
Pattern: Hierarchical Star Schema

Problem
How can hierarchical relationships be traversed in a relational data model?

Context
The HiStar pattern applies in the following situation:

• the application data model is characterized by hierarchical relationships along several dimensions

• a distinguished entity is the focal point of the data model

• the data model is represented using relational tables

• the hierarchy must be traversed flexibly and efficiently.

Figure 1 presents an example of a typical HiStar candidate. An Engineering Information System, or EIS,
tracks the construction of external products using internal processes. The key entities involved in
construction are characterized by hierarchical relationships. The DesignPart serves as the central entity of
the EIS to bridge the design and manufacturing activities.

Figure 1. Engineering Information System Hierarchy

2

Although the hierarchy is well-defined, queries are dynamic. A query can start from any entity and traverse
the hierarchy to discover information about related entities, e.g. "which vendors supply parts for the
design?", or "which designer should be notified of a change to a manufacturing part?".

Forces
Supporting dynamic queries over a hierarchy using disjoint relational tables joined in an ad hoc manner
complicates development and slows execution. The difficulties arise from the following forces:

1. Hierarchical relationships are not directly representable in the relational model. Entities are related in
tables by foreign keys. Hierarchical relationships in a normalized schema are inferred from joins
between all related entities in the hierarchical path.

2. Flexible query capability cannot prescribe a static set of traversal paths. If the topics of inquiry are
not known beforehand, queries must be constructed dynamically involving a series of interrelated
joins.

3. Programmatic navigation of hierarchy is cumbersome and limiting. Traversal from a parent entity to
a child entity in the hierarchy involves an understanding of how navigation paths translate into joins.
Dependence on these paths renders programs sensitive to schema change.

Solution
The combination of a relatively stable hierarchy and a distinguished central entity allows application of the
HiStar pattern to simplify development and improve efficiency of dynamic queries. The solution is obtained
as follows:

 Step 1. Define the Hierarchical Relationships.

 Step 2. Select a characteristic Anchor Entity Type.

 Step 3. Organize the hierarchical dimensions in a Hub and Spoke Topology.

Each of these steps are described below.

1. Define the Hierarchical Relationships

This step defines an application data model consisting of significant domain entity types related in a
hierarchical manner. The relevant entities to include are those entities that drive the business process
represented by the model. For example, the Engineering Information System in Figure 1 contains two types
of entities, classified according to their process focus. A development entity is an artifact used to determine
product content. A fabrication entity directly relates to some aspect of the manufacturing process. The
development entity types in Figure 1 include Project , Designer , Design and DesignPart . The
remaining entity types--MfgPart , Product and Vendor --represent fabrication entities.

3

The hierarchy suggests natural traversal paths for navigation. For example, exploration of a project would
proceed through a selected design to the parts within that design to the manufacturing characteristics of that
part. Conversely, "where used" queries operate by working up the hierarchy. The use of a vendor is
determined by examing the parts the vendor provides, what role those parts play in designs and which
designers are responsible for the affected designs.

An entity type is typically associated with an entity table consisting of attributes that describe an enitity
independent of its use in a hierarchical context. A Product entity table, for example, might include
attributes that identify the product name, number, revision and price.

2. Select a Characteristic Anchor Entity Type

An anchor entity type ties together the development and fabrication processes. This step identifies a
distinguished anchor entity type that will serve as the focal point for relating hierarchical entities. In the
example, the DesignPart is the anchor entity type. The DesignPart serves as both a fundamental unit of
the design activity as well as the basis for selecting a MfgPart that can be used in fabrication.

3. Organize Hierarchy into Hub and Spoke Topology

After the anchor entity type is chosen, the hierarchy can be reduced to a more tractable hub-and-spoke
topology familiar from the Star Schema (cf. Related Patterns section). Each hierarchical path leading to or
from the anchor entity type is flattened into a map table that records the occurence of hierarchical instances.
A map table relates entities by foreign key values and is used, usually implicitly, in many relational schemes.
Each record in a HiStar map table includes a reference to an anchor entity and one or more references to
other entities in the hierarchy. The map tables for the EIS example are shown in Figure 2. The hierarchy is
flattened using the map tables, as in Figure 3. The resulting tables denormalize the source tables. However,
since the HiStar schema is only used for query purposes, the update anomalies resulting from the
denormalization are not manifested.

Example

This example illustrates HiStar concepts for a simple Engineering Information System (EIS) domain. The
basic hierarchies of interest are shown in Figure 1. The small rectangle denotes the "many" side of a one-to-
many hierarchical relationship among entities. This example includes only one-to-many relationships; many-
to-many relationships are considered in the Many-to-many Variation section below. Each entity type is
assumed to have an associated entity table of the same name. For example, there is a DesignPart entity
table that contains information about DesignPart entities.

4

In this domain, the DesignPart is the anchor entity type. The map tables are listed in Figure 2 below.

DsnPath(DesignPartId DesignName ProjectId DesignerEmpNo)
MfgPath(DesignPartId MfgPartId ProductId VendorId)

Path Map Table

Project Design DesignPart DsnPath

Designer Design DesignPart DsnPath

Design DesignPart DsnPath

DesignPart MfgPart Product MfgPath

DesignPart MfgPart Vendor MfgPath

DesignPart MfgPart MfgPath

Figure 2. Relationship of Path to Map Table

A possible representation of the map table attributes is included. The key of the DsnPath map table
(underlined) is the identifier of the anchor entity DesignPart . A DsnPath record contains a reference to all
parents of the DesignPart . The key of the MfgPath map table includes the identifiers for the
DesignPart , MfgPart and Product . On the assumption that there is only one Vendor per MfgPart , the
VendorId attribute is fully functional dependent on MfgPartId alone. Hence, in this schema, the MfgPath
table has been denormalized from third normal form to second normal form in order to optimize queries.

A different design, or evolving business requirements, could change the map table entry. This is a physical
database design decision that is neither dictated nor precluded by the HiStar pattern. The use of an
intermediary map table entry for navigational paths localizes schema dependency and reduces change
impact. The only requirement for the map table is that each map table includes the anchor entity key. Given
that feature, programmatic navigation references the map table entry for the given path, reducing the implicit
dependence on a particular schema.

Note that a DsnPath record relates a single design part to a single design, project and designer. Support for a
many-to-many relationship of design part to one of these parent entities is described in the Many-to-many
relationships Variation below.

5

Reorganizing the schema around the map tables results in the hub-and-spoke topology of Figure 3.

Figure 3. Hub-and-spoke arrangement

Resulting Context
The resulting schema supports hierarchical navigation along several dimensions. A navigational query can
start from any supported entity. Navigation to another entity relates the corresponding map table records that
share a common anchor entity. For example, navigation along the path Project Design DesignPart
yields DsnPath records for DesignPart s in the given Project and Design .

Hierarchy is traversed by referencing map table records that share a common anchor entity occurence. A
query that seeks to obtain information about two entities in the hierarchy joins map tables if necessary to
relate the entities, then joins entity tables to retrieve attributes about the related entites. For example, the
query "which vendors supply parts for the design?" requires traversal from a Design through the common
DesignPart to the Vendor . This entails three joins:
 The entity table Design is joined to the map table DsnPath to select DesignPart s for the given Design
The map tables DsnPath and MfgPath are joined to determine Vendor s for the DesignPart s The entity
table Vendor is joined to the map table MfgPath to get the vendor information.

In each case, the join is done on the common DesignPart foreign key. By contrast, navigation that does not
follow the HiStar pattern must embed the semantics and physical representation of relationships that are
implicit in the schema. The HiStar pattern makes the hierarchy explicit, localizes it to a map table entry for
each path, and simplifies navigation by relating all entities to the anchor entity.

An incremental traversal proceeds similarly, exploring the hierarchy one level at a time. An incremental
traversal starts with selection of a Design , shows DesignPart s for the selected Design , allows selection
of a DesignPart for further exploration, and finally discloses possible Vendor s for the selected
DesignPart . In all cases, joins are done by looking up the map table and joining on the DesignPart .

6

The navigation path can be inverted to start from the anchor entity and move outward. For example, the path
DesignPart Design Project yields DsnPath records of a Project for the given DesignPart and
Design . Intermediate nodes of the complete hierarchical path can be omitted to form an elided navigation
path. The path Designer DesignPart reflects all DsnPath records for the given Designer without regard
for the particular Design .

Rationale
• Programmatic navigation along a fixed hierarchy is unnecessary since any entity relates to any other

entity via the map tables. For example, determining the possible vendors of a project can be done in
a standard fashion by looking up the map tables, rather than a fixed solution embedded in program
code.

• Since every map table includes an anchor entity foreign key, navigation from any entity to any other
entity requires at most one join operation. Navigation is done through the map tables. If the two
entities have the same map table, e.g. Project and Designer , then no join is required to relate the
entities. Otherwise, the entities are related by joining the MfgPath and MfgPath tables on the
common DesignPart key.

• Information about a given entity is obtained from its entity table regardless of the path used to reach
the entity. There is a known table for the entity information and it is always obtainable by joining the
entity table to its map table.

7

Known Uses
The HiStar Schema pattern has manifested itself in Product Data Management, Electronic Design
Automation and Marketing Analysis domains. In the first two cases, a diversity of special-purpose
programmatic navigation techniques led to a reconsideration of access profiles, construction of a common
data model, emergence of a unifying anchor entity and restructuring around this entity. The HiStar Schema is
particularly appropriate when both the development and fabrication activities are distinct and sizable. A
product construction domain in which one of these activities dominates typically does not have
organizational complexity sufficient to require flexible traceability through the development and fabrication
process. The HiStar Schema best fits a domain that has a balance of development and fabrication process
complexity, occupying the middle of the spectrum in Figure 4.

Figure 4. Process orientation by discipline

In the case of the Marketing Analysis application, customer information is organized hierarchically as in
Figure 5. A customer belongs to a household, receives a catalog and places orders containing items. The data
model is similar to the standard flat Star Schema shown in Figure 7, but the hierarchical organization is
fundamental to the analysis and the Customer rather than a business activity is the unifying concept.

Figure 5. Marketing analysis hierarchy

The HiStar pattern may apply to other domains that require hierarchical navigation. The author welcomes
accounts of additional known or potential uses of the HiStar pattern.

8

Related Patterns
The Star Schema pattern language [1] is the basis for the HiStar Schema pattern language. A star schema
defines business entities that act as the dimensions of key business activities. Key business activity
transactions are recorded in a fact table. Each dimension is represented in the fact table by a foreign key. The
dimensions form a star pattern about a central fact table (Figure 6).

Figure 6. Star schema pattern

 The resulting schema is the basis for designing a query-optimized database. Queries summarize activities
along selected dimensions. An example of a star schema is shown in Figure 7.

Figure 7. Star schema example

9

 The schema represented here implicitly flattens any hierarchical relationships. For example, although a
Salesperson may belong to a Department , and a Customer may reside in a Region , the Sale fact table
flattens these relationships. The hierarchical paths are not relevant to the Star schema because analysis is
focused on how the entities relate to the key activity, Sale in this case. The HiStar pattern generalizes the
Star schema for applications which characteristically perform queries on the hierarchical relationships of
business entities.

Variations
• Recursion

• Many-to-many relationships

• Secondary Attributes

Recursion

It is not unusual for a developmental entity type to hold a recursive hierarchical relationship to itself. For
example, DesignPart might have a recursive relationship as in Figure 8. The design can now include a
subassembly as well as atomic manufacturable parts. Each subassembly consists of other design parts but is
captured as a design part in its own right, available for reuse in other designs.

Figure 8. Recursive relationship example

10

For example, a compatible wheel-tire-hub assembly can be referenced as a single design part in bicycle
construction, although the assembly is actually manufactured from other parts. Figure 9 shows a standard
recursive scheme. The parent entity P contains a child entity A. A recursively contains children B and C of the
same entity type. B recursively contains D and E. C, D and E are atomic child entities.

Parent-Child Child-Child Parent-Child Child-Child Parent-Child

P A A B
A C
B D
B E

P A A B
A C
B D
B E
A D
A E

P C
P D
P E

Recursive Child Expanded Child Detail
Parent-Child

Figure 9. Eliminating recursion

Recursion can be handled as follows:

1. Expand the recursion into composite and detail entities. A composite recursive entity contains other
entities of the same type; a detail recursive entity does not contain other entities of the same type.

2. Form the transitive closure of the recursion, DesignPart in the example as in Figure 9. The transitive
closure includes records for all composite entities that contain detail entities, either directly or indirectly.

3. Reconstitute the parent-child map table to include only detail child entities. The new parent-child map
eliminates the recursion and recasts the parent-child relationship into an association of parents to detail
children only.

The context that results from this decomposition eliminates the recursion but loses information about
intermediate composite recursive entities. However, the lost information is typically not important to queries
using the HiStar pattern.

Many-to-many relationships

The data model considered so far only includes one-to-many hierarchical relationships, wherein the child
entity is contained in exactly one parent entity. Hierarchy may also include many-to-many hierarchical
relationships. In that situation, the map table can potentially hold several parent entities for a given child
entity. This is the case, for example, if a DesignPart in the example could be reused by several Design s or
if multiple Designer s are responsible for a single Design .

Note that many-to-many relationships present a similar problem to the Star Schema as well. For example, if
there is more than one SalesPerson for a given Sale , the configuration of Figure 7 must be modified to
accomodate this relationship cardinality anomaly. Since the Sale fact table references the SalesPerson by
a foreign key, there can be at most one SalesPerson for a given Sale .

11

Many-to-many cardinality is supported in hierarchical relationships by changing the relationship map table.
Recall that a map table determines the hierarchical entity occurences for a given anchor entity. A DsnPath
record in the simple example records the unique Design , Project and Designer for a given
DesignPart . In the case of a many-to-many relationship of Design to DesignPart , the DsnPath map
table still suffices to determine the hierarchical entity occurences, since there is only one Project and
Designer for a given Design . However, multiple Designer s for a single Design would necessitate
separate map tables for the Designer hierarchy and the Project hierarchy, as shown in Figure 10.

PrjPath(DesignPartId DesignName ProjectId)
DsnrPath(DesignPartId DesignName DesignerEmpNo)
DsnPath(DesignPartId DesignName)
ProdPath(DesignPartId MfgPartId ProductId)
OrderPath(DesignPartId MfgPartId OrderNo)
VendorPath(DesignPartId MfgPartId VendorId)
MfgPartPath(DesignPartId MfgPartId)

Path Map Table

Project Design DesignPart PrjPath

Designer Design DesignPart DsnrPath

Design DesignPart DsnPath

DesignPart MfgPart Product ProdPath

DesignPart MfgPart Order OrderPath

DesignPart MfgPart Vendor VendorPath

DesignPart MfgPart MfgPartPath

Figure 10. Many-to-many map tables

12

Secondary Attributes

A secondary attribute in this context refers to an attribute that is dependent on two entities that do not have a
direct hierarchical relationship in the schema. For example, the Approval relationship in Figure 11 indicates
whether a MfgPart is approved for use in a Project . Such secondary attributes can convey important
information for hierarchical query purposes.

A secondary attribute can be incorporated into the HiStar schema by a modest enhancement to the traversal
mechanism. Recall that the attributes to be included may come from the map table for the path and the entity
table of the last entity type in the path. Secondary attributes are obtained by augmenting these attributes with
any secondary attribute records between the terminal entity in the path and any other entities in the path. The
attribute set for the path Project Design DesignPart MfgPart is augmented to include the approval
status for the MfgPart within a Project .

Figure 11. Secondary attribute example

References
[1] Peterson, Steve. Stars: A Pattern Language for Query Optimized Schema, Proceedings of PLoP 94
(1994).

Author:
F. Nelson Loney
Method
loney@acm.org

