
1

 Data Filter Architecture Pattern

 Robert Flanders and Eduardo B. Fernandez

 Dept. of Computer Science and Eng,.
 Florida Atlantic University
 Boca Raton, FL 33431

Abstract
Given the potentially enormous amount and variety of data available in the Internet and other
systems, it becomes necessary to filter out part of it for institutional or legislative reasons. We
present a filtering architecture that can apply different filtering policies.

Intent

Filters the contents of client requests in a distributed system, according to predefined policies.
Filtering can occur locally or remotely.

Motivation

Problem

In many distributed systems, e.g., the Internet, requests for services or data need to be filtered
according to institution policies, legislative restrictions, privacy needs, etc.

Context

We consider a distributed system where clients send requests for data or services. Examples
include CORBA or DCOM-based systems where users may ask for database items, the Internet,
where browsers request web pages, specific types of Intranets, etc.

Forces

The following forces define this pattern:
• Data requested by clients needs to be filtered for different reasons.
• Filtering should not affect the normal operation of the system, i.e., the only noticed effect will

be that some data or services are not available to some requests.
• The architecture should be scalable and modifiable with respect to the number and type of

policies.
• The filter should be independent of the conten t provider structure and the network protocol.

Solution

Figure 1 shows the basic architecture for the proposed solution.

The Data Filter Architecture pattern partitions the middle tier of a three-tier architecture into a
Filter Service administration component and multiple distributed remote Filter Agent objects

Copyright  E. B. Fernandez and R. Flanders. Permission is granted to copy for the PloP 1999
conference. All other rights reserved.

2

executing on either the content providers data server or the remote clients server. This Filter
service is based on reconfigurable Filter components that distributes a smart pipe (Policy
Applicator) evaluation mechanism to optimize network utilization. Filter Components provide a
repository for persistent local user-defined Filter Policies for each client. The Distributed Data
Filter Architecture Pattern is independent of the content providers data and Network protocol.

The Collaborators are the Data source that delivers input to the processing pipeline, the Data
Sink of consumer of data, the Filter Policy that performs a functional transformation and
produces output and the Pipe that synchronizes active neighbors and transfers data. The Smart
pipe combines the concept of pipe and Filter Policy applicator. The Smart pipe synchronizes
active neighbors, transfers filtered data and performs discrete functional screening (filters) or
format transformation to generate a modified stream.

The Distributed Data Filter allows the active content provider data source to be tailored to a
particular client's specification without having to maintain a large client database or a large
distributed software application. The Filter Agent Database maintains only the necessary Data
Policies needed to tailor the Data Source for a particular Activate Policy of a Client. The Client
receives a data stream, which contains only the data, which passes predefined Filter Policies or
is a format based on the client’s criteria or format specification. The Filter Policy can contain a
format or translation algorithm for specific types of data. The Filter Service provides centralized
access control and persistent database for E-commence and re-programmability for the
distributed data clients. The re-programmability of both individual Filter Policy and the Filter
Policy evaluation Algorithm (rules based engine) provides an open standard for various behavior
flexibly which is key to an Architecture that generalizes complex data manipulation and
representations.

3

 Figure 1 Basic pattern structure

Applicability

Use the Distributed Data Filter Pattern when:

• You are providing a service which needs to provide a client with data retrieved from remote
sources and the data stream contains large amounts of unrelated, unwanted or secure data.

• You want to provide to a set of registered clients a tailored data stream from a well-known
data service provider.

• You want the flexibility to change the content of the data stream by a reprogrammable
strategy..

• You want to Distributed Filter Policy to reduce network traffic, evict unwanted packets or
restrict the content of data stream contents available to a client.

Structure

Figure 2 shows the overall Distributed Data Filter Architecture Pattern utilizing a distributed Filter
Service and Filter Agents

Filter Service Components can consist of two different types of middle tier objects [3]: a
singleton [1] Filter Service Component and multiple Filter Agent components [1]. Each Filter

DataSource

ContentProvider

SmartPipe

ClientFilterPolicy
Factory

DataSink

UserInterface

FilterAgent FilterService

sends data to
1 1

sends data to

Manages
andConfigures

1*
Manages
andConfigures

creates
Filter Policies

for

1

1

creates
Filter Policies

for

Uses
11

Uses

transfers data from
1 1

transfers data from

4

Service Component contains a reconfigurable database that contains multiple sets of Filter
Policy objects that are iterativily evaluated to perform Distributed Data Filtering. The databases
interface to the Back End third tier objects [3] may be integrated in the CORBA middle tiers'
objects. (The databases maybe encapsulated in either CORBA database components or in Java
components that support third-tier operations [3]. The singleton Filter Service Component
executes on the Filter Services Server address space and maintains the master Filter Service
Database.

The Filter Agent Component executes within the remote server address space or within a content
provider’s server and maintains an abbreviated local database. The Filter Agent database
contains only Data Policies needed to support specific user interfaces. The Filter Agent is the
smart pipe that screens or transforms data supplied by the content provider Data Server Object
[2]. The Filter Agent starts a Receive Data Thread and waits on a blocking call returning data or
can create a Registered callback object if the Content Provider provides callback services.

The Filter Service Database is the master persistent repository for retaining the Filter Service
Clients ID and account information regardless of the Clients Activation State. The Filter Service
has the same smart pipe Filtering capabilities as the Filter Agent. The Filter Service is the
central point of contact Filter service for the Filter Service Client.

Filter Policy
Factory

Client

UserInterface

FilterAgentDB

Middle tier Corba Servers Objects

BackEnd Tier Objects

FilterServiceDB

FilterServiceFactory

FilterService

PolicyApplicator
DataServer

FilterAgentFactory

FilterAgent

PolicyApplicator

1

*

Creates
Filter
Policy

1

0..*

Creates
Filter
Policy

Uses

1

0..*

Uses

Sets Filters Policy with

1

1

Sets Filters Policy with

Configures and Mangers changes for
1 1

Configures and Mangers changes for

1

1

1

*

Pulls data from
1

*

Pulls data from

1

*

Pulls data from
*

*

Pulls data from

1

*

Communicates
with

1

*

Communicates
with

1

1

1

1

5

 Figure 2 Distributed Data Filter Architecture Pattern

Participants

Client

A Client uses a Filter Policy Factory to create predefined filter policies and distribute them to
Filter Agents. A Client may delegate some application user windows to interface with a Filter
Policy Factory to create well-know polices or derive from the Filter Policy base class to handle
unsupported filtering or data transformation.

 User Interface

The User Interface may interacts with a Filter Policy Factory to create predefined filter policies or
the application code may derive their own class from the Data Policies base class to handle all
different unsupported filtering or transformation. This is the Client Web Tier of Objects that runs
as a Java Applet and downloadable E-commerce Web based Application [3]. The User Interface
resolves a reference to the well-known Filter Service object. The User Interface uses the Filter
Policy Factory to create the Filter Policies that are used to create a Filter Policy List. Filter Policy
Lists are sent to the Filter Service component and are retained in the Filter Service Database.
The User Interface uses a Filter Policy Factory to create Filter Policies and may invoke Append,
Delete, and Replace Policy operations on the Filter Service object or the Filter Agent.

The User Interface contains either a receive data thread or a receive data call back object that
collects or displays the data stream. The is the Filter Service access end point (Data Sink) that
consumes the filtered received data or re-distributes it to local or remote processes. The User
Interface is a component of the Remote Filter Service Application executing on a Clients
machine via an application or applet. The User Interface is the high level object that will be used
to show interactions with the client. The Remote Filter Service Application has many low-level
objects that are abstracted out of the model being present to clarify and simplify the interactions.
The number of Filter clients is not restricted however each new client must subscribe with a
globally unique Client ID to the Filter Service.

Filter Service

The Filter Service is the main repository for Filter Policies and list, client lists and is
administrative and change manager for remote updates to Filter Agent’s residing on different
servers Observer Pattern[1]. The Filter Service receives and processes Append Policy, Delete
Policy and Replace Policy update requests from Filter Clients. The Filter Client issues Activate
Policy and Deactivate Policy requests to the Filter Service those associates the specified Filter
Policy List with the Client ID. The Policy list is a list of predefined policy objects that contain
symbols, URL, src address, dest address and user defined data items of interest data from a
generalized content provider’s data stream. The generalization of the data stream is a useful
abstraction and will be referred to as the Data Server. All Remote and Local Filter Service clients
interact with the Filter Service Object. Remote Filter Clients have Registered IDs with the Filter
Service: the Filter Service updates the Filter Agent each Filter Policy transaction.

The Filter Service contains the policy list in a Master database that provides all filter policies for
registered clients. The Filter Agent contains Policy lists needed to carry the specified Filter Policy
that is invoked by the Activate Policy and Deactivate Policy operations. The number of Filter

6

Agent objects supported by the system is dynamic, because a Notification Handle container
allows multiple Filter Agent objects to subscriber to the Filter Service Component. The locations
of the Filter Agents objects are not limited to the Remote Clients Address space. Any server can
create Filter Agents; all that is required is a reference to a Data Server, a TCP/IP address to
send the data to and a Filter Agent Factory.

Filter Agent

The Filter Agent is a remote proxy that provides local representation for an object in a different
address space [1]. The Filter Agent Filter Policy objects are remotely activated or deactivated by
the Filter Service in response to incoming Filter Client requests. The Filter Agent database is
maintained remotely by the Filter Service. The Filter Service creates deletion and appends lists
for Data policies related to remote deactivation and activation respectively. Filter Service uses
the Appends lists, as a pre-loading of the Filter Policy objects needed to support a pending
Activation on the Filter Agent. The Deletion lists are used to clean up the Filter Agent repository
after a Filter Client is deactivated. The Remote operation invocations on the Filter Agent are
individual Append Policy method invocations followed by an Activate Request operation
invocation. For Policy Deactivation, the Deactivate Policy is invoked, followed by the individual
Delete Policy operation one per Deactivate list entry. The Filter Agent object contains a
reference to the Data Server that provides the data stream to be filtered. The Data Server is an
abstraction of any type of data stream; it can be a complex image file format or a simple serial
communication protocol. The Filter Agent receives the data stream from the content provider
and filters the data, then sends it to the Filter Client. The Filter Agent issues a callback to the
Filter Client [2].

Filter Service Policy Database and Filter Agent Policy Database

The Filter Service and Filter Agent Policy database objects are encapsulated within the Filter
Service object and the Filter Agent objects. The Policy databases or back-end Web objects [3]
provide low-level Object Storage Filter Policy objects and per internal or external in a Distributed
Data Filter System. In an Object Web-based version the Distributed Data Filter databases would
be separate objects to take advantages of Component databases and vendor-supplied database
management system.

Figure 3 shows the Filter Components and major top tier objects.

7

CClientlList

m_AgentID:int
m_RemoteReference:CORBA_Object_Var

GetRemoteReference():CORBA_Object_Var
SetRemoteReference(new:CORBA_Object_Var):bool
SetSubscriberList(List:SubscriberList_t):bool
GetSubscriberList():SubscriberList_t

CNotificationHandle

CClientList

CDBCommands

ActivatePolicyt():Result_t
DeactivatePolicyt():Result_t
CopyPolicy():Result_t
DeletePolicy():Result_t
AppendPolicy():Result_t
ReplacePolicy():Result_t
RetreivePolicy():Result_t

CPolicyDatabase

ActivatePolicyt():Result_t
DeactivatePolicyt():Result_t
FilterData():Result_t
CopyPolicy():Result_t
DeletePolicy():Result_t
AppendPolicy():Result_t
ReplacePolicy():Result_t
RetreivePolicy():Result_t

CFilter_i

m_RemoteAgent[Max]:CNotificationHandle

AgentAttach(AgentID:int):Result_t
Create()
AgentDetach(AgentID:int):Result_t
StartRemoteDBConsistencyCheckThread():bool
GetAgentID():int
GetClientID():int
AddSubscriber(List:SubscriberList_t):Result_t
Notify()

CFilterServer_i

m_Subscribers:SubscriberList_t

Create()
Create(List:SubscriberList_t)
RegisterId(x:int)
GetSubscriberList(List:SubscriberList_t):Result_t

CFilterAgent_i

ActivatePolicy DeActivatePolicy

1

1

1

1

1

1

Processes
 a

command
 for

11 Processes
 a

command
 for

1

1

1

1

8

 Figure 3 Filter Components and Top Tier Objects.

9

Policy Applicators

Data filtering is performed using a dedicated internal active Policy Applicator object. The Policy
Applicator is a managed resource that is dedicated to an Activate Policy on behalf of a Filter
Client. The Policy Applicators are placed in a container indexed by Client ID. The Policy
Applicator contains the iterative evaluation control for Filter Policies and logical expression and
relation evaluation rules for Policy Applicator strategy. The evaluation algorithms can be
independently interchanged, because of the utilization of the independent encapsulation of the
evaluation policy using the Strategy Pattern. The Filter Client can select the evaluation algorithm
from the Remote User Interface to achieve the desired behavior [1].

Figure 4 ClientList and PolicyApplicators

CClientList

m_ActivatePolicyList:PolicyList
m_CurrentBuffert:Arrayt
m_Accumulator:bool

execute(rpt:STH_Buffer_t):Result_t
execute(rpt:FilterReport_t):Result_t
nextPolicy():bool
create()
Send()
LoadAlgorithm(CApplicatorAlgorihim New)

CPolicyApplicator

CProtocol

m_IP_Address:string

Open()
Close()

CConnection

Ordered

1

*

1

11

1

10

DataServer

The DataServer is an abstraction of a content provider data stream maybe co-located with the
Filter Agent or within a remote data source. The Data Server provides the packets or content
symbol units to be filtered. The specific format and content of the data are abstracted out to
make the solution more general (Data Source). The Filter Agent creates a connection object and
calls the open operation. The DataServer object contains a connection object that starts a
Thread to transmit data to the Filter Agent. The Filter Agent sends the filtered data to the Client
Window. The Filter Agent and Data Server create a Protocol object that works with the
connection object to initiate an authentication sequence. After the authentication sequence is
completed the Filter Agent pulls Data from the Data Server. The DataServer is assumed to
provide the data continuously until the Filter Agent calls the close operation on the connection.

Filter Service Factory

The Filter Service Factory creates a singleton Filter Service Object on the Filter Service Server
at startup by the Filter Service Application process [1]. The Filter Service Factory is an instance
of the factory template.

Filter Agent Factory

The Filter Agent Factory provides for the creation and initialization of multiple Filter Agent
objects on the Content Providers Server or the Filter Clients Server [1]. The Filter Agent Factory
is a persistent registered resource with the network Naming Service executing on the server.
Upon the Remote Filter Service startup process a Filter Agent Factory is created to produce
Filter Agent Object on Request [1]. creates the Filter Agent objects. The Filter Agent Factory is
used to create multiple copies of the Filter Agent with either a predetermined subscriber list or a
blank subscriber list. The Filter Client’s User Interface is register with the Filter Agent objects by
invoking the GetClientID operation on the Filter Service object and registering it with Filter Agent
by invoking the RegisterID operation. The RegisterID operation invokes the AddSubscriber
operation on the Filter Service, which causes the Clients Filter Agent to be configured by the
Filter Service.

11

Filter Policy Factory

The Filter Policy Factory is an abstract part of the Filter Agent, that allows the client to create,
predefined and user defined Filter policies.The create policy operations are defined by the Filter
Agent and the Filter Service Components and allow the creation of either predefined items or
user-defined Filter policies. Each Filter Policy contains an apply method which can be
overloaded to contain user defined behaviors.

 Figure 5 Filter Policy Creation Objects and Storage Classes

Apply()

FilterPolicyList

Apply()

FilterPolicy

Apply Method is virtual and
maybe user specified. The
Usermay derive from FIlter
Policy.

Apply()

URLPolicy

Apply()

SymbolPolicy

Apply()

UserPolicy

FilterPolicyFactor
y

create_symbol_policy(
)create_URL_policy(
)create_user_policy(
)

1

*

PolicyLists
1

*

PolicyLists

creates a
1

1

creates a

12

Collaborations

The Distributed Data Filter Architecture Pattern encapsulates many design patterns to provide a
service that is flexible and reconfigurable. The following sequences and class interactions
represent the key object s and collaboration needed to perform Distributed Data Filtering.

The Proxy Pattern is the underlying structural pattern that best describes the architecture utilized
in the creation of the Filter Service Components. The two tiers of Filter Server Objects bridge the
Address Spaces to provide a seamless acquisition of data from a content provider data server to
a user customized local environment. The deployment of a efficient Distributed Data Filter
System participates the used of a Remote Proxy as a Local Representative of the Filter Service
in the Client address space hence the need for the Filter Agent. The Filter Agent only exists
because of location and perhaps some memory optimization considerations. The Filter Agent
maintains a reference to the Real Subject (Filter Service) by resolving the name with the naming
service during the subscription process. The Filter Agent has the same interface as the Real
subject (Filter Service) and is substituted for the Real Filter Service locally.

Figure 6. Filter Agent and Filter Service Creation

Remote
Filter

Service
Application

:UserInterface :FilterAgentFactory:FilterServiceFactoryFilterService
Application

:FilterService :FilterAgent

ActivatePolicyActivatePolicy

GetClientIdGetClientId

ClientIDClientID

RegisterIDRegisterID

SuccessSuccess

GetAgentIDGetAgentID

AgentIDAgentID

CreateCreate

AgentSubscribeAgentSubscribe

SuccessSuccess

Activate
Window
Activate
Window

SuccessSuccess

CreateCreate
CreateCreate

CreateCreate
Create Create

AddSubscribe(ClientID)AddSubscribe(ClientID)

SuccessSuccess

AppendPolicyAppendPolicy

13

Remote and Local Policy Activation

The activation of a Client’s Filter Policy may be done locally by directly connected network
clients on the Filter Service Objects or Remote Filter Agents. For directly connected users of the
Filter Service the activation is simply an Activate Policy operation invocation with no interaction
between the Filter Service and the Filter Agent. The Activate Policy operation invocation creates
an instance of a command object [1], which encapsulates all internal object creation and
messaging required supporting both Remote and Local Activation’s. The Activate Policy object
creates a persistent Policy Applicator object and places it into the Client List. For Remote
Activation’s the Activate Policy object invokes the CreateAppendList and RemoteAppend
operations. The Filter Service creates an AppendList and Append Policy objects to the Filter
Agent database that will be needed to support the pending activation. The final operation
invocation by the Filter Service is the Activate Policy operation on the Filter Agent that executes
as defined above. The sequence diagrams in Figures 4 and 5, show the remote and local
activation of Filter Clients, respectively.

Figure 7 Remote Activation

:PolicyApplicator :DataServer Remote
Filter
Client

Generialized, iterate for each policy
 required to activate policy.

:FilterAgentFilter Client :PolicyDatabase:ActivatePolicy :ClientlList:FilterService

Manage Remote
Filter Agent Changes

successsuccess
RcvDataRcvData

DataData

ExecuteExecute

LogEventLogEvent

SendSend

RcvDataRcvData

DataPacketDataPacket

SuccessSuccess

AppendPolicyAppendPolicy

ActivatePolicy ActivatePolicy

SuccessSuccess

ActivatePolicyActivatePolicy

SuccessSuccess
SuccessSuccess

ExecuteExecute

Find(RecordName)Find(RecordName)

YesYes

Find(Filter Clientl)Find(Filter Clientl)

Add(Filter Client)Add(Filter Client)

Success Success

NoNo

isLocalisLocal
NoNo

CreateAppendListCreateAppendList

RemoteAppendRemoteAppend
createcreate

14

Figure 8 Local Activation

:DataServer
Remote

FilterClient

:PolicyApplicatorFilter Client :PolicyDatabase:ActivatePolicy :ClientlList:FilterService

createcreate

successsuccess

SuccessSuccess

SuccessSuccess

isActive isActive

ExecuteExecute
ActivatePolicyActivatePolicy

Find(PolicyName)Find(PolicyName)
YesYes

Find(Client ID)Find(Client ID)

NoNo

Add(Client ID)Add(Client ID)

SuccessSuccess

RcvDataRcvData

ExecuteExecute

SendSend
DataPacketDataPacket

LogEventLogEvent

RcvDataRcvData

DataData

15

Remote and Local Policy Deactivation

The Deactivation of a Client Filter Policy requires an explicit operation invocation that destroys
the Policy Applicator Object, which in turn destroys the Protocol Object and the Connection
Object for the related DataServer data stream. For directly connected users of the Filter Service,
the deactivation is simply a Deactivate operation invocation with no interaction between the
Filter Service and the Filter Agent. The Deactivate Policy invocation creates an instance of the
Deactivate Policy object [1], which encapsulates all internal object creation and messaging
required supporting both remote and local Deactivations. The Deactivate Policy object deletes
the persistent Policy Applicator object from the list of managed local clients. For Remote
Deactivations, the Deactivate Policy object invokes a Deactivate Policy operation on the
associated Filter Agent object. The Deactivate Policy Object invokes the CreateDeletionList and
RemoteDelete operations. The Deactivate Filter object within the Filter Service performs
RemoteDelete operation to the Filter Agent database for each entry contained within the
DeletionList. The following sequence diagrams depict the remote and local deactivation of a
Filter Client respectively.

Figure 9 Remote Deactivation

:FilterAgentFilter Client :DeactivatePolicy :ClientlList

Manage Remote
Changes for Filter
Agent

:Filter Service

Generialized, iterate for each Policy required to delete all policies
 associated with the Deactivated Policy for this Client .

SuccessSuccess
DeactivatePolicy DeactivatePolicy

DeletePolicy*DeletePolicy*

SuccessSuccess

SuccessSuccess

ExecuteExecute
DeactivatePolicyDeactivatePolicy

Find(Client)Find(Client)
YesYes

Delete(Clientl)Delete(Clientl)
SuccessSuccess

Success Success

CreateDeletionListCreateDeletionList

RemoteDeletionRemoteDeletion

16

Figure 10 Local Deactivation

Filter Client :DeActivatePolicy :ClientlList:Filter Service

SuccessSuccess

Find(Filter Client)Find(Filter Client)

YesYes

Delete(Filter Client)Delete(Filter Client)

SuccessSuccess
SuccessSuccess

ExecuteExecute
DeActivatePolicyDeActivatePolicy

17

 Data Filter

The Filter Data operation also requires a thread-safe environment that has per allocated Policy
Applicators created specifically dedicated to servicing a particular Client ID. The Policy
Applicator objects are active objects that provide a receive thread for the data being filtered and
invoke the Filter Data operation on behalf of a particular client. If the data passes the Filter
criteria then the Policy Applicator sends a message to the Protocol Object data that passed the
filter, otherwise the packet data is disregarded. The network protocol and connection objects are
dedicated objects that service a particular client they are contained within the Policy Applicator
Object. The idea is to have the architecture to supports a Thread Pool of active Policy Applicator
Objects, one per client. Each Policy Applicator dispatches filtered data through internal dedicated
Connection and Protocol object pair serve as the pipe. The Filter Applicator maintains the
connection and protocol object for as long as the Policy Applicator persists. This maybe
implemented using the connector with in the Policy Applicator and an Acceptor in the Data
Server. The Filter Applicator Connection objects presumably would be paired with a TCP/IP
Protocol Object connected to the Client Window. The connection and protocol objects maintain
the Policy Applicators User Interface callback object. These protocol and connection objects
allow for an open standard and could be replaced or made select able to emulate other protocols
and connection characteristics.

Figure 11 Filter Application Data

UserInterface :ClientlList:FilterAgent

Data Server

:PolicyApplicator :FilterPolicy

SuccessSuccess
NextPolicyNextPolicy

FilterDataFilterData

c[x]:ClientIdc[x]:ClientId

Apply (Current Packet)Apply (Current Packet)

DataData

Execute(CReport)Execute(CReport)

RcvDataRcvData

18

Consequences

Decoupling filtering from other services provides the freedom to implement these functions in
different ways and to apply new policies or change existing policies.

In the case of CORBA , a Distributed Filter Service is not part of its standard architecture. This
provides freedom to implement this pattern in different ways.

In some problem domains, e.g., computer vision, image recognition, etc., knowledge may be
uncertain or approximate, which makes finding filtering policies difficult.

Implementation

We discuss now some issues in the definition of each one of the components of this pattern and
some general aspects, i.e., concurrent implementation.

Filter Interface Definition
The Filter Interface is defined in terms of an inheritance hierarchy that encapsulates the CORBA
interface components. The Filter Interface is defined by using the Interface Definition Language
(IDL). The general Filter interface operations and attributes shared by both the Filter Service and
Filter Agent objects is defined by the Base Class Filter interface definition. The Base Class Filter
interface contains two Groups of operations. The first group of operations is Database
management operations for example Copy, Append, Delete, Replace and Retrieve Policies. The
second group of operations is operational directives and status queries for example Activate,
Deactivate, Summary Information, Filter Status, RegisterClientID, GetSubsrcibtionList and the
Filter Data operation.

Filter Agent Interface Definition
The Filter Agent defines the registered operation that is not included in the General Interface,
because the behavior is unique to the Filter Agent. For Filter Agent objects has a
GetSubsciberList operation which is invoked by the Filter Service to retrieve the registered Client
list currently being serviced by Filter Agent. In general, all of the Policy Database management
operations are inherited from the Filter Interface. The Filter Agent Database is a reduced subset
of the Filter Service database that is abbreviated to include only the Filter Policy objects needed
to filter currently activate client's data streams. The Filter Agent is required to AgentAttach to the
Filter Service at startup Observer Pattern[1]. The Subscription process requires the Filter Agent
to invoke the Filter Service GetAgentID operation to get a unique Agent identifier.

Filter Service Interface Definition
The Filter Service inherits from the Filter Interface and encapsulates the behavior specific to the
Filter Service by defining additional operations. The AgentAttach and AgentDetach operation
allow Filter Agent objects to AgentAttach and AgentDetach from the Filter Service Observer
Pattern[1]. The AgentAttach operation causes the Filter Service to create and maintain and
Notification Handle to the Remote Filter Agent Object. The Notification Handle is active as long
as the AgentDetach operation is not invoked with the agent to be deactivated. The
GetUniqueClientID and AddSubscriber operations are unique to the Filter Service objects and
are needed to support the Filter Service Application and Client Windows. The
GetLocalSubscriptionList and GetAgentSubscriptionList operations are provide for status
reporting.

19

Concurrent Architecture -- Client Thread Servicing

A concurrent invocation of methods by multiple clients on the Filter Service and Filter Agent
Objects requires the usage of thread-safe Design pattern. The Thread-Safe Command and
Iterator Patterns [2] for Policy Database Management operations were utilized. The Design uses
the Command Pattern [1] to create a completely independent thread-safe item that is a self
contained implementation of the operation in a thread safe manner to process each request. The
CDBCommand class encapsulates each incoming operation request as defined by the Command
Pattern.

All database commands are encapsulated in a command object that are created specifically to
handle the operation invocation and destroyed at the conclusion of the operation. The Command
objects encapsulate all data needed to process the operation and servers to isolate the each
Filter Client operation. Separate instances of Iterators are created within the Command Object to
handle the Traversal of shared lists required to handler requests. The Command Objects are
destroyed upon completion of the request on the Filter components Database [2]. For deletion of
database objects a simple locking mechanism on the databases require the client thread to
acquire a synchronization variable when sharing resources for readers and writers. The writer
thread locks out new readers and waits until the all reader’s threads have completed before
allowing the data deletion to occur, insertion is thread safe. The concurrent operation invocations
are isolated with the thread-safe objects so concurrent threads do not corrupt internal variables.
One underlying assumption has been made is that the ORB library is thread safe for the
concurrent calling threads invoking the operation. The following class diagram depicts the
database and iterator objects, which implement the Iterator pattern in this system.

Filter Agent Factory and Filter Service Factory

The creation pattern used for factories is the Abstract Factory [1]. The Abstract Factory extends
the CORBA Naming Service and allows for the Remote Filter Service application to manager
instances of the Filter Agent objects. The Factory is an active object with a startup and shutdown
operation that creates the Factories internal Thread Manager. The Startup operation is the
operation that starts the factory event loops and waits for thread to begin execution.

The Factory constructor accepts a Factory Name and a Maximum number of resources as
augments; the factory will create only the number of resource specified by the creator for this
specific instance of the factory. The maximum number of resources value is used to cap the size
of allocated Object arrays and the Managed Resource array for the Factory. The Factory
maintains an array of Managed Resource. The Factory construction routine includes binding the
Factory name to the naming service.

The RequestResource operation allocates a resource (gets a reference) informs the ORB of its
presence, and returns a CORBA::_duplicate reference to a resource. The RequestResource and
specifies and directs the creation or additional reference to an existing requested managed
Resource.

The ReturnResource operations return a resource to the Factory and decrement the reference
count to the Object. In addition, the operation evaluates the reference count for being equal to
zero, if it is the last reference then the object is deactivated and the entry removed it from the
Managed Resource array. The deactivation is performed within a operation Remove Managed
Resource.

20

The operation Thread Service svc() is the thread that is started by the invocation of the Startup
operation. Each factory has an operation called svc() which is invoked by a call to the Startup
operation. The Startup operation causes the spawning of a worker thread that that particular
instance of the factory.

It is presumed that the DataServer is another CORBA object that is a Registered Resource with
the naming service.

Sample Code

Creating the Filter Policy using the Filter Agent
Client Window: local

FilterAgent::DataPolicyList Policies(3) ;

Policies.Name = “Censor”;
Policies.Receive = False;
Policies.length(3);

FilterAgent::SymbolPolicy_var Symbol ;
Symbol = myFilterAgent->create_symbol_policy (FilterAgent::SYMBOL_ID, CORBA::String
sym);

FilterAgent::URLPolicy_var URLPolicy ;
URLPolicy = myFilterAgent->create_URL_policy (FilterAgent::URL_ID, CORBA::String sym);

// Allow s for user defined strategy
FilterAgent::UserDefined_var Newpolicy ;
Newpolicy = myFilterAgent->create_user_policy (FilterAgent::USER, DataPolicy Algorithm)

Policies[0] = Symbol;
Policies[1] = URLPolicy;
Policies[2] = NewPolicy;

myFilterAgent->ActivatePolicy (ClientID,Policies)

Known Uses

The Distributed Data Filter patterns abstractions may be used in the Filter Applications that are
present in an Object Web based Filter Service. It is likely that current distributed systems are
already using this type of architecture.

The concept of Distributed Filter Service Components was used in a large Distributed Object-
Oriented System programmed at Raytheon, St. Petersburg, FL, using the Adaptive
Communication Environment (ACE) from Washington University.

21

Related Patterns

The Distributed Data Filter Pattern combines many design patterns in a reusable abstract
Framework, including:

Abstract Factory -- Creation of Filter Policies and distributed objects.
Command Pattern -- Command objects for improved extensibility and thread safe operations.
Iterator Pattern -- Thread safe database traversals.
Strategy Pattern -- Re-programmable Filter Policy objects and Policy Applicator objects.
Composite Pattern -- Filter Policy List may contain other Filter Policy lists.
Observer Pattern -- Filter Service contains the change manager: uses subscribe and publish.
Proxy Pattern -- Component Architecture is based on remote proxies.

Two complementary patterns are:

• The Authenticator [7], that has as its objective providing client request authentication before
 access.

• The Bodyguard [8], that determines access rights based on authorizations.

22

 References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994.

[2] Sean Baker, CORBA Distributed Objects Using Orbix. Reading, MA: Addison-Wesley, 1994.

[3] Robert Orfali, Dan Harkey, and Jeri Edwards, Corba, Java, and the Object Web.
BYTE Magazine, Oct 1997.

[4] Steve Vinoski and Doug Schmidt: Object Interconnections: Using the Portable Object Adapter
for Transient and Persistent CORBA Objects. C++ Report, April 1998

[5] Bruce P. Douglas: Real-Time UML Developing Efficient Objects for Embedded Systems.
Reading, MA: Addison-Wesley, 1998.

[6] Steve Vinoski and Doug Schmidt: Object Interconnections: Comparing Alternative Server
Programming Techniques. C++ Report, Oct 1995.

[7] F. L. Brown, J. DiVietri, G. Diaz de Villegas, and E.B.Fernandez, "The Authenticator pattern",
submitted to PLOP'99.

[8] F. Das Neves and A. Garrido, "Bodyguard", Chapter 13 in Pattern Languages of Program
Design 3, Addison-Wesley 1998.

