Loop Patterns http://mww.cs.duke.edu/~ol & patterns/plopd/loops.html

lof14

L oop Patterns

Authors
Owen Astrachan Eugene WAl lingford
Depart nent of Conputer Science Depart nent of Conputer Science
Duke University University of Northern |owa
Dur ham NC 27708 Cedar Falls, | A 50614
ol a@s. duke. edu wal | i ngf @s. uni . edu

Copyright (c) 1998, Owen Astrachan and Eugene Wallingford
Permission is granted to make copies for PLoP98.

Background

There are many ways to look at patterns. An especialy useful way to think of patternsis asatool for
teaching. We don't use patterns blindly; we learn them. Patterns are all about learning successful
techniques, understanding when and how to use them. At ChiliPLoP'98, asmall group of computer
science educators gathered to think about and write patterns appropriate for novices learning to program in
the first two years of undergraduate instruction. (For more information or to become involved in this
ongoing project, visit the elementary patterns web page.)

The patterns contained here were first discussed and written as a part of the ChiliPLoP workshop. They
are, we hope, the beginnings of what will be a pattern language for hel ping novice programmers construct
loops. Writing loops is the basis for many of the problems students attempt to solve when writing
programsin Algol-like languages. (In functional languages such as Scheme, recursion istypically used for
repetition instead of loops. See, for example, Roundabout, a pattern language for recursive programming
that was workshopped at PLoP'97.)

We focused our initial efforts on identifying specific problems that students encounter when learning to
write loops. Thislead usto severa specific patterns. At this point, they are only rather loosely related, but
we hope that they serve as auseful starting point for amore extensive documenting effort.

e L oopsfor processing itemsin acollection
o Searching loops
Linear Search
Guarde Linear Search
o Processing dl theitemsin acollection
Process All Items
Definite Process All Items
Iterator Process All Items
One Loop for Linear Structures
Extreme Vaues
e Genera loop coding
o Loop and aHaf

o Polling Loop
o Loop Invariant

Linear Search

7/28/98 12:35 PM

Loop Paterns

20f 14

Y ou are working with acollection or stream of objects.

How do you find an object that meets a specific condition?

Suppose that you have a set of students, and you would like to find the first student with an "A" average. In
the worst case, you will look at the whole collection before finding your target. But, if you find amatch

sooner, you would like to terminate the search and work with the object that you found.

Therefore, construct a Process All Items loop, but provide away to exit the loop early should you find
your target sooner.

Express your student search as:

= 0; i < students.size(); i++)
(student[i].grade().isAnA())
br eak;

/1 process student[i], who has an A

If it is possible that you will not find your target, be sure to do a Guarded Linear Search.

Guarded Linear Search
You are doing aLinear Search.
How do you handle the possibility that no target may be found?

What happensiif it is possible that no student has an "A" average? Y our loop will look at the entire
collection and still not find atarget. But the code that follows the loop assumes that student][i] is the target.

Therefore, follow the loop with an Alternative Action that treats the "not found” situation as a specia case.

Express your student search as:

for (i = 0; i < students.size(); i++)
if (student[i].grade().isAnA())
br eak;
if (i < students.size()) /1 found it!
/1 process student[i], who has an A

el se
/1 handl e the exception

[Resulting context...]

Process All Items

Y ou are writing code that manipulates a collection.

7/28/98 12:35 PM

http://mww.cs.duke.edu/~ol & patterns/plopd/loops.html

Loop Patterns http://Amww.cs.duke.edu/~ol apatterns/plopd/l oops.html

30of 14

How do you process all of the itemsin the collection?

The collection might be an array, abag, a hashtable, a stream, or afile--in genera, items stored in some
structure and made accessible to the programmer through some collection/iterator interface. Y ou want to
process dl of theitemsin an identica manner.

Y ou may need to process al of the items because in the worst case al items must be processed (Linear
Search), or because al items must be processed even in the best case, in order to ensure correctness
(Extreme Vaues).

There are two kinds of process-dll-itemsloops: a definite loop that uses indexing when the number of
indexable itemsin acollection is known in advance, and an iterating loop when an iterating interfaceis
used to access the itemsin acollection sequentialy.

Therefore choose the appropriate loop and loop pattern for processing dl the itemsin the collection once.

Definite Process All Items

Y ou are writing a Process All Items|oop for an indexable collection, the number of itemsin the collection
can be determined simply (in constant time) and indexing is constant time.

How do you access every indexable item?

The collection might be avector or a string where the number of elementsin the collection can be
determined by afunction call, or the number of items might be another variable associated with the
collection, e.g., as aparameter to afunction or afield in aclass.

Therefore use a Definite Process All Items for loop to touch evey element in the collection.

Example

The items are stored in avector. Use adefinite loop to process al the items, even for agorithms like
Linear Search. In C++:

for(int k=0; k < v.size(); k++)
{

}

process v[K]

Iterator Process All Items

You are writing a Process All Items loop for a collection that uses an iterator interface or when constant
time indexing of the collection is not possible.

How do you access every itemin the collection?
The items may be stored in a collection with a standard iterator interface, e.g., a Java enumeration.

The items may be stored in asimple linked list where there is no explicit iterator interface, but (iterating)
links must be followed.

7/28/98 12:35 PM

Loop Patterns http://Amww.cs.duke.edu/~ol apatterns/plopd/l oops.html

Therefore use an iterator process al items while loop that tests the iterator to seeif it is finished.
Examples

In Javathe items may be accessible viathe standard Java 1.1 Enumeration interface.

Hasht abl e tabl e = new Hasht abl e();
/1l code to put values in table

Enunmeration e = table. keys();
whil e (e. hasMoreEl ement s())

process(tabl e.get(e.nextEl enent()));

In C++ processing alinked list requires an iterating pointer variable:

Node * ptr = first;
while (ptr != NULL)

process(ptr->info);
ptr = ptr->next;

}

The Iterator pattern is widely known from the GOF patterns book, but is mentioned asan idiom in
Coplien's Advanced C++

Loop and a Half

You are writing a Process All Items | oop.

How do you structure the loop when the number of items in the collection isn't known in advance and the
items are provided one-at-a-time?

For example, you might be reading values from the keyboard or from afile. In generd, you are processing
al itemsuntil asentinel isreached. The sentinel may be end-of-file, avalid value for the type of data being
read, or an exception.

The loop requires priming to read/get the first value, aloop guard to test for the sentinel, and another
read/get inside the loop. Thisleads to duplicate code for the read/get and makes the loop body harder to
understand since it turns aread-and-process loop into a process-and-read |oop.

Therefore, use awhile-true loop with abreak in the loop body to avoid duplicate code and to match your
intuition that the loop is aread-and-process |oop.

For example, consider pseudocode for a sentinel loop:

read val ue

while (value !'= sentinel)
process val ue
read val ue

This can be rewritten as

40f 14 7/28/98 12:35 PM

Loop Patterns http://Amww.cs.duke.edu/~ol apatterns/plopd/l oops.html

while (true)
read val ue
if (value == sentinel) break;
process val ue

Although the bresk is essentially a goto and thus violates a canon of structured programming, it resultsin
code that it easier to develop Roberts. Because there is no code duplication the code should be easier to
maintain and easier to understand --- see Assign Variables Once and Loca Variables Reassigned Above
Their Uses.

[Resulting Context: Patterns for writing (compound) Boolean expressions.]

Polling L oop

Y ou are writing a program that asks the user to enter adatavalue.

How do you poll until the user enters a valid data item?

For example, suppose that we want the user to enter alega grade, between 0 and 100 inclusive.

Many languages provide ado. . . whi | e. . . construct that allows direct testing of ava ue after entry. For
example:

do
{

cout << "Enter a grade between 0 and 100, i nclusive:
cin >> grade;

}
while (grade < 0 || grade > 100)

This solution gives the same prompt on al requests, so the user may be confused by the repetition. The
test is negative, which requires students to use DeMorgan's laws to write the condition.

Instead, you could follow the data entry with an explicit validation loop:

cout << "Enter a grade between 0 and 100, i ncl usive:
cin >> grade;

while (grade < 0 || grade > 100)

cout << "Sorry! That is an illegal value." << endl;
cout << "Enter a grade between 0 and 100, i nclusive:
cin >> grade;

}

This solution replicates the prompt code. We can lessen the negative effect by making the prompt a
procedure cdl. But, the test is still written in the negative, which is difficult to do--and undo, for the
reader who wants to know what the legal values are.

Both of these solutions stop processing when the negative condition fails, and the prompting sequenceis
difficult.

50f 14 7/28/98 12:35 PM

Loop Patterns http://mww.cs.duke.edu/~ol & patterns/plopd/loops.html

Therefore, use aloop and a half. Write a positive condition that stops the repetition when the user entersa
legal vaue.

So, you might solve your grade-entering as:
while (1)

cout << "Enter a grade between 0 and 100, i nclusive:
cin >> grade;

if (grade >= 0 && grade <= 100)
br eak;

cout << "Sorry! That is an illegal value." << endl;

}

If the condition that stops the loop is compound (or ways??), Use a Function for a Compound Boolean.

Extreme Values

Y ou are writing code to find extreme values, for example the maximum and minimum in a collection or
sequence of values.

What kind of loop do you use and how do you initialize the variables that track the extreme values?

Y ou must process al itemsin the collection to ensure that the correct extreme values are found. The same
forcesare a play that help to identify a Definite Process All Items and alterator Process All Items |oop.

The principle difficulty in writing code to find extreme values is determining initia values for the
variables that represent the extreme value so far e.g., current M n and cur r ent Max. The invariant for
current M nisthat it represents the minimal value of all the values processed so far. The best method for
establishing thisinvariant isto use the first value of the collection for the initiaization, but this can lead to
the kind of duplicate code seen in the Loop and aHalf pattern.

The range of values from which the extreme values are chosen is aforce that affects the algorithm/code.

For example, if extreme values are chosen from integers or doubles (floating point numbers) there are

largest and smallest val ues; effectively there are values for infinity and negative infinity. For other types

there may be no effective values for infinity, e.g., in choosing the largest or smallest string

lexicogaphicaly there is no maximal string value (there may be a smallest string, usually the empty string
" isless than any non-empty string).

Therefore, use the appropriate Process All Items|loop and initiaize extreme vaues to the first value in the
collection from which extreme values are determined (care must be taken if the collection is empty). If
possible, useindices, pointers, or references rather than values of objects/variables, i.e., keep track of the
index of the current minimum in an array rather than the current minimal value. The value can be
determined from the index, pointer, or reference.

Examples

Find the largest and smallest valuesin avector of stringsin C++. Use a Definite Process All Items|oop
and initialize current min and max indexing variables to the first value in the vector.

6of 14 7/28/98 12:35 PM

Loop Patterns http://Amww.cs.duke.edu/~ol apatterns/plopd/l oops.html

7of 14

vector<string> a;
/1l code that puts values in a using push_back

i nt m nlndex
i nt max| ndex

0; // index of m ni mum val ues between 0 and k
0; /1 index of maxi mum val ues between 0 and k

=1; k < a.size(); k++)

] < a[mnlndex]) m nlndex
] > a[maxl ndex]) maxl ndex

/1 miniml string stored in a[mn nlndex]
/1 maximal string stored in a[maxl ndex]

It's possible to write a generic function that returns the minimal value in avector/array:

tenpl ate <class Type>

Type m n(const vector<Type> & a)

/1 precondition: a contains a.size() values, values in a conparable by <
/1 postcondition: returns the index of the snmallest value in a

int mnlndex = 0; /1 index of miniml value in a[0..Kk]

int k;
for(k=1; k < a.size(); k++)

if (a[k] < a[m nlndex]) mnlndex = k;
return a[m nl ndex];

In Javathis could be written as follows:

cl ass Extrene

/**

* @arama is Vector of values that inplement Conparable
* @eturns the the smallest object in the Vector
*/

public static Object mn(Vector a)

{
int mnlndex = 0;
int k;
for(k=1; k < a.length(); k++)

if (a.elenmentAt(k).conmpareTo(a. el ement At (m nlndex)) < 0)
m nl ndex = O;
}
} .
return a.el enent At (m nl ndex) ;

}
b

Y ou are finding the extreme values in astream of string values using C++. The collection here uses an
iterator interface, where the interface is the C++ convention of reading the stream and using the returned
state of the stream to indicate when the iteration is finished.

Thefirst valuesread, if any, are used to initiaize the extreme values. It is not possible to use indexes or

7/28/98 12:35 PM

Loop Patterns http://mww.cs.duke.edu/~ol & patterns/plopd/loops.html

references to maintain the extreme values, so the values themselves are stored.

void findM nMax(istream & input, string & mn, string & max)
/1 postcondition: min is the mniml value in stream i nput,
/1 max i s the maximal value in streaminput

{

ring current;

stri

if (input >> current)
L

mn
max

current;
current;

}

whil e (input >> current)

if (current < mn) mn
if (current > max) max

current;
current;

}

Thereis duplicated code for reading values in the code fragment above. It's possible to avoid duplicated
code when the range of values has effective values for positive and negative infinity.

Y ou are finding the extreme vaues in a stream of double values. Y ou want to avoid duplicated reading
code. Therefore, initialize current min and max to positive and negative infinity (and use <= and >= for
comparisons).

void findM nMax(istream & i nput, double & min, double & max)

/1 postcondition: min is the mniml value in stream i nput,

/1 max i s the maxi mal value in streaminput

{
doubl e mi n = DBL_MAX; /1 #include <float.h> for DBL_MAX
doubl e nmax DBL_M N,;
doubl e current;

while (input >> current)

if (current <= nmin) mn
if (current >= pax) max

current,;
current,;

OneLoop for Linear Structures

Y ou are writing Simply Understood Code(Gabriel), code whose intent and correctness are not apparent.

How do you write code that processes data stored in a linear structure, such asan array, list, or file?

Developing such code is not trivial, because you think that complex control structures are needed to
implement the algorithm, or because of specia cases.

Algorithmically, aproblem may seem to cal for multiple loops to match intuition on how control
structures are used to program a solution to the problem, but the datais stored sequentialy, e.g., in an
array or afile. Programming based on control |eads to more problems than programming based on
structure.

8of 14 7/28/98 12:35 PM

Loop Paterns

90of 14

Therefore, use the structure of the datato guide the programmed solution: one loop for sequentid data
with appropriately Guarded Conditionals(?) to implement the control.

The structure of the source of datais the guide for using this pattern, not the structure of how the datais
processed or where information is written. For example, in processing afile representing a
black-and-white bitmap stored as run-length encoded zeros and ones, e.g., 5 3 4 represents
000001110000, the structure of the file dictates using one loop while the structure of the image dictates
using two loops. Use one loop because the datais stored in afile.

Examples

Y ou are removing duplicated elements from a sorted array. At first you may think of writing nested loops:
an outer loop to Process All Items and an inner loop to search past duplicated items (alternatively, search
for anon-duplicated item). This approach can be a problem because a Definite Process All Itemsloop is
called for, but the nested loop approach will make updating the indexing variable difficult. Instead, use
only aProcess All Itemsloop: one loop for linear structures:

voi d renpvedups(vector<string> & a, int & n)

/] precondition: a[0] <= a[1l] <= ... <= a[n - 1]
/1 postcondition: all duplicates renoved from a,
/1 n =#elements in a
{

int k;

i nt uni queCount = 1;
/1 invariant: no duplicates in a[0] .. a[uniqueCount-1]
for(k=1; k < n; k++)

if (a[k] !'= a[uni queCount-1])

{ a[uni queCount] = a[k];

uni queCount ++;

}

= uni queCount ;

}
n
}

A more elabore example of Quicksort Partition is given in an appendix.

http://Amww.cs.duke.edu/~ol apatterns/plopd/l oops.html

L oop Invariant/L oop Initialization

Y ou are writing aloop whose termination/continuation conditions are determined by vaues of loca
variables.

How do you determine the initial values of the variables?
The name of each variable should indicate itsrole in the loop and the invariant property that holds for the

variable. A comment that expresses the invariant property should accompany each variable whose name
does not immediately convey the invariant property.

Explicitly identifying the invariant for each variable used in the loop isastart. The invariant helps
determine what the initia values are since the invariant must be true the first time the loop test is

7/28/98 12:35 PM

Loop Paterns

10of 14

evaluated. See the example of removing duplicated elementsin the One Loop for Linear Structures
pattern.

For example, You are writing code to find the date on which Thanksgiving, the fourth Thursday in
November, occurs. You decide to start on the first day of the month, and iterate through days counting
Thursdays. Your first loop is:

Date d(11,1,1998);
i nt thursdayCount = O; /1 # of thursdays
whi | e (thursdayCount < 4)

i f (d.DayName() == "Thursday")

t hur sdayCount ++;
}

d++;

}
/1 d is Thanksgi ving

Y ou recognize a problem with this solution: d isincremented as the last statement in the loop so it will be
one day after Thanksgiving when the loop terminates. Y ou may decide to move d++ before the if statement
in the loop, or to rewrite the if statement as an if/el se statement. The problem hereis not with the loop

body per sg, it iswith theinitidization of the variablet hur sdayCount ; what doest hur sdayCount count?

Therefore you must explicitly identify what is tracked/counted, what is the invariant property that holds
for t hur sdayCount. In this case you want t hur sday Count to be the number of Thursdaysin November
on or before Date d. Y ou attempt to verify that the invariant holds the first time the loop test is evaluated
and see that it will not hold when November 1 isaThursday. You could initialize based on what day of
the week November 1 fals on as shown below, but you want to avoid specid cases.

i f (d.DayName() == "Thursday")
t hur sdayCount = 1;

el se
t hur sdayCount = 0;

To ensure that the invariant holds the first time the loop test is evaluated, you initialize d to the last day in
October rather than the first day of November:

Date d(11,1, 1998);

d--;

i nt thursdayCount = O;
whi | e (thursdayCount < 4)

{

| ast day of October, month before

11
/'l # thursdays on or before d

d++;
i f (d.DayName() == "Thursday")
t hur sdayCount ++;

}
/1 d is Thanksgiving

External Patterns

7/28/98 12:35 PM

http://Amww.cs.duke.edu/~ol apatterns/plopd/l oops.html

Loop Patterns http://Amww.cs.duke.edu/~ol apatterns/plopd/l oops.html

We refer to each the following patternsin one or more patterns above. Some are patterns that we intend
write in the future, and others are patterns documented by other authors. Linksto on-line versions of the
patterns are provided where available.

e UseaFunction for aCompound Boolean
o Problem: Even simple Boolean expressions can be hard to read. M ore complex Booleans can
be downright intimidating. They interrupt the flow of code, and readers often cannot
determine their meanings very easily.
o Solution: Create afunction that returns the value of the Boolean expression. Give the function
an Intention Revealing Name.

e Simply Understood Code (Gabriel)
o Problem: People need to be comfortable reading a piece of code before they feel confident
that they understand it and can modify it.
o Solution: "Arrange the important parts of the code so it fits on one page. Make that code
understandable to aperson reading it from top to bottom. Do not require the code to be
repeatedly scanned in order to understand how datais used and how control moves about."

¢ Assign Variables Once (Gabriel)

o Problem: If avariable is assigned twice, you might have trouble figuring out which
assignment provides the value at a particular point, and your inclination is to remember the
last assignment saw.

o Solution: Assign loca variables only once, and, if possible, do that at the place where the
local variable is defined.

e | oca Variables Reassigned Above Their Uses (Gabriel)

o Problem: "Sometimes a piece of code needs to re-assign local variables more than once. If this
is done without paying attention to a person reading the code who is unfamiliar with it,
misunderstandings are easy."

o Solution: "A local variable that must be re-assigned should be re-assigned in aplace that is
textually above where it is used or referenced.”

¢ Intention Revealing Name (Called "Intention Revealing Selector” by Beck)
o Problem: How do you name a procedure?
o Solution: Name procedures for what they accomplish.

e Composed Procedure (Caled "Composed Method" by Beck)
o Problem: How should you divide a program into components?
o Solution: "Divide your program into [procedures] that do one identifiable task. Keep all of the
operationsin a[procedure] at the same level of abstraction. Thiswill naturally result in
programs with many small [procedures], each afew lineslong.”

¢ Role Suggesting Temporary Variable Name (Beck)
o Problem: What do you call atemporary variable?
o Solution: "Name temporary variables for the role they play in the computation. Use variable
naming as an opportunity to communicate valuable tactical information to future readers.”

e Caching Temporary Variable (Beck)
o Problem: How do you improve the performance of a method, in the face of repeated

110f 14 7/28/98 12:35 PM

Loop Patterns http://mww.cs.duke.edu/~ol & patterns/plopd/loops.html

expression evauations?
o Solution: "Set atemporary variable to the value of the expression as soon asit isvalid. Use
the variable instead of the expression in the remainder of the method."

e An Alternative Action selects from among two or more actions on the basis of some condition.

Acknowledgements

We would like to thank the organizers of ChiliPLoP98 for the opportunity to gather and to begin to form
an elementary patterns community. We thank especialy the other members of our ChiliPLoP workshop
for their thoughts on looping patterns: Joe Bergin, Robert Duvall, Ed Epp, and Rick Mercer. Our PLoP
shepherd, Marc Bradac, made many suggestions that improved our initia efforts.

Refer ences

1. Owen Astrachan. Design Patterns: An Essentiadl Component of CS Curricula. SGCSE Bulletin and
Proceedings, Volume 30(1):153-160, March 1998.

2. Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, New Y ork, 1997.

3. Jon L. Bentley and M. Douglas Mcllroy. Engineering a Sort Function. Software Practice and
Experience. Volume 23(11):1249-1265, November 1993.

4. James O. Coplien, Advanced C++: Programming Styles and Idioms, Addison-Wesley, 1992.

5. Richard Gabriel, Simply Understood Code, ht t p: / / c2. cont cgi / wi ki ?Si npl yUnder st oodCode

6. Eric S. Roberts. Loop Exits and Structured Programming: Re-opening the Debate. S GCSE Bulletin
and Proceedings, Volume 27(1):268-272, March 1995.

7. Sartg Sahni. Data Structures, Algorithms, and Applicationsin C++, McGraw-Hill, 1997.

8. Eugene Wallingford Roundabout, A Pattern L anguage for Recursive Programming, PLoP-97,
http://ww. cs. uni.edu/ ~wal |li ngf/research/patterns/recursion. htm

Appendix: The Quicksort Partition

Thisisamore elaborate example of One Loop for Linear Structures.

The partition phase of quicksort for arraysis aclassic example. Most textbooks use a complicated solution
in which an outer loop is essentialy a Process All I1tems loop wrapped around two inner loops that move
indices delineating the two sections of the array. This three-loop solution is difficult for studentsto
understand, easy to code incorrectly, and harder to generdize to athree-phase partition required to avoid
bad asymptotic performance when duplicate elements are stored in an array.

12 of 14 7/28/98 12:35 PM

Loop Paterns

130f 14

Using One Loop for Linear Structuresin conjunction with Process All Items leads to the code shown
below (taken from Engineering a Sort Function).

int partition(vector<string> & a, int left, int right)

/1 precondition: left <= right

/1 postcondition: rearranges entries in vector a

/1 returns pivot such that

/1 forall k, left <= k <= pivot, a[k] <= a[pivot] and
/1 forall k, pivot < k <= right, a[pivot] < a[k]

/1

{

int k, pivot = left;
string center = a[left];

for(k=left+1l, k <= right; k++)
if (a[k] <= center)
pi vot ++;

swap(a[k], a[pivot]);

}
swap(af[left],a[pivot]);
return pivot;

}

The invariant for this can be shown pictorialy.

left right left right
x = X = X e <= X X > X
pivok k pavak

Not only isthis code simpler to understand than the code shown in many texts, it is more easily
generalized to the three-phase "fat partition” (see Bentley) in which elements equal to the pivot are treated

separately and put in their own partition. A fat partition scheme is necessary to avoid O(n2) performance
for arrays with many duplicate items. Fat partitioning yields a section of elements equal to the pivot
element as well as sections less than and greater than the pivot element (two values are returned from the
function and no recursion occurs on the equal section). It isaso simple to include a median-of-three
partition by swapping the median value into the left-most entry before the loop begins.

The code below isindicative of partition functions developed without the benefit of the one loop for linear
structures pattern, it appearsin the text by Sahni. On the surface this code is harder to reason about and
harder to adapt to the "fat partition” scheme.

int partition(vector<string> & a, int left, int right)

/1 precondition: left <= right

/1 postcondition: rearranges entries in vector a

/1 returns pivot such that

/1 forall k, left <= k <= pivot, a[k] <= a[pivot] and
/1 forall k, pivot < k <= right, a[pivot] < a[k]

/1

{

7/28/98 12:35 PM

http://Amww.cs.duke.edu/~ol apatterns/plopd/l oops.html

Loop Patterns
int i = left,
j = right+1;
string pivot = a[left];
while (true)
{
do{
i ++;
} while (a[i] < pivot);
do{
i--3
} while (a[j] > pivot);
if (i >=j) break;
swap(ali].,a[j]);
a[left] = a[jl];
a[j] = pivot;
return j;
}

http://mww.cs.duke.edu/~ol & patterns/plopd/loops.html

Code developed with multiple loops can be more efficient. For example, the find, fully-tuned version of
partition in Bentley uses the loops-in-a-loop coding style shown in the Sahni example.

14 0of 14

7/28/98 12:35 PM

