-Product Lines (a.k.a. Multi-Project Lines) This is the same as
pattern variant C4.3,
Multi-Project Lines.

Resulting
Context

• Changes to the owner's code may be made in parallel using
multiple developers. This reduces development time for
completing changes to the particular component.

• The added level of integration gives the code-owner the
final say over what goes into the production version of the
component under development on his component-line.

• Additional time and effort is required by the code-owner to
verify, and perhaps even perform, merges into the
component-line. However, this effort does not significantly
impact others working on the component-line.

• The additional integration effort may impact the efforts of
those waiting for stable versions of the component-line to
be included/integrated into the product-line, but no more
than they would be if the code-owner had to perform all
changes himself, or if developers had to wait for approval
from the codeline owner to checkin their changes.

Related
Patterns

The code-owner will need to be the Codeline Owner for the
component-line and adopt an appropriate Codeline Policy. The
code-owner will also need to choose from branching and
merging patterns such as Branch per Task, Branch per Major
Task, MYOC, Docking Line. If a component-line is used in
conjunction with a docking-line, or if the component-line itself
must be periodically merged into a main development line, then
this is an example of Staged Integration Lines.

08/02/98 Streamed Lines: Branching for Parallel Development 47 - 71

C8. Platform Line

Pattern Platform Line

Aliases Variant Line, Permanent Variant Branch, Platform Branch

Context You are developing software that will need to execute (and perhaps even build) on multiple
platforms or environments. The need to work in the face of varying operating environments
may be a new requirement, or an initial one. You have made an honest attempt to handle
platform build and execution discrepancies using environment-specific directories and
files. However, the nature of this particular project’s multi-platform requirements has
proven this approach to be unsatisfactory.

Problem How should platform-specific build and execution information be identified, tracked, and
controlled for a multi-platform software project?

Forces • Normally, platform-specific configuration elements (files and directories) with
common interfaces and organization are the most appropriate solution. But in this case,
this approach has already proved unwieldy.

• Build and run-time information must be easily separable and discernible for each
platform.

• Platform-specific changes should be able to occur independently from one another
without impacting any other platform.

• There may exist the need to build or execute for more than one platform
simultaneously (while the software is already building or running).

Solution For a new platform requirement where no multi-platform needs previously existed, create a
new codeline for that platform (a platform-line). If multiple platforms are needed, then a
new codeline for each platform. All creation and modification of platform-specific content
should take place on the codeline for the given platform. Files that require no special
awareness of differing platform requirements can remain on the main (common platform)
development line. The platform line should never merge back to the development line
while differences in operating platforms are needed in source code or build files.

Initially, it may be sufficient to create only a single platform-line for the first additional
platform.

But, if multiple-platforms are being used, you will probably need to go through the existing
codebase and separate out platform differences into two or more codelines (one for each
platform) and maintain a separate primary codeline for platform independent-code.

08/02/98 Streamed Lines: Branching for Parallel Development 48 - 71

In more complex cases, there may be platform families: subsets of platforms with common
needs and constraints. In these situations, you may need to create platform-family-lines, in
addition to specific platform-lines and a lone common-platform line.

For example, you might have a program that needs to run on multiple varieties of Unix
(Solaris, AIX, HP-UX, Linux) and Windows (Windows'95 and Windows/NT). The
common-platform line will be the primary development line and contain platform
independent files and changes. Branched off of that will be the platform-family lines (e.g.,
Unix and Windows) containing files and changes common to all platforms in the family.
Finally, branching off from the platform-family lines will be the lone platform lines (e.g.,
Linux, AIX, Windows'95, etc.) for files and changes specific to that platform alone.

Resulting
Context

• Platform-specific files, their revisions and configurations can be easily selected by
using the platform-line (and platform-family line if present) for a given platform.

• Once the desired platform lines have been selected in the workspace, the correct
contents and information should be present to properly build and execute the software
for the particular platform-variant.

• Examining the branch to which a file revision belongs can easily identify platform-
specific files and changes.

• The use and selection of platform lines make only one platform visible at a time in the
developer's workspace. This means less confusion about which platform a set of files
or changes is intended for.

• You won't be able to build for multiple platforms at once. Building for multiple
platforms simultaneously will require not only a separate build, but the workspace will
first have to be reconfigured for each platform. This is one of the main reasons why
using platform-directories is preferable if it can be done.

• Most version control tools let you select specific revisions of files, but not of
directories. They will give you all files in a directory, even if some of those files aren't
needed for a given platform. For tools like ClearCase that do version control the
contents of directories, branching of directory-contents is more complex than of file-
contents, and should not be taken lightly. This is another reason why platform-
directories are preferable to platform-lines when possible.

Related
Patterns

Codelines for components that exist only for a certain platform, or platform family, can be
treated like a Component-Line. The use of Codeline-ownership is especially important for
platform lines since they rarely converge back to their parent codelines. The
codeline/platform owner will have to be on the lookout for files that can be merged back to
a common platform line or family, as well as for file revisions that need to move from a
common platform to a family platform, and from a family platform to a single platform.
The Codeline Policy used for platform lines will need to make special mention of when
and why to merge to and from platform lines, platform-family lines, and the common
platform line.

08/02/98 Streamed Lines: Branching for Parallel Development 49 - 71

Branch Structuring Patterns

• S1. Mainline

• S2. Parallel Maintenance/Development

• S3. Overlapping Releases

• S4. Docking Line

• S5. Staged Integration Lines

• S6. Change Propagation Queues

• S7. Third Party Codeline

• S8. Inside/Outside Lines

S1. Mainline

Pattern Mainline

Aliases Main Trunk, Main Anchor Line, Home Line, Ground Line

Context During the development and maintenance cycles, multiple codelines are created for various
reasons. Typical codelines are release-lines and maintenance-lines and integration-lines.
This is particularly true when using Codeline per Release, Parallel
Maintenance/Development Lines, and Overlapping Release Lines (or any of their variants).
As time goes on, codelines continue to cascade off of other codelines making the project
version tree become wider and wider.

Problem How do you keep the number of currently active codelines to a manageable set, and avoid
growing the project's version tree too wide, and too dense?

Forces • Every codeline that is created typically requires a merge back to its parent branch at
some point in time. So more codelines means more merging, and more merging means
more synchronization effort.

• It seems only natural to branch each new release-line off of the codeline for its
immediately preceding release.

Solution Rather than continually cascading branches upon branches creating an extremely wide and
unwieldy version branch-tree (requiring an enormous amount of synchronization between
each parent-child branch pair), keep a "home branch" or codeline at the trunk (or right next

08/02/98 Streamed Lines: Branching for Parallel Development 50 - 71

to the trunk) of the branch tree.

When the time comes to create a codeline for a new major release, instead of branching the
new release-line off of the previous release-line, merge the previous release-line back to
the mainline branch and branch off the new release-line from there.

The process of merging back to mainline for a particular codeline or branch is sometimes
referred to as "mainlining," "trunking," "homing," "anchoring," or "grounding."

Variants

S1.1 Stable Receiving-Line (a.k.a Stable Mainline, Main Integration Line, Base Integration
Line)

Keep a stable, reliable main development trunk that is used solely for importing (receiving)
stable bases from other codelines. No development work ever takes place directly on this
codeline, and all integrated changes must come from some other codeline (not a single
discrete activity branch). The only exception to this rule is that integration changes may be
performed for ensuring that the codeline builds and functions consistently.

S1.2 LAG Development Line (a.k.a. Main Development Line, Central Line, Main Stream)

Use the trunk as the latest-and-greatest (LAG) development line which evolves forever and
to which all codelines for previous releases are eventually merged after they have been
"retired." The trunk gets used as the development line for the next/latest development

08/02/98 Streamed Lines: Branching for Parallel Development 51 - 71

release (not maintenance, but development, as in significant enhancements and new
features). Thus, when work for release B2 is ready to begin and work for release A1 is
completed or is tapering off, then a new branch is spawned to finish up the A1 effort (see
Deferred Branching) and the LAG-Line is used for work toward release B2 (which is the
new "latest and greatest" development effort).

The process of doing merging for a particular codeline or branch to the LAG-development
line is sometimes referred to as "LAGging," "mainlining," "LAG-lining," or
"mainstreaming."

Although often used as a Mainline, a LAG-Line may also be used in conjunction with a
Stable Receiving-Line as the mainline:

Resulting
Context

• Reduces merging and synchronization effort by requiring fewer transitive change
propagations.

• Keeps full revision names to a manageable length (both conceptually, and physically -
so as not to approach the maximum limits of the length of the command-line).

• Provides closure (closing the loop) by bringing changes back to the overall workstream
instead of leaving them splintered and fragmented.

Related
Patterns

Codeline per Release, Parallel Maintenance/Development Lines, Overlapping Release
Lines, Early Branching, Deferred Branching

Also, the last promotion-level in a set of Staged Integration Lines often serves double duty
as a stable mainline.

08/02/98 Streamed Lines: Branching for Parallel Development 52 - 71

S2. Parallel Maintenance/Development Lines

Pattern Parallel Maintenance/Development Lines

Aliases Parallel Fix/Feature Lines

Context You've finished a release of a version of the project and need to start, or continue
development on the next major release.

Problem How do you conduct development of the next major release while at the same time
responding in a timely manner to all the many bug reports and enhancement requests that
are inevitably going to be logged against the current release?

Forces • You need to make steady progress toward implementing the new functionality slated
for the next major release.

• You need to respond quickly to bugs and enhancements logged against the current
release.

• Critical bug-fixes and enhancements need to be effected immediately, often well
before the next major release is ready to ship.

• Maintenance effort (bug-fixes and enhancements) in the current release may be
incompatible with some of the functionality or refactoring already implemented in the
next release.

Solution Rather than trying to accommodate maintenance of the current release and development of
the next release in the same codeline, split maintenance and development off into separate
codelines. All bug-fixes and enhancements to the current release take place in the
maintenance line, effort for the next major release takes place in the development line.
Ensure that changes in the maintenance line are propagated to the corresponding
development line in a regular fashion (see Merge Early and Often, and Change
Propagation Queues). One way of doing this is to create two new branches: one for
maintenance and one for development.

The more common approach is to create one new branch. If the new branch that is created
is used for development, then maintenance work happens on the same codeline is initial
development for its corresponding release. So the branch "invariant" is the major release
functionality. Another approach uses Deferred Branching and LAG Development Line by
keeping the development on the same codeline and branching off to create the
maintenance-line (so the branch invariant is "maintenance" effort versus "new
development" effort).

08/02/98 Streamed Lines: Branching for Parallel Development 53 - 71

Variants

S2.1 Parallel Releasing/Development Lines (a.k.a Anti-Freeze Line)

With this approach, instead of branching off immediately after release, you branch off
before the release. This allows to branch instead of freeze! Instead of freezing the codeline
during release engineering activities, a separate line is created for release integration and
engineering while allowing other development to continue taking place on the development
line (which is why it is sometimes called an anti-freeze line). Upon successful release, the
release-engineering line becomes a release-maintenance line. It still serves the same
purpose of "sync and stabilize" but now it is an ongoing effort that continues even after the
release.

Resulting
Context

Changes can take place in each of the two codelines at the appropriate pace. Critical fixes
and enhancements can be implemented and delivered without immediately impeding future
development. Maintenance releases or "patches" can be periodically released without
severely impacting development on the next release. The Codeline Owner of the
development line can set a policy for how and when changes are propagated from the
maintenance line to the development.

Related
Patterns

Merge Early and Often, and Propagate Early and Often should be used to ensure that fixes
and enhancements effected in the maintenance line are eventually migrated to the
development-line (so the same problems don't reappear in a later release). Change
Propagation Queues may be used to ensure that changes are propagated in the correct
order.

This pattern can be viewed as one particular realization of a Policy Branch. The fact is
different policies are needed for the maintenance of the old line and development of the
new line. Changes on the old line need to be turned around very quickly and should be
minimal in their scope. Changes in the development line typically have broader
architectural implication, impacting more of the project at once and requiring effort for
design, implementation, and testing. The integration "rhythms" for the two codelines are
thus drastically different (the maintenance line needs to "salsa" while the development line
needs to "waltz").

08/02/98 Streamed Lines: Branching for Parallel Development 54 - 71

S3. Overlapping Release Lines

Pattern Overlapping Release Lines

Aliases Parallel Feature-Lines, Incremental/Evolutionary Delivery Lines

Context You need to develop functionality for two major incremental releases of the software
within a short time span of each other. The schedule for delivering each increment is fairly
aggressive (as it always is).

Problem How do you make progress on both development increments without having either one
severely impact the other?

Forces • Cycle Time. It would be nice to avoid any unnecessary waiting or delays for work on
the next release.

• Stability. When performing release integration and engineering for the current release,
it is vital that the configuration for the release is reliably correct and consistent.
Development and maintenance activities on the codeline could easily compromise the
integrity of such a "codeline in waiting."

Solution Branch off the current development increment's codeline and start a new codeline for the
next development increment. Development on the two codelines progresses concurrently
on separate streams of development. From time to time, features and changes in the
codeline for the earlier release will need to migrate to the codeline for later release.
Propagate these changes early and often at appropriate stable baselevels.

When creating a separate codeline for each release cycle, often, the release codeline will be
created as soon as effort begins for the new release. However, if you don't require isolation
of the entire effort, Deferred Branching may be employed to create the release-line only its
development needs to occur in parallel with that of subsequent releases.

Resulting
Context

Changes can proceed in parallel on the two codelines while in isolation from one another.
The current development increment does not need to be slowed down by efforts toward a
later incremental release. However, there is a now a dependency of the later release-line
upon changes and fixes in the earlier release-line. The integration efforts for these
propagated changes are a necessary trade-off over freezing all efforts for release-line while
it waits for completion of the other.

Related
Patterns

As with Parallel Maintenance/Development Lines, Merge Early and Often, and Propagate
Early and Often should be used to ensure that changes in the codeline of the earlier
development increment are eventually migrated to the subsequent development increment.

08/02/98 Streamed Lines: Branching for Parallel Development 55 - 71

Change Propagation Queues may be used to ensure that changes are propagated in the
correct order.

This pattern is also a particular realization of a Policy Branch. The two development
increments have different long and short-term goals and require a different tempo for their
development and integration efforts.

S4. Docking Line

Pattern Docking Line

Aliases Holding Line, Lay-Away Line, Shared Integration Line

Context The context is similar to that of MYOC (Merge Your Own Changes). A developer has
finished a change-task and is ready to merge it back into the codeline. However, in this
case the nature of the codeline requires a very paranoid codeline-owner (Codeline
Ownership) This is usually because the codeline in question is associated with sufficiently
high-risk or high-complexity development, or because it demands a greater degree of
reliability and consistency than other codelines. Whichever the case, the consistency and
integrity of the codeline is relied upon by important people and important tasks, even more
than usual.

Problem Who should perform the merge, and who assumes the burden of ensuring it is integrated
correctly?

Forces • As with MYOC, we have the case of dueling ownerships: the change-owner versus
the code-owner versus the codeline-owner.

• MYOC also tells us that follow through needed to avoid social disconnection
(throwing it over the wall), and impact ignorance (lack of awareness of the
downstream effects of one's changes). This suggests the change-owner or code-owner
should perform the merge.

• The high-risk and/or high-reliability nature of this particular codeline suggests it really
must be the codeline owner who performs the merge to ensure and preserve the
integrity of the codeline (because many critical tasks depend upon it).

All the other forces mentioned in MYOC still apply.

Solution Add another level of indirection by adding another line of integration to balance the tension
between ownership, follow-through, and reliability. The integration-line is a persistent
branch off from the development-line that serves as a "docking area" for changes that need
to be integrated back into the original codeline. The change-owner merges (pushes) the
changes to the docking-line, integrating with all the predecessor changes. The codeline-
owner imports (pulls) one or more changes at a time from the docking-line and integrates
them back into the original codeline.

08/02/98 Streamed Lines: Branching for Parallel Development 56 - 71

Resulting
Context

The new integration-line is a "mediator" of sorts between the various owners. The change-
owner or code-owner still gets to follow-through by merging their changes to the docking
line and having to understand and resolve any conflicts it may have with previous change-
tasks. The codeline-owner still gets to ensure the reliability and integrity of the codeline by
"syncing" the docking-line with the original codeline and having complete control and
authority over its consistency.

The cost of meeting the various owners’ competing needs of follow-through and reliability
is the added integration effort. However, most of the merging difficulty is handled during
the docking-line merge by the person most familiar with the code that was changed. The
codeline owner primarily verifies the reliability of the state of the docking line and then
merges it back to the original codeline. Since that is where the changes originated, and no
other development should be taking place on the original codeline, most of these merges
should be trivial because there are no concurrent changes between the docking-line and the
original codeline.

If the merged changes in the docking line fail the codeline owner's codeline consistency
and integrity checks, then the codeline owner works with the change-owner or code-owner
to resolve the issue; but this should be the exception rather than the rule. In the meantime,
the person merging the changes to the docking-line avoids having to wait for verification of
their merge-efforts before continuing on to another development task. Since the docking-
line is separate from the codeline, their work has been effectively isolated, which allows
them to return to other important tasks.

Related
Patterns

Merge Early and Often should be used to merge changes from the original codeline into
the docking-line. Ideally, this is also the case when merging from the docking-line back to
the codeline. But if the codeline is high volume or high-load then it may be infeasible to
merge change-task at a time. In this case use Multi-Merge Early and Often, allowing the
docking-line to accumulate a handful of changes before merging it back to the original
codeline.

A situation to that of Docking-Line might arise if the change-task owner is different from
the code-owner of the modified files. This might result in the need for another docking-line
(the fewer the better), in which case you have now graduated from a single docking-line to
Staged Integration lines.

Otherwise you may use only one docking-line and resolve who merges to it (the change-
owner or the code-owner). In this case, MYOC applies and you can treat the code-owner as
the codeline-owner for a Component Line.

08/02/98 Streamed Lines: Branching for Parallel Development 57 - 71

S5. Staged Integration Lines

Pattern Staged Integration Lines

Aliases Promotion Branches, Promotion Lines

Context Development tasks and software changes are frequently required to progress through
defined, discrete stages of maturity: Changes are proposed, then analyzed and performed;
then perhaps they are promoted through levels of review, debug, unit-test, integration test,
and system test.

Other times changes may need to progress through multiple levels of ownership,
responsibility, and accountability: Changes might first be effected to a particular file or
module, then integrated and tested at the component-level, then the subsystem-level, then
the site-level, then the product or system-level.

In either case, there is often the need (or contractual obligation) to provide strict
traceability and auditing of changes as they are promoted through these stages of their
lifecycle.

Problem How do you use the facilities of your VC tool to track and control changes through defined
levels of promotion?

Forces • Some promotion levels may correspond to the completion of certain events: review,
unit-test, system-test, etc.

• Other levels may correspond to states of quality assurance and control to represent
some degree of reliability and security.

• Still other levels may correspond to assignment of ownership, responsibility,
accountability, and scope (e.g. module, component, or product).

• Not all of these kinds of promotion levels are well suited to the same set of
mechanisms provided by your VC tools.

• Among the various promotion levels, some will implicitly require integration to
verify/validate correctness, consistency, or to ensure appropriate transferal of
responsibility.

Solution Some VC tools and SCM systems already support a notion of promotion levels for tracking
and control. If your tool is one of them, then look closely at the documentation to ensure
the supported promotion-model is a good match for the model you need to implement.
Look at any built-in access controls and transition rules, and how the promotion levels
themselves are defined, ordered, and represented. Are they represented as attributes,
branches, labels, or something else? How well does that meet your needs?

Otherwise, if the set of promotion levels needed consists predominantly of integration
points and the transfer of responsibilities between roles, then use a separate integration-line
for each promotion level in the hierarchy.

When original changes are made, they are considered to be at level '0' (often corresponding
to a development line or activity-branch). When the change is completed, it is then
propagated (merged) to the first promotion-line in the hierarchy. After it is successfully
integrated and verified there, then it is propagated to the next promotion-line, and so forth
until it proceeds through the final promotion level. The last line in the chain might be a
Stable Receiving-Line, or it might be development line (like a Docking Line split across
into multiple lines, but which eventually feeds back to the primary development line).

08/02/98 Streamed Lines: Branching for Parallel Development 58 - 71

The promotion-level associated with a given revision may be determined by identifying the
promotion branch that it belongs to. The progression between levels may be traced by
using the VC tool to produce a report of the ancestry of the particular revision (a feature
commonly provided by VC tools).

The promotion level of an entire change-package (a logically related group of revisions
that were modified and submitted together) is harder to determine. Identify the revisions in
the change-package and find their branches. They should all be on the same branch (if they
aren't, you have detected a consistency error in execution of the change-control process).
Then look at the descendents of each revision to ensure the progress through the promotion
branches together, and in the proper order. If your VC tool doesn't do this for you in 1-2
simple steps, create a script or macro that does this using the tool's querying and reporting
capabilities.

Resulting
Context

• Promotion levels for revisions and change-packages can be readily identified and
traces.

• The staged promotion branches function like a progression of gates, or a sieve, for
transferring and filtering the responsibility and reliability/stability of changes as they
progress through the promotion levels.

• Branches are well suited for promotion levels that represent transfer of ownership,
responsibility, and accountability. When a change is merged from one branch to the
next, the revisions on the new branch are now the responsibility of its codeline-owner.

• Branches also work well for promotion levels that inherently correspond to integration
points in the lifecycle. Merging the change from branch to branch performs the
necessary integration. However, using Virtual Codelines as the promotion branches
can effectively minimize the merge overhead.

• Branches are less than ideal for promotion levels that correspond to static states of
quality, maturity, or reliability. Labels and attributes are better suited for this purpose.
Branches are inherently dynamic and evolving entities, whereas these kinds of
promotion states represent frozen points in time, or static levels of "goodness."

08/02/98 Streamed Lines: Branching for Parallel Development 59 - 71

• Another problem with using branches for static "goodness" states: Oft times there will
be errors where a change or revision is improperly promoted, or was properly
promoted, but later turned out to be flawed. Backing-out revisions from a branch is
substantially more effort and more complexity than removing a label or attribute
corresponding to the promotion level. Although this is easier to do with a "virtual"
promotion-line, it's still more likely to be accomplished with a promotion attribute, or
label (as opposed to a codeline label trying to fit two purposes at once).

Related
Patterns

In many respects, this pattern is merely a composite of one or more patterns that add an
extra level of integration: One can regard a Docking Line as a minimal example of staged
integration with two lines; so can Inside/Outside Lines, and Branch per Task.

One or more Component Lines, Remote Lines, Subproject Lines, and Stable Receiving
Lines will frequently participate in a set of staged integration lines.

For promotion hierarchies that are about three or more levels deep, it may be highly
desirable to use a Virtual Codeline for one or more of the promotion lines. This will help
reduce the amount of trivial “copy-merging”, which can become substantial after three or
more levels of integration!

S6. Change Propagation Queues

Pattern Change Propagation Queues

Aliases Change Migration Queues, Change Transfer Queues

Context You have been using Parallel Maintenance/Development Lines and/or Overlapping
Release Lines and you need to propagate changes from one codeline to the other.

Problem How do you propagate changes between sibling codelines in a consistent fashion and in the
proper order?

Forces • You typically want changes to be integrated as early as is conveniently possible, but
with minimal impact to others working in the codeline.

• If changes are propagated in a sequence different from the order in which they were
effected in their originating codeline, integration may become very difficult or
confusing, or may result in more changes than desired being integrated at once (in the
case of dependent changes).

• It would be nice if changes could just always be propagated immediately by the person
who made them. But this isn't always feasible, depending on the current state of the
work in the receiving codeline, or the mismatch between integration intervals of the
sending and receiving codelines.

Solution When the number of changes being Propagated Early and Often makes it hard to easily
remember the completion order and dependencies between propagated changes, then
implement an incoming change propagation queue for the codeline. Depending upon the
SCM tools available to you, this might be done a number of different ways.

1. If all changes to be propagated are tracked in a change control system, create
individual change-requests for the propagation of each change. Record its dependency
upon the unpropagated-change and the target codeline of the propagated change. Now
you can determine the order in which to propagate the changes by looking at the
completion times of the corresponding pre-propagation changes. Program a script or
macro to query the tracking system for a given codeline and report the propagation

08/02/98 Streamed Lines: Branching for Parallel Development 60 - 71

order for all pending changes to be propagated.

2. If this is beyond the capabilities or current usage of your tracking system, see if your
VC tool supports change-tasks (sometimes called change-packages or change-sets). A
number of VC tools do this, or can be easily customized to do this. If yours does, then
see if it tracks change-tasks or provides some kind of completion log to look them up
and find out when they occurred, and what their contents are. If so, you can usually
customize this in a manner similar to the way we customized the tracking system
above.

3. You can write a wrapper script (or a "trigger" if your VC tool provides them for
change-package operations) to "submit" revisions in a change-package against a target
codeline. The "submit" script can consult the codeline policy for the target codeline
and see which codelines are on the export list to receive propagated changes.

4. Once it does this, the ‘submit’ script can use a regular file, or even a database of some
kind, to maintain a "propagation queue" for each codeline. When a change is
submitted, an "entry" is placed at the end of the propagation queue for all codelines in
the export list of the codeline receiving the submitted change. A change may then be
propagated into a codeline if and only if it is at the head of the propagation queue, or
the queue is empty. After it has been propagated, it is removed from the head of the
queue.

Often, the most convenient implementation will be some combination of the above. A
script may be used to integrate change-packages with the tracking system to automate the
creation, modification, and control of change propagation queues.

Variants

S6.1 Auto-Propagation and Queuing

This goes a step further than the above and usually requires a home-grown "submit"
wrapper or trigger script. When a change is submitted, the submit script will try to auto-
propagate (auto-merge) the change into the target codelines if their propagation queues are
empty. If the queue is not empty, or the propagation cannot be performed automatically
without human assistance, then the propagation-task is appended to the codeline's
propagation queue.

If auto-propagation succeeds, then the process continues and determines if the change can
be auto-propagated to the next codeline in the propagation chain (if there is one), queuing
up the change if it can't be auto-propagated.

The relative ease and risk of the auto-propagation attempt depends largely on the
sophistication of the SCM tool's merge facilities. It may let the propagation proceed if the
tools think the merge is trivial. Or it may be more sophisticated, providing configuration
and dependency information to let the submit script determine whether or not the receiving
codeline has changes which might conflict with the propagated change, or which should at
least require testing and verification before proceeding.

Resulting
Context

• Proper ordering of propagated changes can be easily tracked and enforced.

• Some propagation tasks may be delayed waiting for a predecessor task to be
propagated. This is deemed acceptable in order to prevent changes from being
propagated in the wrong order and direction.

• If PYOC is being used, propagation queues guards against developers accidentally
propagating other people's changes while propagating their own.

• If the Codeline Owner is performing all integrations for the receiving codeline, then

08/02/98 Streamed Lines: Branching for Parallel Development 61 - 71

change propagation queues can be very helpful to the codeline-owner for tracking
dependencies between submitted changes, even when Multi-Merging is used to
integrate several change-tasks at once.

• If you have to roll-your-own solution, rather than making straightforward
customizations to a tracking system or SCM system, then the implementation and
testing effort involved can be quite significant.

• If you implement the propagation queues yourself using regular files (rather than a
database), you will need to go to the trouble of using file locking to prevent concurrent
updates to the propagation queues.

• You may need to be very familiar with how to write scripts using your VC and
tracking tools. Unless your need for propagation queues is quintessential, the effort
involved may far outweigh the benefit of implementing them from scratch.

Related
Patterns

Merge Early and Often, Propagate Early and Often, MYOC, PYOC

S7. Third Party Codeline

Pattern Third Party Codeline

Context You are responsible for maintaining and porting source code from a third party external to
your group or organization. It may be that the code is freeware (e.g. emacs, perl, gcc) or
simply that you repackage the code (perhaps with some value-added features) from another
vendor to customers that use your product/environment. Some of the changes you make
may get cycled back to the vendor but some of them won't be. Thus, you frequently have to
cope with keeping your own custom versions and/or configuration of the code "in sync"
with updated releases from the vendor. You will also likely need to reproduce earlier
versions of the third-party code.

Problem What is the most effective integration/synchronization strategy to accommodate vendor
updates with your own custom changes while creating as few headaches as possible?

Forces • You want to minimize the manual effort required to incorporate the latest vendor
release with any custom changes you made.

• You need to be able to reproduce present and previous releases of your customized
version.

• You need to be able to isolate your changes to the vendors code for each release (so
can send patches to the vendor if necessary, and so you can retrace what needed to be
changed)

Solution Use your version control system (VCS) to archive both the versions of the software you
receive from the vendor, as well as the versions you deliver to your customer. Use the
branching facility of the VCS to track separate but parallel branches of development for the
vendor’s code, and your customized versions of the vendor’s code. When the vendor code
is received, make it the next version in the vendor branch and then merge the code from
that branch into your customized branch.

08/02/98 Streamed Lines: Branching for Parallel Development 62 - 71

Resulting
Context

• You can easily reproduce prior versions of your own releases as well as those of the
vendor.

• Customization differences can easily by isolated and reproduced so you can see what
you had to change for a given release.

• Differences between vendor releases can easily be isolated and reproduced to see what
the vendor changed from release to release

• By tracking customization changes on a separate "branch" from vendor changes, you
are basically applying a "divide & conquer" approach of orthogonalization: instead of
one big change, you logically partition it into vendor changes and custom changes
from a common base version. This reduces merge complexity.

• The resulting project "version tree" reflects the real-world development path
relationships between the vendor and your group.

• Requires more storage space than simply keeping one source tree or one set (branch)
of versions of the source tree.

• Requires the oft-despised merging of parallel changes. There are many people who
feel that "merging is evil!" However, in this case, you are not the one who controls the
development of the code. You are at the mercy of the 3rd party supplier for this. The
best you can hope for is that they incorporate all of your changes into their code-base.
Thus, merging is really unavoidable here.

Related
Patterns

This pattern is really a variant of Parallel Maintenance/Development Lines. Here, the
maintenance line and the development line are distributed across two different sites and
one of the needs to be "replicated" or "mirrored" at your site.

S8. Inside/Outside Lines

Pattern Inside/Outside Lines

Aliases Internal/External Lines, Local/Remote Lines, Central/Remote Lines

Context Your project must allow outsiders to modify source code for maintenance and/or
development. However, those outsiders aren't all at the same location, or even at a handful
of select locations. They may be from all over the globe and any one of a number of sites.
External developers will have centralized access to the codebase via some kind of remote
connection. This is common for open-source software development projects with a large

08/02/98 Streamed Lines: Branching for Parallel Development 63 - 71

but core group of primary developers (e.g. Perl, Apache, Linux, etc.)

Problem How do you give developers the access they need without permitting a total stranger to
(accidentally or maliciously) completely destroy the consistency and integrity of the
codeline?

Forces • The codebase must be made accessible to a respectable number of remotely dispersed
people, not all of whom you can afford to implicitly trust.

• The consistency and integrity of the codeline (as well as the codebase) must be
maintained.

• Waiting for checkout-locks to be released may be entirely intractable for respectable
numbers of geographically dispersed individuals collaborating together.

• Some degree of control must be implemented to safeguard against potentially
destructive operations and individuals.

Solution Use a separate codeline for "internal" use that is restricted only to trusted individuals at the
master development site (the once which controls and administers the repository).
Everyone else uses an "external" codeline that may restrict certain operations, or simply
serve as a firewall to the internal line. Changes on the external-line are periodically merged
to the internal-line by the latter codeline's owner (and perhaps by some of the other trusted
individuals). All official, stable baselevels are kept on the internal codeline.

Choosing an appropriate codeline-owner for the inside-line should be no more difficult
than usual. The same is not true for the outside line since most outsiders don't get to
communicate face-to-face very often. Since the external-line serves as the outside gateway
for the internal-line, select one of the trusted individuals for the internal-line to serve as the
owner of the external-line. This will help keep the policies for the two codelines in
alignment with each other.

Resulting
Context

• Developer's on the outside-line have the necessary access to the repository without
having to wait on one another (possibly across disparate time zones) for checkout-
locks to be released.

• The outside line serves as a "firewall" to protect the inside-line from unauthorized or
unintended changes. Although the outside-line itself may fall into a state of disrepair,
the inside line is insulated from such disasters.

• Extra merging is required to propagate changes to the inside-line and verify their

08/02/98 Streamed Lines: Branching for Parallel Development 64 - 71

correctness, but this is deemed essential to preserve the integrity of the primary-line
and the safety of the codebase.

Related
Patterns

The use of strong Codeline Ownership and Codeline Policy is especially important for such
a geographically dispersed group of collaborating developers. The outside-line will need to
be some from of Relaxed-Access Line while the inside line will obviously need to employ
some form of locking for a Restricted-Access Line.

For an added degree of safety/stability (at the expense of more integration overhead), add a
Stable Receiving Line which is reserved for the sole purpose of receiving propagations of
stable baselines from the internal line.

This pattern is similar to Remote Line but the external line isn't for a particular remote-site;
it's for all of them! A remote-line is also better suited for replicated (or "mirrored")
repositories instead of centralized access to a lone repository.

08/02/98 Streamed Lines: Branching for Parallel Development 65 - 71

Acknowledgements
The authors would like to give special thanks to the following people for their significant contributions to Streamed
Lines:

• Chris Seiwald and Laura Wingerd of Perforce Software, for sharing their drafts of, and considerable expertise
with, high-level SCM best practices

• Doug Lea, our shepherd for PLoP'98, and concurrent programming "guru" extraordinaire

• Steve Vance, for sharing his drafts of advanced SCM branching strategies

• Linda Rising, David Delano, Neil Harrison, and all the other folks responsible for putting together the
ChiliPLoP'98 conference, which gave the four of us the opportunity to meet face-to-face and collaborate in the
same room at the same time.

References
[Appleton97] Brad Appleton; Patterns and Software: Essential Concepts and Terminology; Object

Magazine Online http://www.sigs.com/omo/, May 1997, Vol. 3 No. 5;
http://www.enteract.com/~bradapp/docs/patterns-intro.html

[Beedle97] Michael A. Beedle; "cOOherentBPR - A pattern language to build agile
organizations"; in PLoP/Allerton Park 1997 Proceedings; Washington University
Technical Report #wucs-97-34

[OrgPats] Organizational Patterns Wiki Web; http://www.bell-labs.com/cgi-
user/OrgPatterns/OrgPatterns

[Berczuk95] Stephen P. Berczuk; Patterns for Separating Assembly and Processing; in Pattern
Languages of Program Design, James O. Coplien, Douglas C. Schmidt (Ed.),
Addison-Wesley, 1995, pp. 521-528

[Berczuk96] Stephen P. Berczuk; Organizational Multiplexing: Patterns for Processing Satellite
Telemetry with Distributed Teams; in Pattern Languages of Program Design 2 J.
Vlissides, J. Coplien and N. Kerth, editors; Addison-Wesley, 1996, pp. 193-206

[POSA] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerald, Michael Stal;
Pattern-Oriented Software Architecture: A System Of Patterns; John Wiley &
Sons, 1996

[Berczuk97] Stephen P. Berczuk; Teamwork and Configuration Management; C++ Report, Vol. 9
No. 7, July/August 1997

[Perry98] Dewayne E. Perry, Harvey P. Siy, Lawrence G. Votta; Parallel Changes in Large
Scale Software Development: an Observational Case Study; in Proceedings of the
20th International Conference on Software Engineering (ICSE 20); ACM Press,
Kyoto Japan, April 1998

[Atria95] The Problems of Parallel: Overcoming the Obstacles in Team-Based Software
Development; Whitepaper by Atria Software, 1995

[Tichy85] Walter F. Tichy; RCS - A System for Version Control; in Software Practice and
Experience; Vol. 15 No. 7, July, 1985

[Rochkind75] Marc J. Rochkind; The Source Code Control System; in IEEE Transactions on
Software Engineering, Vol. SE-1 No. 4, December, 1975

[Leblang94] David B. Leblang; The CM Challenge: Configuration Management that Works; in

08/02/98 Streamed Lines: Branching for Parallel Development 66 - 71

Configuration Management (Trends in Software series, vol. 2); edited by Walter
F. Tichy; John Wiley & Sons, July 1994, pp. 1-37

[Seiwald96] Chris Seiwald; Inter-File Branching: A Practical Method for Representing Variants;
Sixth International Workshop on Software Configuration Management (I-SCM6),
Berlin, Germany, March 1996; in Software Configuration Management: Selected
Papers of the ICSE SCM-6 Workshop; edited by Ian Somerville; Springer-Verlag,
1996, pp. 67-75

[CVS] Per Cederqvist et. al.; Version Management with CVS; Cyclic Software

[GoF] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995

[Cope95] James O. Coplien; "A Generative Development Process Pattern Language"; in
Pattern Languages of Program Design; James O. Coplien, Douglas C. Schmidt
(Ed.); Addison-Wesley, 1995, pp. 178-237

[Cockburn97] Alistair Cockburn; Surveying Object-Oriented Projects: A Manager's Guide;
Addison-Wesley, 1997

[Schmidt96] Douglas C. Schmidt and Steve Vinoski; Comparing Alternative Programming
Techniques for Multi-Threaded Servers; C++ Report, Vol. 8 No. 2, February 1996

[McKenney95] Paul McKenney; Selecting Locking Designs for Parallel Programs; in Pattern
Languages of Program Design 2 J. Vlissides, J. Coplien and N. Kerth, editors;
Addison-Wesley, 1996, pp. 501-531

[Lea96] Doug Lea; Concurrent Programming in Java: Design Principles and Patterns;
Addison-Wesley, October 1996

[Kruchten95] Phillipe Kruchten; The 4+1 View Model of Architecture; in IEEE Software, Vol. 12
No. 6, November 1995, pp. 42-50

[Davis97] Margaret J. Davis and Roger B. Williams; Software Architecture Characterization;
in Proceedings of the 1997 Symposium on Software Reusability (SSR'97); Medhi
Harandi, editor. ACM Press, May 1997, pp. 30-38

[Kriha97] Walter Kriha, Daniel Kesch, Stephan Pluess; Architectural Structures for Large
Systems Design; Position paper for Workshop Exploring Large Systems Issues;
OOPSLA'97, Atlanta, USA, October, 1997

[Feiler91] Peter H. Feiler; Configuration Management Models in Commercial Environments;
SEI Technical Report CMU/SEI-91-TR-7, March 1991

[Wingerd98] Laura Wingerd, Chris Seiwald; High-level Best Practices in Software Configuration
Management; Submitted to the Eighth International Workshop on Software
Configuration Management (I-SCM8), Brussels, July 1998; (also presented at the
1998 Perforce User's Conference, June 1998)

[Vance98] Stephen Vance; Advanced SCM Branching Strategies; 1998 Perforce Users
Conference, June 1998, Oakland, CA (P4UC'98)

[Fierro98] Doug Fierro, Rational Software; ClearCase Branching Strategies; 1998 Rational
User's Conference, June 1998, Orlando, FL (RUC'98); Change and Configuration
Management Track

[McKeen97] Andy McKeen, Rationale Software; Managing Software Projects in a Parallel

08/02/98 Streamed Lines: Branching for Parallel Development 67 - 71

Development Environment; 1997 ClearCase International User's Group conference
(CCIUG'97)

[White95] Brian White, Atria Software; Is /main/LATEST Too Dynamic? Software
Integration Strategies Using ClearCase; 1995 ClearCase International User's Group
conference (CCIUG'95)

[Atria94] Atria Software; How Atria Uses ClearCase 1994 ClearCase International User's
Group conference (CCIUG'94); (also presented at CCIUG'95, CCIUG'95, and
CCIUG'97)

